Probabilistic Graphical Models

David Sontag

New York University

Lecture 5, Feb. 28, 2013

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013

Today's lecture

@ Using VE for conditional queries
@ Running-time of variable elimination

o Elimination as graph transformation
o Fill edges, width, treewidth

© Sum-product belief propagation (BP)
Done on blackboard

@ Max-product belief propagation

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013

How to introduce evidence?

@ Recall that our original goal was to answer conditional probability queries,

_ o p(Y.e)

Apply variable elimination algorithm to the task of computing P(Y,e)

Replace each factor ¢ € ® that has E N Scope[¢] # 0 with

¢,(xScope[¢]fE) = ¢(XScope[¢]fEa eEﬂScope[¢])

@ Then, eliminate the variables in X — Y — E. The returned factor ¢*(Y) is
p(Y,e)

To obtain the conditional p(Y | €), normalize the resulting product of
factors — the normalization constant is p(e)

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 3/22

Sum-product VE for conditional distributions

Algorithm 9.2 Using Sum-Product-Variable-Elimination for computing conditional
probabilities.
Procedure Cond-Prob-VE (
Ko/

! A network over A’

" Set of query variables
E=e // Evidence

1 $ — Factors parameterizing K
2 Replace each ¢ € @ hy ¢[E = €]
: Select an elimination ordering <

3
4 Z— =X-Y -FE

5 ¢* — Sum-Product-Variable-Elimination(®, <, Z)
G @ = P yevay) ?(Y)
T return a, ¢*

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013

Running time of variable elimination

Step | Variable Factors Variables New
eliminated used involved factor
1 C oc(C), op(D,C) ¢, D (D)
2 D ¢c(G,I,D), 11(D) G.I,D (G, 1)
3 1 é1(1), ds(S,1), 72(G, 1) G,S,1 | (G, S)
1 H éu(H, G, J) H,G,J | 74(G,J)
5 G (G,), 78(G, S), ¢L(L,G) | G, I L, 8 | 75(J. L, 8)
6 s 5(L L, S), ¢5(J, L, S) J,L,S | 7(JL)
7 L 76(J, L) JL 72(J)

@ Let n be the number of variables, and m the number of initial factors

@ At each step, we pick a variable X; and multiply all factors involving X;,
resulting in a single factor v;

@ Let N; be the number of variables in the factor v;, and let N, = max; N;
@ The running time of VE is then O(mkNm>), where k = |Val(X)|. Why?

@ The primary concern is that N, can potentially be as large as n

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 5/22

Running time in graph-theoretic concepts

@ Let's try to analyze the complexity in terms of the graph structure

@ Go is the undirected graph with one node per variable, where there is an
edge (Xj, X;) if these appear together in the scope of some factor ¢

@ lIgnoring evidence, this is either the original MRF (for sum-product VE on
MRFs) or the moralized Bayesian network:

Coherence

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 6 /22

Elimination as graph transformation

When a variable X is eliminated,

@ We create a single factor ¢ that contains X and all of the variables Y with
which it appears in factors

@ We eliminate X from), replacing it with a new factor 7 that contains all of
the variables Y, but not X. Let’s call the new set of factors ®x

How does this modify the graph, going from G¢ to G, 7
@ Constructing 1 generates edges between all of the variables Y € Y
@ Some of these edges were already in G, some are new
@ The new edges are called fill edges

@ The step of removing X from & to construct ®x removes X and all its
incident edges from the graph

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 7/22

Coherence

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 8 /22

Induced graph

@ We can summarize the computation cost using a single graph that is the
union of all the graphs resulting from each step of the elimination

@ We call this the induced graph Zo -, where < is the elimination ordering

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 9 /22

Example

Coherence

(Induced graph)

David Sontag (NYU)

Step Variable Factors Variables New
eliminated used mvolved factor
1 [= oc(C), ¢p(D,C) D (D)
2 D bc(G,I,D), 11(D) G, I,D T2(G,T)
3 I ¢r(I), ¢s(S,1), 72(G, 1) G,S.1 (G, 8)
4 H on(H,G,J) H,G,J (G, J)
5 G (G, J), 73(G,S). (L, G) | G,J,L,S | 75(J,L,S)
6 S 75(J,L,S), ¢5(J L,S) JL.S 76(J, L)
7 L T6(J, L) J L 77(J)

i el
/(Coherence >

L

Graphical Models

Properties of the induced graph

@ Theorem: Let Zy . be the induced graph for a set of factors ¢ and
ordering <, then

© Every factor generated during VE has a scope that is a clique in Zg -
@ Every maximal clique in Zg < is the scope of some intermediate factor
in the computation

(see book for proof)
@ Thus, N, is equal to the size of the largest clique in Zg -

@ The running time, O(mkN»=), is exponential in the size of the largest clique
of the induced graph

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 11 /22

Example

i S
[(Gtereree
;

|

Step | Variable Factors Variables New
eliminated used involved factor
1 [¢c(C), ¢p(D,C) C,D T1(D)
2 D ¢a(G,1,D), 11(D) G, I,.D (G, I)
3 I or(I), ¢s(S,I), T2(G,I) G, 8,1 73(G, S)
1 H on(H,G,J) H,G.J | n(G,J)
5 G (G,), 7a(G, S), dL(L,G) | G, L, S | 75(J, L, 8)
i s 75(J,L, S), ¢5(J. L, S) J.L,S 76(J, L)
A\ 7 L 76(J, L) JL 72(J)
(Maximal Cliques) (VE)
@ The maximal cliques in Zg - are
C, = {C/D}
C2 = {D7 /a G}
C3 = {Ga La 57 ‘/}

C, = {G,J.H}

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013

Induced width

@ The width of an induced graph is #nodes in largest clique - 1

@ We define the induced width wg - to be the width of the graph Zg -
induced by applying VE to G using ordering <

@ The treewidth, or “minimal induced width" of graph G is

.
wg = min wg, <

@ The treewidth provides a bound on the best running time achievable by VE
on a distribution that factorizes over G: O(mk""é),

@ Unfortunately, finding the best elimination ordering (equivalently, computing
the treewidth) for a graph is NP-hard

@ In practice, heuristics (e.g., min-fill) are used to find a good elimination
ordering

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 13 / 22

Chordal Graphs

Graph is chordal, or triangulated, if every cycle of length > 3 has a shortcut
(called a “chord™)

Theorem: Every induced graph is chordal
Proof: (by contradiction)

@ Assume we have a chordless cycle X; — X5 — X3 — X3 — X in the induced
graph

@ Suppose Xj was the first variable that we eliminated (of these 4)

@ After a node is eliminated, no fill edges can be added to it. Thus, X; — X5
and X; — X; must have pre-existed

@ Eliminating X; introduces the edge X, — X,, contradicting our assumption

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 14 /

Chordal graphs

@ Thm: Every induced graph is chordal

@ Thm: Any chordal graph has an elimination ordering that does not
introduce any fill edges

Algorithm 9.3 Maximum Cardinality Algorithm for constructing an elimination
ordering

Procedure Max-Cardinality (
‘H // An undirected graph over X'

)
1 Initialize all nodes in A" as unmarked
2 for k=[X]...1
3 X — unmarked variable in X with largest number of marked neighbors
1 mX)— k
5 Mark X

6 return =

(The elimination ordering is REVERSE)

@ Conclusion: Finding a good elimination ordering is equivalent to making
graph chordal with minimal width

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013

Today's lecture

@ Using VE for conditional queries
@ Running-time of variable elimination

o Elimination as graph transformation
o Fill edges, width, treewidth

© Sum-product belief propagation (BP)
Done on blackboard

@ Max-product belief propagation

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013

MAP infi ce

@ Recall the MAP inference task,
1
argmaxp(x), p(x) = 5 [] delxe)
ceC

(we assume any evidence has been subsumed into the potentials, as

discussed in the last lecture)
@ Since the normalization term is simply a constant, this is equivalent to

arg max H dc(xc)
ceC
(called the max-product inference task)

@ Furthermore, since log is monotonic, letting .(xc) = Ig ¢c(xc), we have that
this is equivalent to

arg max Z 0c(xc)

ceC

(called max-sum)

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 17 / 22

@ Compare the sum-product problem with the max-product (equivalently,
max-sum in log space):

sum-product Z H be(xc)

x ceC

max-sum max Z 0c(xc)
* ceC

@ Can exchange operators (+,) for (max, +) and, because both are semirings
satisfying associativity and commutativity, everything works!

@ We get “max-product variable elimination” and “max-product belief
propagation”

Lecture 5, Feb. 28, 2013 18 / 22

David Sontag (NYU) Graphical Models

Simple example

@ Suppose we have a simple chain, A— B— C — D, and we want to find
the MAP assignment,

maxd quAB(a, b)qf)BC(b7 C)¢CD(C7 d)

a,b,c,

@ Just as we did before, we can push the maximizations inside to obtain:
max oas(a, b) max oBc(b, c) max ocp(c, d)
or, equivalently,

max0ag(a, b) + maxfpc(b,c) + max Ocp(c,d)
C

a,b

@ To find the actual maximizing assignment, we do a traceback (or keep
back pointers)

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 19 / 22

Max-product variable elimination

Procedure Max-Product-VE (
®, /I Set of factors over X
< Il Ordering on X

)
1 Let Xi,..., X\ be an ordering of X such that
2 Xi=X; i<y
3 fori=1,....k
4 (®, ¢x,) < Max-Product-Eliminate-Var(®, X;)
5 x* Traceback-MAP({¢x, : i=1,...,k})
6 return *,® // ® contains the probability of the MAP
Procedure Max-Product-Eliminate-Var (
P, /I Set of factors
Z Il Variable to be eliminated
)
1 '« {pec® : Zc Scope[¢]}
2 D -
3 P~ Héed”]
4 T ¢ maxz Y
5 return (®” U {7}, v)
Procedure Traceback-MAP (
{ox, : i=1,....k}
)
1 fori=k,...,1
2 i (@) (Scopelo,] — (X))
3 1l The maximizing assignment to the variables eliminated after
Xi
4 ¢ argmax,, ¢x, (i, u;)
5 /I @} is chosen so as to maximize the corresponding entry in
the factor, relative to the previous choices u;
6 return z*

David Sontag (NYU) Graphical Models Lecture 5, Feb. 2

2013

Max-product belief propagation (for tree-structured MRFs)

@ Same as sum-product BP except that the messages are now:

mj—H(Xl) = maX¢J(XJ ¢u XI7X_] H mk—>J X_/
keN()\i

o After passing all messages, can compute single node max-marginals,

mi(x;) = ¢i(x;) H mj_i(xi) x Taxp(xv\,,x,)
JEN() v

o If the MAP assignment x* is unique, can find it by locally decoding
each of the single node max-marginals, i.e.

x; = arg max mj(x;)
X

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 21 /22

Exactly solving MAP, beyond trees

@ MAP as a discrete optimization problem is

arg mfxz 0:(x;) + Z 0ij(xi, x;)

iev iicE

@ Very general discrete optimization problem — many hard combinatorial
optimization problems can be written as this (e.g., 3-SAT)

@ Studied in operations research communities, theoretical computer science, Al
(constraint satisfaction, weighted SAT), etc.

@ Very fast moving field, both for theory and heuristics

David Sontag (NYU) Graphical Models Lecture 5, Feb. 28, 2013 22 /22

