
Foundations of Artificial Intelligence
4. Informed Search Methods

Heuristics, Local Search Methods, Genetic Algorithms

Joschka Boedecker and Wolfram Burgard and Bernhard Nebel

Albert-Ludwigs-Universität Freiburg

May 3, 2017

Contents

1 Best-First Search

2 A∗ and IDA∗

3 Local Search Methods

4 Genetic Algorithms

(University of Freiburg) Foundations of AI May 3, 2017 2 / 32

Best-First Search

Search procedures differ in the way they determine the next node to
expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a
given node to the goal.

Informed Search: Knowledge of the worth of expanding a node n is
given in the form of an evaluation function f(n),
which assigns a real number to each node. Mostly,
f(n) includes as a component a heuristic function
h(n), which estimates the costs of the cheapest
path from n to the goal.

Best-First Search: Informed search procedure that expands the node
with the “best” f -value first.

(University of Freiburg) Foundations of AI May 3, 2017 3 / 32

General Algorithm 5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier) then return failure
node← POP(frontier) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier)

Figure 3.11 Breadth-first search on a graph.

Best-first search is an instance of the general Tree-Search algorithm in
which frontier is a priority queue ordered by an evaluation function f .

When f is always correct, we do not need to search!

(University of Freiburg) Foundations of AI May 3, 2017 4 / 32

Greedy Search

A possible way to judge the “worth” of a node is to estimate its path-costs
to the goal.

h(n) = estimated path-costs from n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search using h(n) as the evaluation function, i.e., f(n) = h(n)
is called a greedy search.

Example: route-finding problem:
h(n) =

straight-line distance from n to the goal

(University of Freiburg) Foundations of AI May 3, 2017 5 / 32

Greedy Search

A possible way to judge the “worth” of a node is to estimate its path-costs
to the goal.

h(n) = estimated path-costs from n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search using h(n) as the evaluation function, i.e., f(n) = h(n)
is called a greedy search.

Example: route-finding problem:
h(n) = straight-line distance from n to the goal

(University of Freiburg) Foundations of AI May 3, 2017 5 / 32

Heuristics

The evaluation function h in greedy searches is also called a heuristic
function or simply a heuristic.

The word heuristic is derived from the Greek word ευρισκειν (note
also: ευρηκα!)

The mathematician Polya introduced the word in the context of problem
solving techniques.

In AI it has two meanings:

Heuristics are fast but in certain situations incomplete methods for
problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually
generally incomplete).
Heuristics are methods that improve the search in the average-case.

→ In all cases, the heuristic is problem-specific and focuses the search!

(University of Freiburg) Foundations of AI May 3, 2017 6 / 32

Greedy Search Example

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

(University of Freiburg) Foundations of AI May 3, 2017 7 / 32

Greedy Search from Arad to Bucharest

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

(University of Freiburg) Foundations of AI May 3, 2017 8 / 32

Greedy Search from Arad to Bucharest

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

(University of Freiburg) Foundations of AI May 3, 2017 8 / 32

Greedy Search from Arad to Bucharest

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

(University of Freiburg) Foundations of AI May 3, 2017 8 / 32

Greedy Search from Arad to Bucharest

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Rimnicu Vilcea

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329

Zerind

374

366 176 380 193

Zerind

Arad

Sibiu Timisoara

253 329 374

Arad

366

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

(d) After expanding Fagaras

(University of Freiburg) Foundations of AI May 3, 2017 8 / 32

Greedy Search - Properties

a good heuristic might reduce search time drastically

non-optimal

incomplete

graph-search version is complete only in finite spaces

Can we do better?

(University of Freiburg) Foundations of AI May 3, 2017 9 / 32

A∗: Minimization of the Estimated Path Costs

A∗ combines greedy search with the uniform-cost search:
Always expand node with lowest f(n) first, where

g(n) = actual cost from the initial state to n.
h(n) = estimated cost from n to the nearest goal.
f(n) = g(n) + h(n),

the estimated cost of the cheapest solution through n.

Let h∗(n) be the actual cost of the optimal path from n to the nearest
goal. h is admissible if the following holds for all n:

h(n) ≤ h∗(n)

We require that for A∗, h is admissible (example: straight-line distance is
admissible).
In other words, h is an optimistic estimate of the costs that actually occur.

(University of Freiburg) Foundations of AI May 3, 2017 10 / 32

A∗ Search Example

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Arad 366
Bucharest 0
Craiova 160
Drobeta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 100
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

(University of Freiburg) Foundations of AI May 3, 2017 11 / 32

A∗ Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

(University of Freiburg) Foundations of AI May 3, 2017 12 / 32

A∗ Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

(University of Freiburg) Foundations of AI May 3, 2017 12 / 32

A∗ Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

(University of Freiburg) Foundations of AI May 3, 2017 12 / 32

A∗ Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

(University of Freiburg) Foundations of AI May 3, 2017 12 / 32

A∗ Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

(University of Freiburg) Foundations of AI May 3, 2017 12 / 32

A∗ Search from Arad to Bucharest

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374393=140+253

Arad

366=0+366

(d) After expanding Rimnicu Vilcea

(e) After expanding Fagaras

(f) After expanding Pitesti

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Fagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Rimnicu Vilcea

Fagaras Rimnicu Vilcea

Arad Fagaras Oradea

646=280+366 415=239+176 671=291+380

(University of Freiburg) Foundations of AI May 3, 2017 12 / 32

Example: Path Planning for Robots in a Grid-World

Live-Demo: http://qiao.github.io/PathFinding.js/visual/

(University of Freiburg) Foundations of AI May 3, 2017 13 / 32

http://qiao.github.io/PathFinding.js/visual/

Optimality of A∗

Claim: The first solution found (= node is expanded and found to be a
goal node) has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f∗, but
A∗ has found another node G2 with g(G2) > f∗.

G

n

G2

Start

(University of Freiburg) Foundations of AI May 3, 2017 14 / 32

Optimality of A∗

Let n be a node on the path from the start to G that has not yet been
expanded. Since h is admissible, we have

f(n) ≤ f∗.

Since n was not expanded before G2, the following must hold:

f(G2) ≤ f(n)

and
f(G2) ≤ f∗.

It follows from h(G2) = 0 that

g(G2) ≤ f∗.

→ Contradicts the assumption!

(University of Freiburg) Foundations of AI May 3, 2017 15 / 32

Completeness and Complexity

Completeness:

If a solution exists, A∗ will find it provided that (1) every node has a finite
number of successor nodes, and (2) there exists a positive constant δ > 0
such that every step has at least cost δ.

→ there exists only a finite number of nodes n with f(n) ≤ f∗.

Complexity:

In general, still exponential in the path length of the solution (space, time)

More refined complexity results depend on the assumptions made, e.g. on
the quality of the heuristic function. Example:

In the case in which |h∗(n)− h(n)| ≤ O(log(h∗(n)), only one goal state
exists, and the search graph is a tree, a sub-exponential number of nodes
will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].
Unfortunately, this almost never holds.

(University of Freiburg) Foundations of AI May 3, 2017 16 / 32

A note on Graph- vs. Tree-Search

A∗ as described is a tree-search (and may consider duplicates)

For the graph-based variant, one

either needs to consider re-opening nodes from the explored set, when a
better estimate becomes known, or
one needs needs to require stronger restrictions on the heuristic estimate: it
needs to be consistent.

→ A heuristic h is called consistent iff for all actions a leading from s to
s′: h(s)− h(s′) ≤ c(a), where c(a) denotes the cost of action a.

Note: Consistency implies admissibility.

(University of Freiburg) Foundations of AI May 3, 2017 17 / 32

Heuristic Function Example

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h1 = the number of tiles in the wrong position
h2 = the sum of the distances of the tiles from their goal positions

(Manhattan distance)

(University of Freiburg) Foundations of AI May 3, 2017 18 / 32

Heuristic Function Example

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h1 = the number of tiles in the wrong position

h2 = the sum of the distances of the tiles from their goal positions
(Manhattan distance)

(University of Freiburg) Foundations of AI May 3, 2017 18 / 32

Heuristic Function Example

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

h1 = the number of tiles in the wrong position
h2 = the sum of the distances of the tiles from their goal positions

(Manhattan distance)

(University of Freiburg) Foundations of AI May 3, 2017 18 / 32

Empirical Evaluation

d = distance from goal

Average over 100 instances

Search Cost (nodes generated) Effective Branching Factor

d IDS A∗(h1) A∗(h2) IDS A∗(h1) A∗(h2)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22

12 3644035 227 73 2.78 1.42 1.24

14 - 539 113 - 1.44 1.23

16 - 1301 211 - 1.45 1.25

18 - 3056 363 - 1.46 1.26

20 - 7276 676 - 1.47 1.47

22 - 18094 1219 - 1.48 1.28

24 - 39135 1641 - 1.48 1.26

(University of Freiburg) Foundations of AI May 3, 2017 19 / 32

Variants of A∗

A∗ in general still suffers from exponential memory growth. Therefore,
several refinements have been suggested:

iterative-deepening A∗, where the f-costs are used to define the cutoff
(rather than the depth of the search tree): IDA∗

Recursive Best First Search (RBFS): introduces a variable f limit to
keep track of the best alternative path available from any ancestor of
the current node. If current node exceeds this limit, recursion unwinds
back to the alternative path.

other alternatives memory-bounded A∗ (MA∗) and simplified MA∗

(SMA∗).

(University of Freiburg) Foundations of AI May 3, 2017 20 / 32

Local Search Methods

In many problems, it is unimportant how the goal is reached—only the
goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, local search can be
used to find solutions.

It operates using a single current node (rather than multiple paths).
It requires little memory.
Idea: Begin with a randomly-chosen configuration and improve on it
step by step → Hill Climbing.
Note: It can be used for maximization or minimization respectively (see
8-queens example)

(University of Freiburg) Foundations of AI May 3, 2017 21 / 32

Example: 8-queens Problem (1)

Example state with heuristic cost estimate h = 17 (counts the number of
pairs threatening each other directly or indirectly).

14

18

17

15

14

18

14

14

14

14

14

12

16

12

13

16

17

14

18

13

14

17

15

18

15

13

15

13

12

15

15

13

15

12

13

14

14

14

16

12

14

12

12

15

16

13

14

12

14

18

16

16

16

14

16

14

(University of Freiburg) Foundations of AI May 3, 2017 22 / 32

Hill Climbing

4 BEYOND CLASSICAL
SEARCH

function HILL -CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL -STATE)
loop do

neighbor←a highest-valued successor ofcurrent
if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basiclocal search technique. At
each step the current node is replaced by the best neighbor; in this version, that means the neighbor
with the highest VALUE, but if a heuristic cost estimateh is used, we would find the neighbor with the
lowesth.

function SIMULATED -ANNEALING(problem ,schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”

current←MAKE-NODE(problem .INITIAL -STATE)
for t = 1 to∞ do

T← schedule(t)
if T = 0 then return current
next←a randomly selected successor ofcurrent
∆E← next .VALUE – current .VALUE

if ∆E > 0 then current←next
else current←next only with probabilitye∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastichill climbing where some
downhill moves are allowed. Downhill moves are accepted readily early in the annealing schedule and
then less often as time goes on. Theschedule input determines the value of the temperatureT as a
function of time.

8

(University of Freiburg) Foundations of AI May 3, 2017 23 / 32

Example: 8-queens Problem (2)

Possible realization of a hill-climbing algorithm:
Select a column and move the queen to the square with the fewest
conflicts.

2

2

1

2

3

1

2

3

3

2

3

2

3

0

(University of Freiburg) Foundations of AI May 3, 2017 24 / 32

Problems with Local Search Methods

Local maxima: The algorithm finds a sub-optimal solution.

Plateaus: Here, the algorithm can only explore at random.

Ridges: Similar to plateaus but might even require suboptimal moves.

Solutions:

Start over when no progress is being made.

“Inject noise” → random walk

Which strategies (with which parameters) are successful (within a problem
class) can usually only empirically be determined.

(University of Freiburg) Foundations of AI May 3, 2017 25 / 32

Example: 8-queens Problem (Local Minimum)

Local minimum (h = 1) of the 8-queens Problem. Every successor has a
higher cost.

(University of Freiburg) Foundations of AI May 3, 2017 26 / 32

Illustration of the ridge problem

The grid of states (dark circles) is superimposed on a ridge rising from left
to right, creating a sequence of local maxima, that are not directly
connected to each other. From each local maximum, all the available
actions point downhill.

(University of Freiburg) Foundations of AI May 3, 2017 27 / 32

Performance figures for the 8-queens Problem

The 8-queens problem has about 88 ≈ 17 million states. Starting from a
random initialization, hill-climbing directly finds a solution in about 14% of
the cases. On average it requires only 4 steps!

Better algorithm: Allow sideways moves (no improvement), but restrict
the number of moves (avoid infinite loops!).

E.g.: max. 100 moves: Solves 94%, number of steps raises to 21 steps for
successful instances and 64 for failure cases.

(University of Freiburg) Foundations of AI May 3, 2017 28 / 32

Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically:
first a lot, then gradually less.

4 BEYOND CLASSICAL
SEARCH

function HILL -CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL -STATE)
loop do

neighbor←a highest-valued successor ofcurrent
if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basiclocal search technique. At
each step the current node is replaced by the best neighbor; in this version, that means the neighbor
with the highest VALUE, but if a heuristic cost estimateh is used, we would find the neighbor with the
lowesth.

function SIMULATED -ANNEALING(problem ,schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”

current←MAKE-NODE(problem .INITIAL -STATE)
for t = 1 to∞ do

T← schedule(t)
if T = 0 then return current
next←a randomly selected successor ofcurrent
∆E← next .VALUE – current .VALUE

if ∆E > 0 then current←next
else current←next only with probabilitye∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastichill climbing where some
downhill moves are allowed. Downhill moves are accepted readily early in the annealing schedule and
then less often as time goes on. Theschedule input determines the value of the temperatureT as a
function of time.

8

Has been used since the early 80’s for VSLI layout and other optimization
problems.

(University of Freiburg) Foundations of AI May 3, 2017 29 / 32

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by three operators:
“mutation”, “crossover”, and “selection”.

Ingredients:

Coding of a solution into a string of symbols or bit-string

A fitness function to judge the worth of configurations

A population of configurations

Example: 8-queens problem as a chain of eight numbers. Fitness is judged
by the number of non-attacks. The population consists of a set of
arrangements of queens.

(University of Freiburg) Foundations of AI May 3, 2017 30 / 32

Selection, Mutation, and Crossing

Many variations:

how selection will be applied, what
type of cross-over operators will be
used, etc.

Selection of individuals according
to a fitness function and pairing

Calculation of the breaking points
and recombination

According to a given probability
elements in the string are modi-
fied.

(University of Freiburg) Foundations of AI May 3, 2017 31 / 32

Summary

Heuristics focus the search

Best-first search expands the node with the highest worth (defined by
any measure) first.

With the minimization of the evaluated costs to the goal h we obtain a
greedy search.

The minimization of f(n) = g(n) + h(n) combines uniform and greedy
searches. When h(n) is admissible, i.e., h∗ is never overestimated, we
obtain the A∗ search, which is complete and optimal.

IDA∗ is a combination of the iterative-deepening and A∗ searches.

Local search methods only ever work on one state, attempting to
improve it step-wise.

Genetic algorithms imitate evolution by combining good solutions.

(University of Freiburg) Foundations of AI May 3, 2017 32 / 32

	Best-First Search
	Best-First Search
	General Algorithm
	Greedy Search
	Heuristics
	Greedy Search Example
	Greedy Search from Arad to Bucharest
	Greedy Search - Properties

	A* and IDA*
	A*: Minimization of the Estimated Path Costs
	A* Search Example
	A* Search from Arad to Bucharest
	Example: Path Planning for Robots in a Grid-World
	Optimality of A*
	Completeness and Complexity
	Heuristic Function Example
	Empirical Evaluation
	Variants of A*

	Local Search Methods
	Local Search Methods
	Example: 8-Queens Problem (1)
	Hill Climbing
	Example: 8-Queens Problem (2)
	Problems with Local Search Methods
	Example: 8-queens Problem (Local Minimum)
	Illustration of the ridge problem
	Performance figures for the 8-queens Problem
	Simulated Annealing

	Genetic Algorithms
	Genetic Algorithms
	Selection, Mutation, and Crossing

