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Today’s lecture

1 Using VE for conditional queries
2 Running-time of variable elimination

Elimination as graph transformation
Fill edges, width, treewidth

3 Sum-product belief propagation (BP)
Done on blackboard

4 Max-product belief propagation
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How to introduce evidence?

Recall that our original goal was to answer conditional probability queries,

p(Y|E = e) =
p(Y, e)

p(e)

Apply variable elimination algorithm to the task of computing P(Y, e)

Replace each factor φ ∈ Φ that has E ∩ Scope[φ] 6= ∅ with

φ′(xScope[φ]−E) = φ(xScope[φ]−E, eE∩Scope[φ])

Then, eliminate the variables in X − Y − E. The returned factor φ∗(Y) is
p(Y, e)

To obtain the conditional p(Y | e), normalize the resulting product of
factors – the normalization constant is p(e)
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Sum-product VE for conditional distributions
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Running time of variable elimination

Let n be the number of variables, and m the number of initial factors

At each step, we pick a variable Xi and multiply all factors involving Xi ,
resulting in a single factor ψi

Let Ni be the number of variables in the factor ψi , and let Nmax = maxi Ni

The running time of VE is then O(mkNmax ), where k = |Val(X )|. Why?

The primary concern is that Nmax can potentially be as large as n
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Running time in graph-theoretic concepts

Let’s try to analyze the complexity in terms of the graph structure

GΦ is the undirected graph with one node per variable, where there is an
edge (Xi ,Xj) if these appear together in the scope of some factor φ

Ignoring evidence, this is either the original MRF (for sum-product VE on
MRFs) or the moralized Bayesian network:
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Elimination as graph transformation

When a variable X is eliminated,

We create a single factor ψ that contains X and all of the variables Y with
which it appears in factors

We eliminate X from ψ, replacing it with a new factor τ that contains all of
the variables Y, but not X . Let’s call the new set of factors ΦX

How does this modify the graph, going from GΦ to GΦX
?

Constructing ψ generates edges between all of the variables Y ∈ Y

Some of these edges were already in GΦ, some are new

The new edges are called fill edges

The step of removing X from Φ to construct ΦX removes X and all its
incident edges from the graph
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Example

(Graph) (Elim. C )

(Elim. D) (Elim. I )
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Induced graph

We can summarize the computation cost using a single graph that is the
union of all the graphs resulting from each step of the elimination

We call this the induced graph IΦ,≺, where ≺ is the elimination ordering
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Example

(Induced graph) (Maximal Cliques)
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Properties of the induced graph

Theorem: Let IΦ,≺ be the induced graph for a set of factors Φ and
ordering ≺, then

1 Every factor generated during VE has a scope that is a clique in IΦ,≺
2 Every maximal clique in IΦ,≺ is the scope of some intermediate factor

in the computation

(see book for proof)

Thus, Nmax is equal to the size of the largest clique in IΦ,≺

The running time, O(mkNmax ), is exponential in the size of the largest clique
of the induced graph
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Example

(Maximal Cliques) (VE)

The maximal cliques in IG ,≺ are

C1 = {C ,D}
C2 = {D, I ,G}
C3 = {G , L,S , J}
C4 = {G , J,H}
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Induced width

The width of an induced graph is #nodes in largest clique - 1

We define the induced width wG,≺ to be the width of the graph IG,≺
induced by applying VE to G using ordering ≺
The treewidth, or “minimal induced width” of graph G is

w∗G = min
≺

wG,≺

The treewidth provides a bound on the best running time achievable by VE
on a distribution that factorizes over G: O(mkw∗G ),

Unfortunately, finding the best elimination ordering (equivalently, computing
the treewidth) for a graph is NP-hard

In practice, heuristics (e.g., min-fill) are used to find a good elimination
ordering
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Chordal Graphs

Graph is chordal, or triangulated, if every cycle of length ≥ 3 has a shortcut
(called a “chord”)

Theorem: Every induced graph is chordal
Proof: (by contradiction)

Assume we have a chordless cycle X1 − X2 − X3 − X4 − X1 in the induced
graph

Suppose X1 was the first variable that we eliminated (of these 4)

After a node is eliminated, no fill edges can be added to it. Thus, X1 − X2

and X1 − X4 must have pre-existed

Eliminating X1 introduces the edge X2 − X4, contradicting our assumption
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Chordal graphs

Thm: Every induced graph is chordal

Thm: Any chordal graph has an elimination ordering that does not
introduce any fill edges

(The elimination ordering is REVERSE)

Conclusion: Finding a good elimination ordering is equivalent to making
graph chordal with minimal width
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Today’s lecture

1 Using VE for conditional queries
2 Running-time of variable elimination
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MAP inference

Recall the MAP inference task,

arg max
x

p(x), p(x) =
1

Z

∏

c∈C
φc(xc)

(we assume any evidence has been subsumed into the potentials, as
discussed in the last lecture)

Since the normalization term is simply a constant, this is equivalent to

arg max
x

∏

c∈C
φc(xc)

(called the max-product inference task)

Furthermore, since log is monotonic, letting θc(xc) = lg φc(xc), we have that
this is equivalent to

arg max
x

∑

c∈C
θc(xc)

(called max-sum)
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Semi-rings

Compare the sum-product problem with the max-product (equivalently,
max-sum in log space):

sum-product
∑

x

∏

c∈C
φc(xc)

max-sum max
x

∑

c∈C
θc(xc)

Can exchange operators (+, ∗) for (max,+) and, because both are semirings
satisfying associativity and commutativity, everything works!

We get “max-product variable elimination” and “max-product belief
propagation”
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Simple example

Suppose we have a simple chain, A−B −C −D, and we want to find
the MAP assignment,

max
a,b,c,d

φAB(a, b)φBC (b, c)φCD(c, d)

Just as we did before, we can push the maximizations inside to obtain:

max
a,b

φAB(a, b) max
c
φBC (b, c) max

d
φCD(c , d)

or, equivalently,

max
a,b

θAB(a, b) + max
c
θBC (b, c) + max

d
θCD(c , d)

To find the actual maximizing assignment, we do a traceback (or keep
back pointers)
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Max-product variable elimination
13.2. Variable Elimination for (Marginal) MAP 557

Algorithm 13.1 Variable elimination algorithm for MAP. The algorithm can be used both in
its max-product form, as shown, or in its max-sum form, replacing factor product with factor
addition.

Procedure Max-Product-VE (
Φ, // Set of factors over X

≺ // Ordering on X

)
1 Let X1, . . . , Xk be an ordering of X such that
2 Xi ≺ Xj iff i < j
3 for i = 1, . . . , k
4 (Φ, φXi) ← Max-Product-Eliminate-Var(Φ, Xi)
5 x∗ ← Traceback-MAP({φXi : i = 1, . . . , k})
6 return x∗,Φ // Φ contains the probability of the MAP

Procedure Max-Product-Eliminate-Var (
Φ, // Set of factors
Z // Variable to be eliminated

)
1 Φ′ ← {φ ∈ Φ : Z ∈ Scope[φ]}
2 Φ′′ ← Φ − Φ′

3 ψ ← ∏
φ∈Φ′ φ

4 τ ← maxZ ψ
5 return (Φ′′ ∪ {τ}, ψ)

Procedure Traceback-MAP (
{φXi

: i = 1, . . . , k}
)

1 for i = k, . . . , 1
2 ui ← (x∗

i+1, . . . , x
∗
k)〈Scope[φXi ] − {Xi}〉

3 // The maximizing assignment to the variables eliminated after
Xi

4 x∗
i ← arg maxxi

φXi
(xi,ui)

5 // x∗
i is chosen so as to maximize the corresponding entry in

the factor, relative to the previous choices ui

6 return x∗

As we have discussed, the result of the computation is a max-marginal MaxMargP̃Φ
(Xi) over

the final uneliminated variable, Xi. We can now choose the maximizing value x∗
i for Xi.

Importantly, from the definition of max-marginals, we are guaranteed that there exists some
assignment ξ∗ consistent with x∗

i . But how do we construct such an assignment?
We return once again to our simple example:

Example 13.3 Consider the network of example 13.1, but now assume that we wish to find the actual assignment
a∗, b∗ = arg maxA,B P (A, B). As we discussed, we first compute the internal maximization
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Max-product belief propagation (for tree-structured MRFs)

Same as sum-product BP except that the messages are now:

mj→i (xi ) = max
xj

φj(xj)φij(xi , xj)
∏

k∈N(j)\i

mk→j(xj)

After passing all messages, can compute single node max-marginals,

mi (xi ) = φi (xi )
∏

j∈N(i)

mj→i (xi ) ∝ max
xV\i

p(xV \i , xi )

If the MAP assignment x∗ is unique, can find it by locally decoding
each of the single node max-marginals, i.e.

x∗i = arg max
xi

mi (xi )
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Exactly solving MAP, beyond trees

MAP as a discrete optimization problem is

arg max
x

∑

i∈V
θi (xi ) +

∑

ij∈E
θij(xi , xj)

Very general discrete optimization problem – many hard combinatorial
optimization problems can be written as this (e.g., 3-SAT)

Studied in operations research communities, theoretical computer science, AI
(constraint satisfaction, weighted SAT), etc.

Very fast moving field, both for theory and heuristics
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