Lecture 4
Generative Models for Discrete Data - Part 3

Luigi Freda

ALCOR Lab
DIAG
University of Rome ”La Sapienza”

October 6, 2017
Outline

1. Naive Bayes Classifiers
 - Basic Concepts
 - Class-Conditional Distributions
 - Likelihood
 - MLE
 - Bayesian Naive Bayes
 - Prior
 - Posterior
 - MAP
 - Posterior Predictive
 - Plug-in Approximation
 - Log-Sum-Exp Trick
 - Posterior Predictive Algorithm
 - Feature Selection
Outline

1. **Naive Bayes Classifiers**
 - Basic Concepts
 - Class-Conditional Distributions
 - Likelihood
 - MLE
 - Bayesian Naive Bayes
 - Prior
 - Posterior
 - MAP
 - Posterior Predictive
 - Plug-in Approximation
 - Log-Sum-Exp Trick
 - Posterior Predictive Algorithm
 - Feature Selection
Generative Classifiers vs Discriminative Classifiers

probabilistic classifier

- we are given a dataset \(D = \{(x_i, y_i)\}_{i=1}^N \)
- the goal is to compute the class posterior \(p(y = c|x) \) which models the mapping \(y = f(x) \)

generative classifiers

- \(p(y = c|x) \) is computed starting from the class-conditional density \(p(x|y = c, \theta) \) and the class prior \(p(y = c|\theta) \) given that
 \[
p(y = c|x, \theta) \propto p(x|y = c, \theta)p(y = c|\theta) \quad (= p(y = c, x|\theta))
\]
- this is called a generative classifier since it specifies how to generate the feature vector \(x \) for each class \(y = c \) (by using \(p(x|y = c, \theta) \))
- the model is usually fit by maximizing the joint log-likelihood, i.e. one computes
 \[
 \theta^* = \arg \max_{\theta} \sum_i \log p(y_i, x_i|\theta)
 \]

discriminative classifiers

- the model \(p(y = c|x) \) is directly fit to the data
- the model is usually fit by maximizing the conditional log-likelihood, i.e. one computes
 \[
 \theta^* = \arg \max_{\theta} \sum_i \log p(y_i|x_i, \theta)
 \]
a Naive Bayes Classifier (NBC) uses a generative approach

- let $\mathbf{x} = [x_1, ..., x_D]^T$ be our feature vector with D components\(^1\)
- let $y \in \{1, ..., C\}$ where C is the number of classes
- **assumption**: the D features are assumed to be conditionally independent given the class label, i.e.
 \[
 p(\mathbf{x}|y = c, \theta) = \prod_{j=1}^{D} p(x_j|y = c, \theta_{jc})
 \]

 this is the simplest approach to specify a class-conditional density
- it is called "naive" since we do not actually expect the features to be conditionally independent, even conditional to the class label $y = c$
- even if the naive assumption is not true, NBC often works well given that the model is quite simple and depends on $O(CD)$ parameters and hence is relatively immune to overfitting

\(^1\) one can have $\mathbf{x} \in \mathbb{R}^D$ or $\mathbf{x} \in \{1, 2, ..., K\}^D$ or $\mathbf{x} \in \{0, 1\}^D$
Naive Bayes Classifiers

Basic Concepts

Class-Conditional Distributions

Likelihood

MLE

Bayesian Naive Bayes

Prior

Posterior

MAP

Posterior Predictive

Plug-in Approximation

Log-Sum-Exp Trick

Posterior Predictive Algorithm

Feature Selection
the form of the class-conditional density depends on the type of each feature

- if \(x_j \in \mathbb{R} \) we can use the Gaussian distribution

\[
p(x | y = c, \theta) = \prod_{j=1}^{D} \mathcal{N}(x_j | \mu_{jc}, \sigma_{jc}^2)
\]

where for each class \(c \) we specify the mean \(\mu_{jc} \) of feature \(j \) and its variance \(\sigma_{jc} \)

- if \(x_j \in \{0, 1\} \) we can use the Bernoulli distribution

\[
p(x | y = c, \theta) = \prod_{j=1}^{D} \text{Ber}(x_j | \mu_{jc})
\]

where for each class \(c \) we specify the probability \(\mu_{jc} = p(x_j = 1 | y = c) \), i.e. the probability that feature \(j \) occurs
if $x_j \in \{1, ..., K\}$ we can use the categorical distribution

$$p(x|y = c, \theta) = \prod_{j=1}^{D} \text{Cat}(x_j|\mu_{jc})$$

where for each class c we specify the histogram

$$\mu_{jc} = [p(x_j = 1|y = c), ..., p(x_j = K|y = c)]$$

other kind of features can be conceived and we can mix different kind of features
Naive Bayes Classifiers

- Basic Concepts
- Class-Conditional Distributions

Likelihood
- MLE
- Bayesian Naive Bayes
- Prior
- Posterior
- MAP
- Posterior Predictive
- Plug-in Approximation
- Log-Sum-Exp Trick
- Posterior Predictive Algorithm
- Feature Selection
Naive Bayes Classifiers

Likelihood

- probability for single data case

\[p(x_i, y_i | \theta) = p(y_i | \pi)p(x_i | y_i, \theta) = (\text{NBC assumption}) = p(y_i | \pi) \prod_j p(x_{ij} | y_i, \theta_j) \]

where \(\theta \) is a compound vector parameter containing \(\pi \) and \(\theta_j \)

- since \(y_i \sim \text{Cat}(\pi) \)

\[p(y_i | \pi) = \prod_c \pi_c \mathbb{I}(y_i = c) \]

- for each class \(c \) we allocate a specific set of parameters \(\theta_{jc} \)

\[p(x_{ij} | y_i, \theta_j) = \prod_c p(x_{ij} | \theta_{jc}) \mathbb{I}(y_i = c) \]

- hence

\[p(x_i, y_i | \theta) = \prod_c \pi_c \mathbb{I}(y_i = c) \prod_j \prod_c p(x_{ij} | \theta_{jc}) \mathbb{I}(y_i = c) \]
the **log-likelihood** is given by

$$
\log p(D | \theta) = \sum_{i=1}^{N} \log p(x_i, y_i | \theta) = \sum_{i=1}^{N} \sum_{c=1}^{C} \log \pi_c \mathbb{I}(y_i = c) + \sum_{i=1}^{N} \sum_{j=1}^{D} \sum_{c=1}^{C} \log p(x_{ij} | \theta_{jc}) \mathbb{I}(y_i = c)
$$

$$
= \sum_{c=1}^{C} N_c \log \pi_c + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i: y_i = c} \log p(x_{ij} | \theta_{jc})
$$

where $N_c \triangleq \sum_i \mathbb{I}(y_i = c)$ and we assumed as usual that the pairs (x_i, y_i) are iid
Naive Bayes Classifiers

- Basic Concepts
- Class-Conditional Distributions
- Likelihood
- MLE
- Bayesian Naive Bayes
- Prior
- Posterior
- MAP
- Posterior Predictive
- Plug-in Approximation
- Log-Sum-Exp Trick
- Posterior Predictive Algorithm
- Feature Selection
the log-likelihood is

\[\log p(D|\theta) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \log p(x_{ij}|\theta_{jc}) \]

here we have the sum of two terms, the first concerning \(\pi = [\pi_1, \ldots, \pi_C] \) and the second concerning \(DC \) set of parameters \(\theta_{jc} \)

in order to compute the MLE we can optimize the two group of parameters \(\pi \) and \(\theta_{jc} \) separately
the **log-likelihood** is

\[
\log p(D|\theta) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i = c} \log p(x_{ij}|\theta_{jc})
\]

the first term concerns the labels \(y_i \sim \text{Cat}(\pi) \), recall how we computed the MLE of the Dirichlet-multinomial model

the MLE can be computed by optimizing the Lagrangian

\[
l(\pi, \lambda) = \sum_{c} N_c \log \pi_c + \lambda \left(1 - \sum_{c} \pi_c \right)
\]

where we enforce the constraint \(\sum_{c} \pi_c = 1 \)

we impose \(\frac{\partial l}{\partial \pi_c} = 0, \frac{\partial l}{\partial \lambda} = 0 \) and we obtain the MLE estimation

\[
\hat{\pi}_c = \frac{N_c}{N}
\]
the log-likelihood is

$$\log p(D|\theta) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \log p(x_{ij}|\theta_{jc})$$

as for the second term optimization, we assume the features x_{ij} are binary, i.e. $x_{ij} \in \{0, 1\}$, and $x_{ij}|y = c \sim \text{Ber}(\theta_{jc})$, hence $\theta_{jc} = \theta_{jc} \in [0, 1]$

in this case, we could compute the MLE by using the analysis which was performed with the beta-binomial model

doing the math again, we have to optimize the function

$$J = \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \log p(x_{ij}|\theta_{jc}) = \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \left(\mathbb{I}(x_{ij} = 1) \log \theta_{jc} + \mathbb{I}(x_{ij} = 0) \log(1 - \theta_{jc}) \right)$$

$$= \sum_{j=1}^{D} \sum_{c=1}^{C} N_{jc} \log \theta_{jc} + \sum_{j=1}^{D} \sum_{c=1}^{C} (N_c - N_{jc}) \log(1 - \theta_{jc})$$

where $N_{jc} \triangleq \sum_i \mathbb{I}(x_{ij} = 1, y_i = c)$ and $N_c \triangleq \sum_i \mathbb{I}(y_i = c)$
we have to optimize the function

\[
J = \sum_{j=1}^{D} \sum_{c=1}^{C} N_{jc} \log \theta_{jc} + \sum_{j=1}^{D} \sum_{c=1}^{C} (N_c - N_{jc}) \log(1 - \theta_{jc})
\]

where \(N_{jc} \triangleq \sum_i \mathbb{I}(x_{ij} = 1, y_i = c) \) and \(N_c \triangleq \sum_i \mathbb{I}(y_i = c) \)

by imposing \(\frac{\partial J}{\partial \theta_{jc}} = 0 \) one obtains the MLE estimate

\[
\hat{\theta}_{jc} = \frac{N_{jc}}{N_c}
\]
Naive Bayes Classifiers

Model Fitting

Algorithm: MLE fitting a naive Bayes classifier to binary features (i.e. $x_i \in \{0, 1\}^D$)

$$N_c = 0, N_{jc} = 0 ;$$

for $i = 1 : N$ **do**

$\quad c := y_i; \quad // \text{get the class label of the } i\text{-th sample}$

$\quad N_c := N_c + 1;$

$\quad **for** \ j = 1 : D **do**$

$\quad \quad \quad \text{if } x_{ij} = 1 \text{ then}$

$\quad \quad \quad \quad \quad N_{jc} := N_{jc} + 1$

$\quad \quad \quad \text{end}$

$\quad \text{end}$

end

$$\hat{\pi}_c = \frac{N_c}{N}, \hat{\theta}_{jc} = \frac{N_{jc}}{N_c};$$

- see the *naiveBayesFit* script for some Matlab code
- the algorithm takes $O(ND)$ time
1 Naive Bayes Classifiers
 • Basic Concepts
 • Class-Conditional Distributions
 • Likelihood
 • MLE
 • Bayesian Naive Bayes
 • Prior
 • Posterior
 • MAP
 • Posterior Predictive
 • Plug-in Approximation
 • Log-Sum-Exp Trick
 • Posterior Predictive Algorithm
 • Feature Selection
as we know the MLE estimates can overfit
recall the black swan paradox and the issue of using empirical fractions N_i/N
a simple solution to overfitting is to be Bayesian
1 Naive Bayes Classifiers

- Basic Concepts
- Class-Conditional Distributions
- Likelihood
- MLE
- Bayesian Naive Bayes

Prior
- Posterior
- MAP
- Posterior Predictive
- Plug-in Approximation
- Log-Sum-Exp Trick
- Posterior Predictive Algorithm
- Feature Selection
The Beta-Binomial Model

Prior

- for simplicity we use a factored prior

$$p(\theta) = p(\pi) \prod_{j=1}^{D} \prod_{c=1}^{C} p(\theta_{jc})$$

where θ is a compound vector parameter containing π, θ_{jc}

- as for the prior of π we use

$$p(\pi) = \text{Dir}(\pi | \alpha)$$

which is a conjugate prior w.r.t. the multinomial part

- as for the prior of each θ_{jc} we use

$$p(\theta_{jc}) = \text{Beta}(\theta_{jc} | \beta_0, \beta_1)$$

which is a conjugate prior w.r.t. the binomial part

- we can obtain a uniform prior by setting $\alpha = 1$ and $\beta_0 = \beta_1 = 1$
Outline

1. Naive Bayes Classifiers
 - Basic Concepts
 - Class-Conditional Distributions
 - Likelihood
 - MLE
 - Bayesian Naive Bayes
 - Prior
 - Posterior
 - MAP
 - Posterior Predictive
 - Plug-in Approximation
 - Log-Sum-Exp Trick
 - Posterior Predictive Algorithm
 - Feature Selection
The Beta-Binomial Model

Posterior

- factored likelihood

\[\log p(D|\theta) = \log \text{Cat}(y|\pi) + \sum_{j=1}^{D} \sum_{c=1}^{C} \sum_{i:y_i=c} \log \text{Ber}(x_{ij}|\theta_{jc}) \]

- factored prior

\[p(\theta) = \text{Dir}(\pi|\alpha) \prod_{j=1}^{D} \prod_{c=1}^{C} \text{Beta}(\theta_{jc}|\beta_0, \beta_1) \]

- factored posterior

\[p(\theta|D) = p(\pi|D) \prod_{j=1}^{D} \prod_{c=1}^{C} p(\theta_{jc}|D) \]

\[p(\pi|D) = \text{Dir}(\pi|N_1 + \alpha_1, \ldots, N_C + \alpha_C) \]

\[p(\theta_{jc}|D) = \text{Beta}(\theta_{jc}|N_{jc} + \beta_1, (N_c - N_{jc}) + \beta_0) \]

- to compute the posterior we just updates the empirical counts of the likelihood with the prior counts
1. Naive Bayes Classifiers
 - Basic Concepts
 - Class-Conditional Distributions
 - Likelihood
 - MLE
 - Bayesian Naive Bayes
 - Prior
 - Posterior
 - MAP
 - Posterior Predictive
 - Plug-in Approximation
 - Log-Sum-Exp Trick
 - Posterior Predictive Algorithm
 - Feature Selection
The Beta-Binomial Model

MAP

- factored posterior

\[p(\theta|\mathcal{D}) = p(\pi|\mathcal{D}) \prod_{j=1}^{D} \prod_{c=1}^{C} p(\theta_{jc}|\mathcal{D}) \]

\[p(\pi|\mathcal{D}) = \text{Dir}(\pi|N_1 + \alpha_1, ..., N_C + \alpha_C) \]

\[p(\theta_{jc}|\mathcal{D}) = \text{Beta}(\theta_{jc}|N_{jc} + \beta_1, (N_c - N_{jc}) + \beta_0) \]

- MAP estimate of \(\pi = [\pi_1, ..., \pi_C] \)

\[\hat{\pi} = \arg \max_{\pi} \text{Dir}(\pi|N_1 + \alpha_1, ..., N_C + \alpha_C) \implies \hat{\pi}_c = \frac{N_c + \alpha_c - 1}{N + \alpha_0 - C} \]

- MAP estimate of \(\theta_{jc} \) for \(j \in \{1, ..., D\}, \ c \in \{1, ..., C\} \)

\[\hat{\theta}_{jc} = \arg \max_{\theta_{jc}} \text{Beta}(\theta_{jc}|N_{jc} + \beta_1, (N_c - N_{jc}) + \beta_0) \implies \hat{\theta}_{jc} = \frac{N_{jc} + \beta_1 - 1}{N_c + \beta_1 + \beta_0 - 2} \]
algorithm: MAP fitting a naive Bayes classifier to binary features (i.e. $x_i \in \{0, 1\}^D$)

\[N_c = 0, N_{jc} = 0; \]
\[\text{for } i = 1 : N \text{ do} \]
\[c := y_i; \quad // \text{get the class label of the } i\text{-th sample} \]
\[N_c := N_c + 1; \]
\[\text{for } j = 1 : D \text{ do} \]
\[\quad \text{if } x_{ij} = 1 \text{ then} \]
\[\quad \quad N_{jc} := N_{jc} + 1 \]
\[\quad \text{end} \]
\[\text{end} \]
\[\hat{\pi}_c = \frac{N_c + \alpha_c - 1}{N + \alpha_0 - C}, \quad \hat{\theta}_{jc} = \frac{N_{jc} + \beta_1 - 1}{N_c + \beta_1 + \beta_0 - 2}; \]
Naive Bayes Classifiers

- Basic Concepts
- Class-Conditional Distributions
- Likelihood
- MLE
- Bayesian Naive Bayes
- Prior
- Posterior
- MAP

Posterior Predictive

- Plug-in Approximation
- Log-Sum-Exp Trick
- Posterior Predictive Algorithm
- Feature Selection
if we are given a new sample x the **posterior predictive** is

$$p(y = c|x, \mathcal{D}) \propto p(x|y = c, \mathcal{D})p(y = c|\mathcal{D})$$

with a NBC the class conditional density can factorized as

$$p(x|y = c, \mathcal{D}) = \prod_{j=1}^{D} p(x_j|y = c, \mathcal{D})$$

(since features are assumed to be conditionally independent given the class label)

combining the two above equations returns

$$p(y = c|x, \mathcal{D}) \propto p(y = c|\mathcal{D}) \prod_{j=1}^{D} p(x_j|y = c, \mathcal{D})$$
we start from this factorization and we apply the Bayesian procedure

\[p(y = c | x, D) \propto p(y = c | D) \prod_{j=1}^{D} p(x_j | y = c, D) \]

first step, we integrate out the unknown \(\pi \) on the first factor

\[
p(y = c | D) = \int p(y = c, \pi | D) d\pi = \int p(y = c | \pi, D) p(\pi | D) d\pi = \\
\left(\pi \text{ gives enough information to compute } p(y = c) \right) = \int p(y = c | \pi) p(\pi | D) d\pi
\]

second step, we integrate out the unknowns \(\theta_{jc} \) on each remaining factor

\[
p(x_j | y = c, D) = \int p(x_j, \theta_{jc} | y = c, D) d\theta_{jc} = \int p(x_j | \theta_{jc}, y = c, D) p(\theta_{jc} | y = c, D) d\theta_{jc} = \\
\left(\text{the new } x \text{ is independent from } D \right) = \int p(x_j | \theta_{jc}, y = c) p(\theta_{jc} | D) d\theta_{jc}
\]
recollecting everything together returns

\[p(y = c | x, D) \propto \left[\int p(y = c | \pi) p(\pi | D) d\pi \right] \prod_{j=1}^{D} \left[\int p(x_j | \theta_{jc}, y = c) p(\theta_{jc} | D) d\theta_{jc} \right] \]

and plugging-in the model PDFs/PMFs we adopted

\[p(y = c | x, D) \propto \left[\int \text{Cat}(y = c | \pi) \text{Dir}(\pi | N_1 + \alpha_1, \ldots, N_C + \alpha_C) d\pi \right] \times \prod_{j=1}^{D} \left[\int \text{Ber}(x_j | \theta_{jc}, y = c) \text{Beta}(\theta_{jc} | N_{jc} + \beta_1, (N_c - N_{jc}) + \beta_0) d\theta_{jc} \right] = \]

- the first part is a Dirichlet-multinomial model
- the second part is a product of beta-binomial models
Naive Bayes Classifiers
Posterior Predictive

- doing the math again for the first part

\[
\int \text{Cat}(y = c | \pi) \text{Dir}(\pi | N_1 + \alpha_1, ..., N_C + \alpha_C) d\pi =
\]

\[
\int \pi_c \text{Dir}(\pi | N_1 + \alpha_1, ..., N_C + \alpha_C) d\pi = E[\pi_c | \mathcal{D}] = \frac{N_c + \alpha_c}{N + \alpha_0}
\]

where \(\alpha_0 = \sum_c \alpha_c \)

- this is exactly how we computed the **posterior mean** for the Dirichlet-multinomial model

\[
\bar{\pi}_c = E[\pi_c | \mathcal{D}] = \frac{N_c + \alpha_c}{N + \alpha_0}
\]
doing the math again for the second part

\[
\int \text{Ber}(x_j|\theta_{jc}, y = c) \text{Beta}(\theta_{jc}|N_{jc} + \beta_1, (N_c - N_{jc}) + \beta_0) d\theta_{jc} =
\]

\[
= \int \theta_{jc}^{\mathbb{1}(x_j=1)} (1 - \theta_{jc})^{\mathbb{1}(x_j=0)} \text{Beta}(\theta_{jc}|N_{jc} + \beta_1, (N_c - N_{jc}) + \beta_0) d\theta_{jc} =
\]

\[
= (\overline{\theta}_{jc})^{\mathbb{1}(x_j=1)} (1 - \overline{\theta}_{jc})^{\mathbb{1}(x_j=0)}
\]

where

\[
\overline{\theta}_{jc} = \mathbb{E}[\theta_{jc}|\mathcal{D}] = \frac{N_{jc} + \beta_1}{N_c + \beta_0 + \beta_1}
\]

in the above equations we first worked on \(x_j = 1\) and then on \(x_j = 0\)

this is exactly how we computed the posterior mean for the beta-binomial model
the final **posterior predictive** is

\[
p(y = c | x, D) \propto \pi_c \prod_{j=1}^{D} (\theta_{jc})^{I(x_j=1)} (1 - \theta_{jc})^{I(x_j=0)}
\]

with the **posterior means**

\[
\bar{\theta}_{jc} = \mathbb{E}[\theta_{jc} | D] = \frac{N_{jc} + \beta_1}{N_c + \beta_0 + \beta_1}
\]

and

\[
\bar{\pi}_c = \mathbb{E}[\pi_c | D] = \frac{N_c + \alpha_c}{N + \alpha_0}
\]
1. Naive Bayes Classifiers
 - Basic Concepts
 - Class-Conditional Distributions
 - Likelihood
 - MLE
 - Bayesian Naive Bayes
 - Prior
 - Posterior
 - MAP
 - Posterior Predictive
 - Plug-in Approximation
 - Log-Sum-Exp Trick
 - Posterior Predictive Algorithm
 - Feature Selection
we can approximate the posterior with a single point, i.e. \(p(\theta | D) \approx \delta_{\hat{\theta}}(\theta) \) where \(\hat{\theta} \) can be the MAP or the MLE

we obtain in this case a **plug-in approximation**

\[
p(y = c | x, D) \propto \hat{\pi}_c \prod_{j=1}^{D} (\hat{\theta}_{jc})^{I(x_j=1)} (1 - \hat{\theta}_{jc})^{I(x_j=0)}
\]

the plug-in approximation is obviously more prone to overfitting
Naive Bayes Classifiers

- Basic Concepts
- Class-Conditional Distributions
- Likelihood
- MLE
- Bayesian Naive Bayes
- Prior
- Posterior
- MAP
- Posterior Predictive
- Plug-in Approximation

Log-Sum-Exp Trick

Posterior Predictive Algorithm

Feature Selection
the posterior predictive has the following form

\[p(y = c | x) = \frac{p(x | y = c)p(y = c)}{p(x)} = \frac{p(x | y = c)p(y = c)}{\sum_{c'} p(x | y = c')p(y = c')} \]

\(p(x | y = c) \) is often a very small number, especially if \(x \) is a high-dimensional vector, since we have to enforce \(\sum_{x'} p(x' | y = c) = 1 \)

this entails that a naive implementation of the posterior predictive can fail due to numerical underflow

the obvious solution is to use logs

\[\log p(y = c | x) = \log p(x | y = c) + \log p(y = c) - \log p(x) \]

and if we define \(b_c \triangleq \log p(x | y = c) + \log p(y = c) \), one has

\[\log p(y = c | x) = b_c - \log \left[\sum_{c'} e^{b_{c'}} \right] \]
with $b_c \triangleq \log p(x|y = c) + \log p(y = c)$ we have

$$\log p(y = c|x) = b_c - \log \left[\sum_{c'} e^{b_{c'}} \right]$$

now we have the problem that computing $e^{b_{c'}}$ can cause an overflow\(^2\)

we can use the **log-sum-exp trick** in order to avoid this problem

$$\log \left[\sum_c e^{b_c} \right] = \log \left[\left(\sum_c e^{b_c-B} \right) e^B \right] = \log \left[\sum_c e^{b_c-B} \right] + B$$

where $B \triangleq \max_c b_c$

with this trick the biggest term e^{b_c-B} equals zero

\(^2\)since $b_{c'}$ can be a big number
Outline

1. Naive Bayes Classifiers
 - Basic Concepts
 - Class-Conditional Distributions
 - Likelihood
 - MLE
 - Bayesian Naive Bayes
 - Prior
 - Posterior
 - MAP
 - Posterior Predictive
 - Plug-in Approximation
 - Log-Sum-Exp Trick
 - Posterior Predictive Algorithm
 - Feature Selection
the computed posterior predictive is

\[p(y = c|\mathbf{x}, \mathcal{D}) \propto \pi_c \prod_{j=1}^{D} (\theta_{jc})^{\mathbb{I}(x_j=1)} (1 - \theta_{jc})^{\mathbb{I}(x_j=0)} \]

if we apply the log we obtain

\[\log p(y = c|\mathbf{x}, \mathcal{D}) \propto \log \pi_c + \sum_{j=1}^{D} \mathbb{I}(x_j = 1) \log(\theta_{jc}) + \mathbb{I}(x_j = 0) \log(1 - \theta_{jc}) \]

the above log-posterior is the basis for the next algorithm
Naive Bayes Classifiers

Posterior Predictive Algorithm

algorithm: predicting with a naive Bayes classifier for binary features (i.e. $x_i \in \{0, 1\}^D$)

for $c = 1 : C$ do
 $L_c := \log \hat{\pi}_c$;
 for $j = 1 : D$ do
 if $x_j = 1$ then
 $L_c := L_c + \log \hat{\theta}_{jc}$
 else
 $L_c := L_c + \log(1 - \hat{\theta}_{jc})$
 end
 end
 $p_c := \exp(L_c - \text{logsumexp}(L_{1:C}))$; // compute $p(y = c|x, D)$
end

$\hat{y} := \arg \max_c p_c$;

- the above algorithm computes $\hat{y} = \arg \max_c p(y = c|x, D)$
- the used parameter estimate $\hat{\theta}$ can be obviously best replaced with the posterior mean $\overline{\theta}$ as shown in the computation of the full posterior predictive
1 Naive Bayes Classifiers
- Basic Concepts
- Class-Conditional Distributions
- Likelihood
- MLE
- Bayesian Naive Bayes
- Prior
- Posterior
- MAP
- Posterior Predictive
- Plug-in Approximation
- Log-Sum-Exp Trick
- Posterior Predictive Algorithm
- Feature Selection
Feature Selection
By using Mutual Information

- an NBC is commonly used to fit a joint distribution over potentially many features
- the NBC fitting algorithm is $O(ND)$ where N is the dataset size and D is the size of x
- problems: D can be very high and NBC may suffer from overfitting
- a common approach to reduce these problems is to perform feature selection:
 1. evaluate the relevance of each feature
 2. hold only the K most relevant features (K is chosen based on some tradeoff accuracy-complexity)
correlation is a very limited measure of dependence; revise the slides about correlation and independence (lecture 3 part 2)

a more general approach is to determine how similar is a joint distribution \(p(X, Y) \) to \(p(X)p(Y) \) (recall the definition \(X \perp Y \))

mutual information (MI)

\[
\mathbb{I}[X; Y] \triangleq \text{KL}[p(X, Y) \| p(X)p(Y)] = \sum_x \sum_y p(x, y) \log \frac{p(x, y)}{p(x)p(y)}
\]

one has \(\mathbb{I}[X; Y] \geq 0 \) with equality iff \(p(X, Y) = p(X)p(Y) \)
Feature Selection

Mutual Information

- we want to measure the relevance between feature X_j and the class label Y

$$
I[X_j; Y] = \sum_{x_j} \sum_{y} p(x_j, y) \log \frac{p(x_j, y)}{p(x_j)p(y)}
$$

- for an NBC classifier with binary features one has (homework ex 3.21)

$$
I_j \triangleq I[X_j; Y] = \sum_c \left[\theta_{jc} \pi_c \log \frac{\theta_{jc}}{\theta_j} + (1 - \theta_{jc}) \pi_c \log \frac{1 - \theta_{jc}}{1 - \theta_c} \right]
$$

where the following quantities are computed by the NBC fitting algorithm:

$\pi_c = p(y = c)$, $\theta_{jc} = p(x_j = 1 | y = c)$ and $\theta_j = p(x_j = 1) = \sum_c \pi_c \theta_{jc}$

- the top K features with the highest I_j can then be selected and used
Kevin Murphy’s book