6.001: Structure and Interpretation of Computer Programs

- Symbols
- Quotation
 - Relevant details of the reader
- Example of using symbols
 - Alists
 - Differentiation
Data Types in Lisp/Scheme

• Conventional
 • Numbers (integer, real, rational, complex)
 – Interesting property in “real” Scheme: exactness
 • Booleans: #t, #f
 • Characters and strings: #\a, “Hello World!”
 • Vectors: #(0 “hi” 3.7)

• Lisp-specific
 • Procedures: value of +, result of evaluating (\ (x) x)
 • Pairs and Lists: (3 . 7), (1 2 3 5 7 11 13 17)
 • Symbols: pi, +, MyGreatGrandMotherSue
Symbols

• So far, we’ve seen them as the names of variables
• But, in Lisp, all data types are *first class*
 • Therefore, we should be able to
 – Pass symbols as arguments to procedures
 – Return them as values of procedures
 – Associate them as values of variables
 – Store them in data structures
 – E.g., (apple orange banana)
How do we *refer to* Symbols?

- Substitution Model’s rule of *evaluation*:
 - Value of a symbol is the value it is associated with in the environment
 - We associate symbols with values using the *special form* `define`
 - `(define pi 3.1415926535)`
- … but that doesn’t help us get at the *symbol* itself
Referring to Symbols

• Say your favorite color
• Say “your favorite color”
• In the first case, we want the meaning associated with the expression, e.g.,

• In the second, we want the expression itself, e.g.,

• We use quotation to distinguish our intended meaning
New Special Form: quote

• Need a way of telling interpreter: “I want the following object as whatever it is, not as an expression to be evaluated”

(quote alpha)
;Value: alpha

(define pi 3.1415926535)
;Value: "pi --> 3.1415926535"

pi
;Value: 3.1415926535

(quote pi)
;Value: pi

(+ pi pi)
;Value: 6.283185307

(+ pi (quote pi))
;The object pi, passed as the first argument to integer->flonum, is not the correct type.

(define fav (quote pi))
fav
;Value: pi
Review: data abstraction

• A data abstraction consists of:
 • constructors
 `(define make-point
 (lambda (x y) (list x y)))`
 • selectors
 `(define x-coor
 (lambda (pt) (car pt)))`
 • operations
 `(define on-y-axis?
 (lambda (pt) (= (x-coor pt) 0)))`
 • contract
 `(x-coor (make-point <x> <y>)) = <x>`
Symbol: a primitive type

• constructors:
 None since really a primitive, not an object with parts
 • Only way to “make one” is to type it
 – (or via `string->symbol` from character strings, but shhhhh…)

• selectors
 None
 – (except `symbol->string`)

• operations:
 `symbol?` ; type: `anytype` -> `boolean`
 `(symbol? (quote alpha)) ==> #t`

 `eq?` ; discuss in a minute
What’s the difference between symbols and strings?

- **Symbol**
 - Evaluates to the value associated with it by define
 - Every time you type a particular symbol, you get the exact same one! Guaranteed.
 - Called *interning*
 - E.g., `(list (quote pi) (quote pi))`

- **String**
 - Evaluates to itself
 - Every time you type a particular string, it’s up to the implementation whether you get the same one or different ones.
 - E.g., `(list "pi" "pi")`

![Diagram](image)
The operation \texttt{eq?} tests for the same object

- a primitive procedure
- returns \texttt{#t} if its two arguments are the same object
- very fast

\begin{align*}
\text{(eq? (quote eps) (quote eps))} & \Rightarrow \texttt{#t} \\
\text{(eq? (quote delta) (quote eps))} & \Rightarrow \texttt{#f}
\end{align*}

- For those who are interested:
 \begin{verbatim}
 ; eq?: EQtype, EQtype ==> boolean
 ; EQtype = any type \textbf{except} number or string
 \end{verbatim}

- One should therefore use = for equality of numbers, not eq?
Making list structure with symbols

```
((red 700) (orange 600) (yellow 575) (green 550) (cyan 510) (blue 470) (violet 400))
```

(list (list (quote red) 700) (list (quote orange) 600) ...
(list (quote violet) 400))
More Syntactic Sugar

• To the reader,
 \('\pi \) is exactly the same as if you had typed \((\text{quote } \pi) \)

• Remember REPL

User types

\('\pi \) \hspace{1cm} \pi

read \hspace{1cm} \text{print}

\((\text{quote } \pi) \) \hspace{1cm} \pi

\text{eval}
More Syntactic Sugar

• To the reader,

 ’pi

 is exactly the same as

 (quote pi)

• Remember REPL

 User types

 ’17

 17

 read

 print

 (quote 17)

 eval

 17

 'pi

 ;Value: pi

 '17

 ;Value: 17

 '"hi there"

 ;Value: "hi there"
More Syntactic Sugar

• To the reader,

 'pi
 is exactly the same as if you had typed
 (quote pi)

• Remember REPL

 User types
 ' (+ 3 4) (+ 3 4)

 read print
 (quote (+ 3 4)) (+ 3 4)
 eval

 'pi
 ;Value: pi

 '17
 ;Value: 17

 '"hi there"
 ;Value: "hi there"

 ' (+ 3 4)
 ;Value: (+ 3 4)
More Syntactic Sugar

• To the reader,
 'pi
 is exactly the same as if you had typed
 (quote pi)
• Remember REPL

User types
 'pi (quote pi)
read print
(quote eval (quote pi)
 (quote pi))

'pi
;Value: pi

'17
;Value: 17

"hi there"
;Value: "hi there"

'(+ 3 4)
;Value: (+ 3 4)

'pi
;Value: (quote pi)
But in Dr. Scheme,
'pi
But wait... Clues about “guts” of Scheme

(pair? (quote (+ 2 3)))
;Value: #t

(pair? '(+ 2 3))
;Value: #t

(car '(+ 2 3))
;Value: +

(cadr '(+ 2 3))
;Value: 2

(null? (cddddr '(+ 2 3)))
;Value: #t

Now we know that expressions are represented by lists!
Your turn: what does evaluating these print out?

(define x 20)

(+ x 3) ==> 23

'(+ x 3) ==> (+ x 3)

(list (quote +) x '3) ==> (+ 20 3)

(list '+ x 3) ==> (+ 20 3)

(list + x 3) ==> ([procedure #...] 20 3)
The Grimson Rule of Thumb for Quote

(quote ('fred 'quote (+ 3 5)))

What's the value of the quoted expression?

WHATEVER IS UNDER YOUR THUMB!

(quote ('fred 'quote (+ 3 5)))
Revisit making list structure with symbols

• Because the reader knows how to turn parenthesized (for lists) and dotted (for pairs) expressions into list structure!
Aside: What all does the reader “know”?

- Recognizes and creates
 - Various kinds of numbers
 - 312 ==> integer
 - 3.12e17 ==> real, etc.
 - Strings enclosed by “…”
 - Booleans #t and #f
 - Symbols
 - ’… ==> (quote …)
 - (…) ==> pairs (and lists, which are made of pairs)
- and a few other obscure things
Traditional LISP structure: association list

- A list where each element is a list of the key and value.

- Represent the table as the alist:

 `((x 15) (y 20))`
Alist operation: find-assoc

(define (find-assoc key alist)
 (cond
 ((null? alist) #f)
 ((equal? key (caar alist)) (cadar alist))
 (else (find-assoc key (cdr alist))))

(define a1 '(((x 15) (y 20)))
(find-assoc 'y a1) ==> 20
An aside on testing equality

- `=` tests equality of numbers
- `Eq?` Tests equality of symbols
- `Equal?` Tests equality of symbols, numbers or lists of symbols and/or numbers that print the same
Alist operation: add-assoc

(define (add-assoc key val alist)
 (cons (list key val) alist))

(define a2 (add-assoc 'y 10 a1))

a2 ==> ((y 10) (x 15) (y 20))

(find-assoc 'y a2) ==> 10

We say that the new binding for y
“shadows” the previous one
Alists are not an abstract data type

• Missing a constructor:
 • Used `quote` or `list` to construct

 (define a1 '([(x 15) (y 20)]))

• There is no abstraction barrier: the implementation is exposed.

• User may operate on alists using standard list operations.

 (filter (lambda (a) (< (cadr a) 16)) a1))
 ==> ([(x 15)])
Why do we care that Alists are not an ADT?

• **Modularity** is essential for software engineering
 - Build a program by sticking modules together
 - Can change one module without affecting the rest

• Alists have poor modularity
 - Programs may use list ops like `filter` and `map` on alists
 - These ops will fail if the implementation of alists change
 - Must change whole program if you want a different table

• To achieve modularity, **hide information**
 - Hide the fact that the table is implemented as a list
 - Do not allow rest of program to use list operations
 - ADT techniques exist in order to do this
Symbolic differentiation

\[(\text{deriv } <\text{expr}> <\text{with-respect-to-var}>) ==> <\text{new-expr}>\]

<table>
<thead>
<tr>
<th>Algebraic expression</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + 3)</td>
<td>((+ x 3))</td>
</tr>
<tr>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(5y)</td>
<td>((* 5 y))</td>
</tr>
<tr>
<td>(x + y + 3)</td>
<td>((+ x (+ y 3)))</td>
</tr>
</tbody>
</table>

\[(\text{deriv } '(+ x 3) 'x) ==> 1\]
\[(\text{deriv } '(+ (* x y) 4) 'x) ==> y\]
\[(\text{deriv } '(* x x) 'x) ==> (+ x x)\]
Building a system for differentiation

Example of:

• Lists of lists
• How to use the symbol type
• Symbolic manipulation

1. how to get started
2. a direct implementation
3. a better implementation
1. How to get started

• Analyze the problem precisely

 deriv constant dx = 0
 deriv variable dx = 1 if variable is the same as x
 = 0 otherwise

 deriv (e1+e2) dx = deriv e1 dx + deriv e2 dx
 deriv (e1*e2) dx = e1 * (deriv e2 dx) + e2 * (deriv e1 dx)

• Observe:
 • e1 and e2 might be complex subexpressions
 • derivative of (e1+e2) formed from deriv e1 and deriv e2
 • a tree problem
Type of the data will guide implementation

- legal expressions
 \[
 x \quad (+ x y) \\
 2 \quad (* 2 x) \\
 (+ (* x y) 3)
 \]
- illegal expressions
 \[
 * \quad (3 5 +) \\
 () \quad (3) \\
 (* x)
 \]

; Expr = SimpleExpr | CompoundExpr
; SimpleExpr = number | symbol
; CompoundExpr = a list of three elements where the first element is either + or *
; = pair< (+|*), pair<Expr, pair<Expr,null> >>
2. A direct implementation

• Overall plan: one branch for each subpart of the type

```
(define deriv (lambda (expr var)
  (if (simple-expr? expr)
      <handle simple expression>
      <handle compound expression>
  )))
```

• To implement `simple-expr?` look at the type
 • CompoundExpr is a pair
 • nothing inside SimpleExpr is a pair
 • therefore

```
(define simple-expr? (lambda (e)
  (not (pair? e)))))
```
Simple expressions

• One branch for each subpart of the type

(define deriv (lambda (expr var)
 (if (simple-expr? expr)
 (if (number? expr)
 <handle number> 0
 <handle symbol> (if (eq? expr var) 1 0)
)
 <handle compound expression>
)))

• Implement each branch by looking at the math
Compound expressions

- One branch for each subpart of the type

```scheme
(define deriv (lambda (expr var)
  (if (simple-expr? expr)
      (if (number? expr) 0
        (if (eq? expr var) 1 0))
      (if (eq? (car expr) '+)
        (handle add expression)
        (handle product expression)))
))
```
Sum expressions

• To implement the sum branch, look at the math

```
(define deriv (lambda (expr var)
  (if (simple-expr? expr)
      (if (number? expr) 0
          (if (eq? expr var) 1 0))
      (if (eq? (car expr) '+)
          (list '+
                (deriv (cadr expr) var)
                (deriv (caddr expr) var))<handle product expression>
          ))
  )))

(deriv '(+ x y) 'x) ==> (+ 1 0)  (a list!)
```
The direct implementation works, but...

- Programs *always* change after initial design
- Hard to read
- Hard to extend safely to new operators or simple exprs
- Can't change representation of expressions

- Source of the problems:
 - nested *if* expressions
 - explicit access to and construction of lists
 - few useful names within the function to guide reader
3. A better implementation

1. Use `cond` instead of nested `if` expressions
2. Use data abstraction

- To use `cond`:
 - write a predicate that collects all tests to get to a branch:
    ```scheme
    (define sum-expr? (lambda (e)
        (and (pair? e) (eq? (car e) '+))))
    ; type: Expr -> boolean
    ```
 - do this for every branch:
    ```scheme
    (define variable? (lambda (e)
        (and (not (pair? e)) (symbol? e))))
    ```
Use data abstractions

- To eliminate dependence on the representation:

```scheme
(define make-sum (lambda (e1 e2)
  (list '+ e1 e2)))

(define addend (lambda (sum) (cadr sum)))
(define augend (lambda (sum) (caddr sum)))
```
A better implementation

(define deriv (lambda (expr var)
 (cond
 ((number? expr) 0)
 ((variable? expr) (if (eq? expr var) 1 0))
 ((sum-expr? expr)
 (make-sum (deriv (addend expr) var)
 (deriv (augend expr) var)))
 ((product-expr? expr)
 <handle product expression>)
 (else
 (error "unknown expression type" expr))
))
Isolating changes to improve performance

(deriv '(+ x y) 'x) ==> (+ 1 0) (a list!)

(define make-sum
 (lambda (e1 e2)
 (cond ((number? e1)
 (if (number? e2)
 (+ e1 e2)
 (list '+ e1 e2)))
 ((number? e2)
 (list '+ e2 e1))
 (else (list '+ e1 e2)))))

(deriv '(+ x y) 'x) ==> 1
Modularity makes changes easier

• But conventional mathematics doesn’t use prefix notation like this:
 (+ 2 x) or (* (+ 3 x) (+ x y))

• Could we change our program somehow to use more algebraic expressions, still fully parenthesized, like:
 (2 + x) or ((3 + x) * (x + y))

• What do we need to change?
Just change data abstraction

• Constructors

\[
\text{(define (make-sum e1 e2)}
\text{(list e1 ' + e2))}
\]

• Accessors

\[
\text{(define (augend expr)}
\text{(caddr expr))}
\]

• Predicates

\[
\text{(define (sum-expr? expr)}
\text{(and (pair? expr) (eq? ' + (cadr expr))))}
\]
Separating simplification from differentiation

• Exploit Modularity:
 • Rather than changing the code to handle simplification of expressions, write a separate simplifier

(define (simplify expr)
 (cond ((or (number? expr) (variable? expr))
 expr)
 ((sum-expr? expr)
 (simplify-sum
 (simplify (addend expr))
 (simplify (augend expr))))
 ((product-expr? expr)
 (simplify-product
 (simplify (multiplier expr))
 (simplify (multiplicand expr))))
 (else (error "unknown expr type" expr)))))
Simplifying sums

(define (simplify-sum add aug)
 (cond
 ((and (number? add) (number? aug))
 ;; both terms are numbers: add them
 (+ add aug))
 ((or (number? add)
 (number? aug))
 ;; one term only is number
 (cond ((and (number? add)
 (zero? add))
 aug)
 ((and (number? aug)
 (zero? aug))
 add)
 (else (make-sum add aug))))
 ((eq? add aug)
 ;; adding same term twice
 (make-product 2 add))
 ...)

(+ 2 3) \rightarrow 5
(+ 2 x) \rightarrow (+ 2 x)
(+ 0 x) \rightarrow x
(+ x 0) \rightarrow x
(+ 2 x) \rightarrow (+ 2 x)
(+ x x) \rightarrow (* 2 x)
More special cases in simplification

(define (simplify-sum add aug)
 (cond ...

 ((product-expr? aug)
 ;; check for special case of (+ x (* 3 x))
 ;; i.e., adding something to a multiple of itself
 (let ((mulr (simplify (multiplier aug)))
 (muld (simplify (multiplicand aug))))
 (if (and (number? mulr)
 (eq? add muld))
 (+ x (* 3 x)) ➝ (* 4 x)
 (make-product (+ 1 mulr) add)
 ;; not special case: lose
 (make-sum add aug)))

 (else (make-sum add aug))))
Special cases in simplifying products

(define (simplify-product f1 f2)
 (cond ((and (number? f1) (number? f2))
 (* f1 f2))
 ((number? f1)
 (cond ((zero? f1) 0)
 ((= f1 1) f2)
 (else (make-product f1 f2))))
 ((number? f2)
 (cond ((zero? f2) 0)
 ((= f2 1) f1)
 (else (make-product f2 f1))))
 (else (make-product f1 f2))))

(* (+ 3 x) 2) \rightarrow (* 2 (+ 3 x))
(* 0 (+ x 1)) \rightarrow 0
(* 1 (+ x 1)) \rightarrow (+ x 1)
(* 3 5) \rightarrow 15
(* 0 (+ x 1)) \rightarrow 0
(* 1 (+ x 1)) \rightarrow (+ x 1)
Simplified derivative looks better

(deriv '(+ x 3) 'x) ;Value: (+ 1 0)

(simplify (deriv '(+ x 3) 'x)) ;Value: 1

(deriv '(+ x (* x y)) 'x) ;Value: (+ 1 (+ (* x 0) (* 1 y)))

(simplify (deriv '(+ x (* x y)) 'x)) ;Value: (+ 1 y)

• But, which is simpler?
 • a*(b+c)
 or
 • a*b + a*c
• Depends on context…
Recap

• Symbols
 • Are first class objects
 • Allow us to represent names
• Quotation (and the reader’s syntactic sugar for ‘
 • Let us evaluate (quote ...) to get ... as the value
 – I.e., “prevents one evaluation”
 – Not really, but informally, has that effect.
• Lisp expressions are represented as lists
 • Encourages writing programs that manipulate programs
 – Much more, later
• Symbolic differentiation (introduction)