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Neural-Symbolic Models

* |ntegrating two most fundamental cognitive abilities:
Learning & reasoning [Valiant ]

— 1) Learning: The ability to learn from the environment

— 2) Reasoning: The ability to reason from what has been
learned

* Neural-symbolic computing [Garcez et al “19]

— Aims at reconciling the dominating symbolic and
connectionist paradigms of Al under a principled foundation

— Knowledge is represented in symbolic form
— Learning and reasoning are computed by a neural network

=>» Make Interpretability & explainability of Al systems
enriched

https://arxiv.org/pdf/1905.06088.pdf
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Neural-Symbolic Models

* Neural-symbolic computing [Garcez et al ‘19]

— Neural learning and inference under uncertainty
* may address the brittleness of symbolic systems

— Symbolism provides additional knowledge for learning

 May ameliorate neural network’s well-known catastrophic
forgetting or difficulty with extrapolating
— The integration of neural models with logic-based
symbolic models provides an Al system

e Capable of bridging lower-level information processing (for
perception and pattern recognition)

* Higher-level abstract knowledge (for reasoning and
explanation)



Neural-symbolic models

* Neural symbolic computing: Issues [Garcez et al ‘19]

— Representation

* Knowledge representation in NN
— Propositional logic, first-order logic, tensorisation

— Learning

* Inductive logic programming
— JILP [Evans and Grenfenstette '18]

* Horizontal hybrid learning

— Combining logic rules/formula with data during learning, also using the
data to fine-tune knowledge

— E.g.) Self-transfer with symbolic knowledge distillation [Hu et al ‘16]
e Vertical hybrid learning

— Low-level: neural model

— High-level: symbolic knowledge

— E.g.) logic tensor network [Donadello et al ‘17]



Neural-symbolic models

* Neural symbolic computing: Issues [Garcez et al
‘19]
— Reasoning
* Forward /backward chaining

* Neural theorem prover [Rocktaschel et al 16]
* Neural logic machine [Dong et al “19]

— Extraction
* Explainable Al
* Neural program induction

— Neural Programmer-Interpreters [Reed & Freitas ‘16]



KBANN [Towell & Shavlik ‘94]

* The need for hybrid systems

— 1. Hand-built classifiers: Non-learning systems

e Assume that domain theory is complete and correct; but, for most real-
world tasks, completeness and correctness are extremely difficult

 Domain theories can be intractable to use and difficult to modify

— 2. Empirical learning
* An unbounded number of features can be used to describe any object
* Feature construction is a difficult, error-prone, enterprise
* Uncommon cases may be very difficult to correctly handle

— 3. ANN

* Training times are lengthy

* The initial parameters of the network can greatly affect how well
concepts are learned

* There is not yet a problem-independent way to choose a good network
topology

* The lack interpretability



KBANN [Towell & Shavlik ‘94]

* Hybrid Learning systems

— Use both hand-constructed rules and classified
examples during learning

@
[0

Initial
Symbolic
Knowledge

Initial
Neural
Network

Trained
Neural
Network

Neural
Learning

Training
Examples

Theory-refinement by KBANN



KBANN [Towell & Shavlik ‘94]
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KBANN [Towell & Shavlik ‘94]

* Correspondences between knowledge-bases
and neural networks

Knowledge Base Neural Network
Final Conclusions > OQutput Units
Supporting Facts - Input Units
Intermediate Conclusions <= Hidden Units
&

Dependencies Weighted Connections




KBANN [Towell & Shavlik ‘94]

* The rules-to-networks algorithm of KBANN

— 1. Rewriting: Rewrite rules so that disjuncts are expressed as a
set of rules that each have only one antecedent.

— 2. Mapping: Directly map the rule structure into a neural
network.

— 3. Numbering: Label units in the KBANN-net according to their
“level.”

— 4. Adding hidden units: Add hidden units to the network at
user-specified levels (optional).

— 5. Adding input units: Add units for known input features that
are not referenced in the rules.

— 6. Adding links: Add links not specified by translation between
all units in topologically-contiguous levels.

— 7. Perturbing: Perturb the network by adding near-zero
random numbers to all link weights and biases.



KBANN [Towell & Shavlik ‘94]
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* Translation of a conjunctive rule into a KBANN-net

— Weights of all links to positive (i.e., unnegated)
antecedents: w

— Weights of all links to negated antecedents: —w

— Weight of the bias: (P — %)a)

A :— B, C, D, not(E).




* Translation of a conjunctive rule into a KBANN-net

— The same as the case of conjunctive rules, with two
exceptions:

— 1) KBANN rewrites disjuncts as multiple rules with the
same consequent in step 1 of the rules-to-network
algorithm =2 as independent rules

— 2) The bias in the unit encoding the consequent: w /2

A:—B. A:—-C. A:—-D. A:—-F.




KBANN [Towell & Shavlik ‘94]

e Taskl: Promoter recognition

* Promoters: short DNA sequences that precede the
beginnings of genes

* Task: Given a sequence of 57 consecutive DNA nucleotides,
the reference point for promoter recognition is the site at

which gene transcription begins (if the example is a
promoter). The reference point is located seven nucleotides

from the right of the 57-long sequence

Reference Point

Location s [ 4 3|21 l+1|+2]+3]+a]+5
Number

Sequencel A | G| G| T G| CJA]|]T]|C]|C




KBANN [Towell & Shavlik ‘94]

* |nitial rules for promoter recognition

promoter
contact

minus-35 :-
minus-35 :-
minus-35 :-
minus-35 :-

conformation
conformation
conformation
conformation

:— contact,
:— minus-35,

@-37
@-36
@-36
@-36

conformation.
minus-10.

‘CTTGAC' . minus-10 @-13 ‘TA*A*T/
‘TTGACA' . minus-10 @-12 VTA***T7 |
‘TTG*CA’ . minus-10 @-14 ‘TATAAT'.
‘TTGAC' . minus-10 @-13 ‘TATAAT' .
@-45 ‘AA**AT
@-45 VA*X**A’ | @-28 ‘TH**T*AA**T’/, @-04 “T’.
@=49 MAXFXFXT/ @-27 NTrFFFFAFFT*TG’, @-01 “A’.
@-47 ‘CAA*TT*AC", @-22 ‘G***T*C’, @-08 ‘GCGCC*CC’



KBANN [Towell & Shavlik ‘94]

* The initial KBANN-net for promoter recognition
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KBANN [Towell & Shavlik ‘94]

* Task2: Splice-junction determination

— Splice junctions: points on a DNA sequence at
which the cell removes superfluous DNA during
the process of protein creation

E/I :- @-3 “MAGGTRAGT’, not(E/I-stop).

E/I-stop:-@-3 ‘TAA’'. E/I-stop:-@-4 ‘TAA’. E/I-stop:-@-5 ‘TAA'.
E/I-stop:-@-3 ‘TAG’. E/I-stop:-@-4 ‘TAG’. E/I-stop:-@-5 ‘TAG'.
E/I-stop:-@-3 “TGA’. E/I-stop:-@-4 ‘TGA’. E/I-stop:-@-5 ‘TGA’.

I/E :- pyramidine-rich, @-3 ‘YAGG’, not(I/E-stop).
pyramidine-rich :- 6 of (@-15 ‘YYYYYYYYYY').
For 1 from (-30 to +30 skipping 0)

{@<i> ‘Y’ := @<i> C'. @<i> YY" - @<i> ‘T'.}
I/E-stop:-@1 ‘TAA’. I/E-stop:-@2 ‘TAA’'. I/E-stop:-@3 ‘TAA'.
I/E-stop:-@1 ‘TAG’. I/E-stop:-@2 ‘TAG’. I/E-stop:-@3 ‘TAG’.

I/E-stop:-@1 ‘TGA’. I/E-stop:-@2 ‘TGA’. I/E-stop:-@3 “‘TGA’.



KBANN [Towell & Shavlik ‘94]

* The initial splice-junction KBANN-net

E/l I/E

.-.
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-30 DNA Sequence +30




KBANN [Towell & Shavlik ‘94]

* Test-set performance on the promoter
recognition task
— leaving-one-out cross-validation

Stormo —
O’Neill -
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| | |
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Number of False Positives Number of False Neqatives



KBANN [Towell & Shavlik ‘94]

* Test-set performance, assessed using 10-fold

cross-validation, on the splice-junction
< with 1000 training

determination tas
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Test Set Error Rate
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KBANN [Towell & Shavlik ‘94]
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KBANN [Towell & Shavlik ‘94]

e Comparing KBANN to standard backpropagation
— Two hypotheses
— 1) Structure is responsible for KBANN’s strength
— 2) Initial weights are responsible for KBANN’s strength

"structure—only" network



12

KBANN [Towell & Shavlik ‘94]
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Test Set Error Rate

0.15—

KBANN [Towell & Shavlik ‘94]

__KBANN
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The classification performance of standard ANNs that initially have links
only to those features specified by the promoter domain theory.



KBANN [Towell & Shavlik ‘94]

e Discussion

— These tests indicate that alone neither structure nor
weight (focusing) account for the superiority of
KBANN-nets over standard ANNSs.

— Therefore, the third hypothesis, that it is a
combination the structure and the focusing weights
that give KBANN its advantage over backpropagation,
is likely true.



KBANN [Towell & Shavlik ‘94]

* Limitations
— The concepts KBANN learns are incomprehensible to humans.
— KBANN'’s rule syntax is limited
— There is no mechanism for handling uncertainty in rules

— Neural learning in KBANN ignores the symbolic meaning of the
initial network

— There is no mechanism for changing the topology of the network



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]

edge(a, b) connected(X,Y) < edge(X,Y)
edge(b, ¢) connected( X, Y) < edge(X, Z), connected(Z,Y)
edge(c, a)

 An extensional predicate: a predicate that is wholly
defined by a set of ground atoms

— E.g.) . edge is an extensional predicate
{edge(a,b), edge(b, c), edge(c,a)}

* An intensional predicate: defined by a set of clauses.

— E.g.) connected is an intensional predicate defined by the
clauses:
connected(X,Y) <« edge(X,Y)
connected(X,Y) <« edge(X,Z),connected(Z,Y)



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]

* Inductive Logic Programming (ILP)
— Atuple (B,P,N) of ground atoms

— B is a set of background assumptions, a set of
ground atoms

— P is a set of positive instances - examples taken
from the extension of the target predicate to be
learned

— N is a set of negative instances - examples taken
outside the extension of the target predicate



Learning explanatory rules from noisy
data [Evans and Grefenstette ‘18]

e Given an ILP problem (B, P, N ), a solution is a
set R of definite clauses such that

B,R =~ forall y e P

B,RE~foral vyeN

 Examples:
B = {zero(0), succ(0, 1), succ(1, 2), succ(2, 3), ...}

— {even(0),even(2),even(4),even(6), ...}

P
N {even(1),even(3),even(5),even(7),...}



Learning explanatory rules from noisy
data [Evans and Grefenstette ‘18]

e one solutionis the set R:

even(X) <« zero(X)
even(X) <« even(Y), succ2(Y,X)
succ2(X,Y) <« succ(X,Z),succ(Z,Y)



Learning explanatory rules from noisy
data [Evans and Grefenstette ‘18]

* Language frame (target, P., arity., C)

— target: the target predicate, the intensional
predicate we are trying to learn

— P,: a set of extensional predicates

—arity,:amap P, U {target} — N specifying
the arity of each predicate

— (': a set of constants



Learning explanatory rules from noisy
data [Evans and Grefenstette ‘18]

* ILP problem (£,B,P,N)
— L: alanguage frame

— B: a set of background assumptions, ground atoms
formed from the predicates in P, and the constants in C

— P: a set of positive examples, ground atoms formed
from the target predicate and the constants in C

— N': a set of negative examples, ground atoms formed
from the target predicate and the constants in C

P = {even(0),even(2),even(4),even(6),...}
N = {even(1),even(3),even(5),even(7),...}



Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]

* Rule template T = (v, int): a range of clauses that can be
generated

— v € N: specifies the number of existentially quantified variables
allowed in the clause

— int € {0, 1}: specifies whether the atoms in the body of the
clause can use intensional predicates (int = 1) or only
extensional predicates (int = 0)

» Program template 1= (P, arity,, rules, T)

— P,: a set of auxiliary (intensional) predicates; these are the
additional invented predicates used to help define the target
predicate

— arity,:amap P, — Npecifying the arity of each auxiliary
predicate

— rules: a map from each intensional predicate p to a pair of rule
templates (75, T5)

— T € N: specifies the max number of steps of forward chaining
inference



Learning explanatory rules from noisy
data [Evans and Grefenstette ‘18]

— rules: a map from each intensional predicate p to a
pair of rule templates (7, 7;)

— rules

» defines each intensional predicate by a pair of rule templates.

* In our system, we insist, without loss of generality that each
predicate can be defined by exactly two clauses.



Learning explanatory rules rrom noisy
data [Evans and Grefenstette ‘18]
- Lanquage: (F., P;,arity,C) P=FP.UP,
P, = P, U{target} arity = arity. U arity,
— Combine the extensional predicates from the language-
frame II = (P,,arity,,rules,T)
— with the intensional predicates from the program
templete [ = (target, P,, arity., C)
— A language determines the set G of all ground atoms

e E.g.) If we restrict ourselves to nullary, unary, and dyadic
predicates

G={vtiz1 = {p()|pe€ P, arity(p) =0} U
{p(k) |p € P, arity(p) =1, ke C} U
{p(kl, kg) | p € P, arity(p) — 2, ]ﬁ, k‘Q - C} U

1L}



Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]
* Generating Clauses

— For each rule template 7, we can generate a set cl(t) of
clauses that satisfy the template

— Restrictions to keep cl(t) manageable

* 1) we only consider clauses composed of atoms involving free
variables

— We do not allow any constants in any of our clauses =»

— If we need a predicate whose meaning depends on particular constants,
then we treat it as an extensional predicate, rather than an intensional

predicate.
zero(0)

* 2) we only allow predicates of arity 0, 1, or 2
— We do not currently support ternary predicates or higher

* 3) we insist that all clauses have exactly two atoms in the body



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]: Example

arity(q) = 2

— Thwge-fra me: L = (target, Pe,aritye,C)

target = q/2 P.={p/2} C ={a,b,c,d}

— The ILP problem: (£, B,P,N)
B = {p(a,b),p(b,c),p(c,d)}
P = {4(a,b),q(a,c), q(a,d), q(b, c), q(b, d), q(c, d) }
N ={q¢(X,Y) | (X,Y) € {a,bc,d}? q(X,Y) ¢ P}



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]: Example

— Use the program template I = (FPa, aritys, rules, T)
P,={} arity, ={} rules= {T&lj’rg} T=3
— Suppose template T}I forgis (v = 0,int = 0)

* Then, clauses generated after pruning are:

L ¢(X,Y) < p(X,X),p(X,Y) 5 ¢(X,Y) <« p(X,Y),p(Y, X)
2. ¢(X,Y) « p(X,X),p(Y, X) 6. ¢(X,Y) « p(X,Y),p(Y,Y)
3. ¢(X,Y) «—p(X,X),pY,Y) 7. qX)Y)<+p(Y,X),pY,X)
1. ¢(X,)Y) « p(X,Y),p(X,Y) 8 q(X,Y) <« p(Y,X),p(Y.Y)



Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]: Example

— Suppose template TCZI forgis(v = 1,int = 1)

* Then, there are 58 clauses generated after pruning, of

which the first 16 are:
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Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]:

Differentiable ILP (JILP)
* Valuations

— Given a set G of n ground atoms, a vector [0, 1]
mapping each ground atom y; € G to the real unit
interval

—E.g.) L = (P., P;, arity, C)

Pe={r/2} P,={p/0,q/1} C={a,b}
— One possible valuation on the ground atoms G of L

1L 0.0 p() — 0.0 qg(a) — 0.1 q(b) — 0.3
r(a,a) — 0.7 r(a,b) = 0.1 r(b,a) — 0.4 r(b,b)+— 0.2



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]:
Differentiable ILP (JILP)

* Induction by Gradient Descent
A={(v,1) |y € PU{(7,0) |y e N}

— given an ILP problem (£, B, P,N'), a program template 11
and a set of clause weights W, we construct a
differentiable model that implements the conditional
probability of A for a ground atom «

\ ,W,H,L’,Bb
p( \ﬂf/ L LB)—

Clause weights Proéram templatce\Eanguage frame Background
— Loss: The expected negative log likelihood

loss=— E [AlogpA|a, W,II,L,B) + (1 —\) -log(1 — p(A\ | a, W, II, L, B))]
~A

(@, \)



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]:
Differentiable ILP (JILP)

* Induction by Gradient Descent

— To calculate the probability of the label A given the atom
a, we infer the consequences of applying the rules to
the background facts (using T steps of forward chaining).

— These consequences are called the Conclusion Valuation

— Then, we extract A as the probability of a in this
valuation.



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]:
Differentiable ILP (0ILP)

p()‘ | Q, I/V: H: ﬁ: B) — femt?“act(finfer(fcanvert (B) fgenerute(ﬂp .C), W, T), a)

Differentiable Non-differentiable

fextract [Oj l]” x G — [0} 1] Takes a valuation x and an atom y and

extracts the value for that atom
Valuation

7 R ndex - G — N

fea:tmct (X; ’)/) — X[indel(lll a function that assigns each ground
atom a unique integer index

f _ 2(;' N [0 1};.1, Takes a set of atoms and converts it into a
convert ’ valuation mapping the elements of B to 1 and all
other elements of G to 0

. litv e B
feonvert(B) =y where yl[i] = { \ the i'th ground atom

0 otherwise ™ i fori = 1.n



Learning explanatory rules from noisy data
[Evans and Grefenstette ‘18]:
Differentiable ILP (0ILP)

p()‘ | a, I/Va H: ﬁ: B) — fexﬁ*acﬁ(finfer(fcanvert (B), ngﬂET‘ﬂtE(H? ﬁ), W-,- T); (-E)

Differentiable Non-differentiable

fgenerute produces a set of clauses from a program
template Il and a language L

fgenerate(T, £) = {cl(1}) | p € Py,i € {1,2}}
P, = P, U {target}

finfer + [0,1]" x C' x W x N — |0, 1]"

All the heavy-lifting takes place.
It performs T steps of forward-chaining inference using the

generated clauses, amalgamating the various conclusions together
using the clause weights W



Differentiable ILP (0ILP)
[Evans and Grefenstette ‘18]

Legend
i @(ﬁfﬁ

| = -

function
ifferentia on-differentiab
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Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

* Rule Weights
— Weights IV {Wla ©ee9 W|P—,~,|}

Wp c ]R|CZ(T$)\X|C£(T§)| one matrix for p € P;

thmf clauses generated by the first rule

1 2
templates 7, 75

Wp [_]:. ]g] represents how strongly the system believes that

the pair of clauses (C}%’j} c§=’“) is the right way to
\ define the intensional predicate p

note that each predicate is defined by exactly two clauses

eWP [j:k}

> €V F

W li, k] =



Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

 Inference

— The idea: each clause c induces a function
Fe.:10,1]"™ — [0, 1]™on valuations

p(X) + q(X)

Applying ¢ = p(X) < q(X) treated as a function

—E.g.)

G a( Fc(ag) al ]-"C(al)
p(a) 0.0 0.1 0.2 0.7
p(b) 0.0 0.3 0.9 0.4
q(a) 0.1 0.0 0.7 0.0
g(b) 0.3 0.0 0.4 0.0
1L 0.0 0.0 0.0 0.0




Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

1,]
e /1" . the valuation function corresponding to

- .1 1 [
the clause o fthe j t.h clause o.f the i'th rule template ¢}, for
ik p intensional predicate p.

* Yp :another indexed set of functions that combines
the application of two functions ]—}}ﬂj & f§=k

Gi*(a) = x where x[i] = max (,” (a)[i], 7" (a)[i])
° . o, ® . 1 'f " B
The initial value ay: ag|z] = Yz € '
0 otherwise

Cf’j geyes k(at)

Intumvely, “ the result of applying one step of forward
chaining mference to at using clauses Cp L & 02 K



Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

 The weighted average of the cf’j’k , using the

SOftmaX Of the Weights b is also zero everywhere except
W, [j,k] for the p'th intensional predicate

k
bi.[t) — ZCP? Z W, i/ k] l

;k.e p

b? are disjoint for different p, so we

* The successor function: can simply sum these valuations
a1 = famalgamate(at: Z bf)
pEP;

famalga,ma,te(xa Y) — ma’X(XJ y)

famalgamate(xa Y) =X+ y X'y



Differentiable ILP (JILP) [Evans and Grefenstette ‘18]

* Computing the F. Functions

—Let X. = {zr}}_be a set of sets of pairs of indices of
ground atoms for clause ¢

— Each x;, contains all the pairs of indices of atoms that
justify atom y;, according to the current clause c:

zr = {(a,b) | satisfies.(va,75) A heade(Va, V) = Vi }

satisﬁesc(r}/h 72) gc;tgj gfi;;ﬂ‘sgeriund atoms (yy,y,) satisfies the

true if given ¢ = a < 1,2

there is a substitution 0 such that a1 [0] = v & 2(0] =72

headc(f}/l, ’}/2) : the head atom produced when applying clause ¢
to the pair of atoms (y4,v3)

fc=qa+ a1,a, o[l =71 & ®2[f] =
head.(v1,72) = lf]



Differentiable ILP (0ILP)

[Evans and Grefenstette ‘18]
e E.g.)Suppose P ={p,q,7} & C ={a,b}

— Then our ground atoms G are:

L0 1 2 3 4 5 6 7 8
Ve L pla,a) p(a,b) p(b,a) pb,b) qla,a) q(a,b) q(b,a) q(b,b)
L9 10 11 12

i r(a,a) r(a,b) r(b,a) r(b,b)

— Suppose clause cis: 7(X,Y) < p(X,Z2),q(Z,Y)
—ThenXC — {ﬂ:k}}g:l IS:

D e 5 daa) {9 r@a) {(15),(2,7)
> plab) {6 a(@bd) {} 10 r(a,b)  {(1,6), (2,8)}
3 p(b, a) {} 7 Q(b;a) {} 11 T(b: CL) {(37 5)7 (47 7)}
4 pbd) {3 8 q(bb) {} 12 r(b,b) {(3,6), (4, 8)}




Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

— Transform X, into X & NXwX2
rr[m] if m < |z
(0,0) otherwise

Yk X k] k X |k
N (0,0)] Sl X[#] = '([1 ]5)'
:(0’ 0) 5 (0,0)] 9 rleq) (2’ 7)
(0,0 19:9)(9,0) (2,7).
p(a,a) (0 O) - - (1,6)
PIINC 6 q(a,b) (0,0) 10 r(a,b) (2,8)
p(a, b) (8’ 8) o (0,0) (3,5)
(0,0). [(0,0)] 11 r(ba) ’
0,0 7 q(b,a) (4,7)
p(bﬂ a’) EO’ Og q ’ _(050)_ :(3 6):
(0.0) s oy OO 12 BB
P:0) 110 0) a%:5) (0, 0) -




Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]
— Slicing X into X; and X,
X; =X[;,;,0] Xo=X];,:,1]
gathery : R® x Nb*¢ 5 Rbx¢
gathers(z, y)[i, j] = x[yli, j]]

After assembling the elements of a according to the matrix of indices
in X1 and X,, we obtainY; and Y,:

Y, = gathery(a,X;) Yy = gathery(a, Xo)
Z=Y10Y

Z [k,, Z] . the vector of fuzzy conjunctions of all the pairs of atoms that
contribute to the truth of y,, according to the current clause.

F.(a) =a’' where a'lk] = max(Z[k,:])



Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

(a)[A]

Y[k Z[k]

Xolk]  Yq[k]

X [k]

alk]
0.0

Tk

0.00
0.00
0.00
0.00
0.00
0.00

0.00
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0.00
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Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

* Defining fuzzy conjunction Z=Y10Y

— For other choices, need an operator * : [0,1]* — [0, 1]
satisfying the conditions on a t-norm [Esteva & Godo, 2001]
* commutativity: X x y =y * X
e associativity: (x xy) * z=x* (y * z)
e monotonicity (i): x1 £ x2 implies x1 x y < x2 * vy
* monotonicity (ii): y1 £y2 implies x * y1 <x * vy
e unit(i):x*1=x
e unit (ii):x*x0=0
— Operators satisfying these conditions include:
e Godel t-norm: x * y = min(x, y)
e Lukasiewicz t-norm: x *x y =max(0, x +y - 1)

* Productt-norm: x*xy=x-y



Differentiable ILP (JILP)

[Evans and Grefenstette ‘18]
* Experiments

Metagol OILP
Domain Task |P;| Recursive Performance Performance
Arithmetic  Predecessor 1 No v v
Arithmetic ~ Even / odd 2 Yes v v
Arithmetic ~ Even / succ2 2 Yes v v
Arithmetic  Less than 1 Yes v v
Arithmetic  Fizz 3 Yes v v
Arithmetic  Buzz 2 Yes v v
Lists Member 1 Yes v v
Lists Length 2 Yes v v
Family Tree Son 2 No v v
Family Tree Grandparent 2 No v v
Family Tree Husband 2 No v v
Family Tree Uncle 2 No v v
Family Tree Relatedness 1 No X v
Family Tree Father 1 No v v
Graphs Undirected Edge 1 No v v
Graphs Adjacent to Red 2 No v v
Graphs Two Children 2 No v v
Graphs Graph Colouring 2 Yes v v
Graphs Connectedness 1 Yes X v
Graphs Cyeclic 2 Yes X v




Differentiable ILP (JILP)
[Evans and Grefenstette ‘18]

* Experiments

Domain Task |P;| Recursive JILP Godel Lukasiewicz Max
Arithmetic  Predecessor 1 No 100.0 100.0 100.0 100.0
Arithmetic ~ Even / odd 2 Yes 100.0 44.0 52.0 34.0
Arithmetic ~ Even / succ2 2 Yes 48.5  28.0 6.0 20.5
Arithmetic  Less than 1 Yes 100.0 100.0 100.0 100.0
Arithmetic  Fizz 3 Yes 10.0 1.5 0.0 5.5
Arithmetic  Buzz 2 Yes 14.0 35.0 3.5 5.5
Lists Member 1 Yes 100.0 100.0 100.0 100.0
Lists Length 2 Yes 92.5 59.0 6.0 82.0
Family Tree Son 2 No 100.0 94.5 0.0 99.5
Family Tree Grandparent 2 No 96.5 61.0 0.0 96.5
Family Tree Husband 2 No 100.0 100.0 100.0 100.0
Family Tree Uncle 2 No 70.0 60.5 0.0 68.0
Family Tree Relatedness 1 No 100.0 100.0 100.0 100.0
Family Tree Father 1 No 100.0 100.0 100.0 100.0
Graphs Undirected Edge 1 No 100.0 100.0 100.0 100.0
Graphs Adjacent to Red 2 No 50.5 40.0 1.0 42.0
Graphs Two Children 2 No 95.0 74.0 53.0 95.0
Graphs Graph Colouring 2 Yes 94.5 81.0 2.5 90.0
Graphs Connectedness 1 Yes 100.0 100.0 100.0 100.0
Graphs Cyclic 2 Yes 100.0 100.0 0.0 100.0




Neural Programmer-Interpreters
[Reed & Freitas ‘16]

* Neural Programmer-Interpreter (NPI)

— a recurrent and compositional neural network that
learns to represent and execute programs

— Three learnable components:
— 1) a task-agnostic recurrent core
— 2) a persistent key-value program memory

— 3) domain-specific encoders that enable a single NPI to
operate in multiple perceptually diverse environment

— In experiment, a single NPI learns to execute three
compositional programs (addition, sorting, and
canonicalizing 3D models) and all 21 associated
subprograms.



Neural Programmer-Interpreters
[Reed & Freitas ‘16]

* Neural Programmer-Interpreter (NPI)

— a compositional architecture that learns to represent and
interpret programs.
— The core module: an LSTM-based sequence model

* Input: a learnable program embedding, program arguments
passed on by the calling program, and a feature representation
of the environment.

e QOutput: a key indicating what program to call next, arguments
for the following program and a flag indicating whether the

program should terminate.
— Includes a learnable key-value memory of program
embeddings.

e Essential for learning and re-using programs in a continual
mannetr.



Neural Programmer-Interpreters
[Reed & Freitas ‘16]

Neural Programmer-Interpreter (NPI)

— In experiments, can learn 21 programs, including addition,
sorting, and trajectory planning from image pixels

— Crucially, this can be achieved using a single core model
with the same parameters shared across all tasks.

— Different environments (for example images, text, and
scratch-pads) may require specific perception modules or
encoders to produce the features used by the shared core,
as well as environment-specific actuators.

* Both perception modules and actuators can be learned from
data when training the NPI architecture

— To train the NPl we use curriculum learning and
supervision via example execution traces.



Neural Programmer-Interpreters
[Reed & Freitas ‘16]

* Neural Programmer-Interpreter (NPI)

— Exhibit strong generalization.

e Specifically, when trained to sort sequences of up to twenty
numbers in length, they can sort much longer sequences at test
time.

* In contrast, standard sequence to sequence LSTMs only exhibit
weak generalization

— Act both as an interpreter and as a programmer

* A trained NPI with fixed parameters and a learned library of
programs, can act both as an interpreter and as a programmer.

* As an interpreter, it takes input in the form of a program embedding
and input data and subsequently executes the program.

* As a programmer, it uses samples drawn from a new task to
generate a new program embedding that can be added to its library
of programs.



Neural Programmer-interpreters
[Reed & Freitas ‘16]

 Example execution of canonicalizing 3D car models

HGOTO
VGOTO
KEY
MKE ar -1
. -

[1]2] F [1]2] [1]2] [1]2] [1]2] Ei 1]2 [Tz] * [Tz
GOTO() HGOTO() LGOTO() ACT(LEFT) LGOTO() ACT(LEFT) GOTO() VGOTO()  DGOTO() ACT(DOWN) end state

The task is to move the camera such that a target angle and elevation are
reached. There is a read-only scratch pad containing the target (angle 1, elevation
2 here). The image encoder is a convnet trained from scratch on pixels



Neural Programmer-Interpreters [Reed & Freitas ‘16]

 Example execution trace of single-digit addition

ACT

MFg

END ARG
—t

END ARG
R e

| 1 1

93| 4 9134 9134 913 |4 913 |4 9134 913 |4
) 1 ) ) | |
3|48 3|48 3|4]|8 3|48 34 |8 314|8 3)14/|8

! 1 ] ! 1 1

)
] |} ! ! + + ]
2 2 2 2 2 2
ADD1() ACT (42WRITE)  ADD1() CARRY() ACT (3,LEFT) CARRY()  ACT (3,1,WRITE)

The task is to perform a single-digit add on the numbers at pointer locations in
the first two rows. At each time step, an observation of the environment (viewed
from each pointer on a scratch pad) is encoded into a fixed-length vector.



Neural Programmer-Interpreters
[Reed & Freitas ‘16]

Inference
— e; € £ :the environment observation at time t

— At - -/4: the current program argumer_lts
* Here, consider only 3-tuple of integers (a¢(1), a:(2), a¢(3))
— fene 1 € X A — RP . domain-specific encoder

— p, € RY :the current program embedding

— key-value memory structures

. M*Y € RNVNXE . 5 oaram keys
.Mpmg c RNXP . program embeddings



Neural Programmer-Interpreters
[Reed & Freitas ‘16]

* S;: state encoding
St = fenc(etﬁ flt)
he = fistm(stapta ht—l)
rt = fend(ht)a ke = fprﬂg(ht)a At41 = farg(ht)

* Given k;, the program embedding is retrieved

*

i* = arg max(M?fy)Tkt , Pie1 = MESO?
1=1..N ’
* The next environmental state e;,; will be

determined by the dynamics of the env

Et+1 °~ fenv(eta Pt a’t)



Neural Programmer-Interpreters
[Reed & Freitas ‘16]

Algorithm 1 Neural programming inference

1: Inputs: Environment observation e, program id ¢, arguments a, stop threshold «
2: function RUN(z, a)

3: h< 0,7« 0,p<« M > Init LSTM and return probability.

4: while » < ado

5: S < fenc(e,a), h < fistm(s,p, h) > Feed-forward NPI one step.

6: Tefend(h)?kF fp'r’og(h)aGQ — farg(h)

7: io <— arg max(f\/[jfy)Tk > Decide the next program to run.
j=1..N

8: if i == ACT then e < f.,,(e,p,a) > Update the environment based on ACT.

0: else RUN(25, as) > Run subprogram 75 with arguments as




Neural Programmer-Interpreters [Reed & Freitas ‘16]
* Training |
— Use execution traces finp ; {6t, it, Gy }and

{@t+1¢@t+1:Tt}

Program IDs i, and i, are row-indices in M*¢Y and MP"°9 of the
programs to run at time t and t+1, respectively

0* — arg max Z logp(é-out|£inp; 9)
’ (sinp,aout)

out

log P (€out|Einp3 0) Z log P(£7"* €1, ..., & 0)

IOgP(ffuthPa -ey zﬁnp) = log P(it41]he) + log P(aii1|he) +log P(re|he)



Neural Programmer-Interpreters
[Reed & Freitas ‘16]
 Task: Addition pointers one per scratch pad row

fenc(QazlazQazSalLﬁlaat) MLP 1 ?’1362%@2'@(3 ?’3 4 i4),&t(1),at(2),at(3)])

\ Q c ]R4 X N x K
' ADD
input 1 0 0 0 9 6 L ADDA L ADD1 L. ADD1
\ WRITE OUT 1 WRITE OUT 2 WRITE OUT 2
_ CARRY CARRY LSHIFT
nput2|Q) 0O 1 2 5 PTR CARRY LEFT ~ PTRCARRYLEFT  PTRINP1LEFT
WRITE CARRY 1 WRITE CARRY 1 PTR INP2 LEFT
PTR CARRY RIGHT  PTR CARRY RIGHT PTR CARRY LEFT
LSHIFT LSHIFT PTR OUT LEFT
carry [0 0 1 1 1 PTR INP1 LEFT PTR INP1 LEFT
PTR INP2 LEFT PTR INP2 LEFT
\ PTR CARRY LEFT  PTR CARRY LEFT
PTR OUT LEFT PTR OUT LEFT
output|0 O O 2 1

Example scratch pad and pointers used ~ Actual trace of addition program
for computing “96 + 125 = 221" generated by NPI



Neural Programmer-interpreters
[Reed & Freitas ‘16]

- Task: Sorting Q € RPCTXE
fene(@,11,12,a;) = MLP([Q(1,71), Q(1,12),a:(1),a(2),a(3)])

BUBBLESORT =
array L-BUBBLE RESET .. L-BUBBLE ...
=0!3 2 4 0 1 PTR2RIGHT  LSHIFT PTR 2 RIGHT
BSTEP PTR 1 LEFT BSTEP
COMPSWAP PTR 2 LEFT COMPSWAP
\ \ SWAP 12 LSHIFT SWAP 1 2
t=1 2 4 9 1 RSHIFT PTR 1 LEFT RSHIFT
PTR1RIGHT PTR2LEFT PTR 1 RIGHT
\ \ PTR 2 RIGHT ... PTR 2 RIGHT
LSHIFT
t=2 2 3 4 g 1 BSTEP PTR 1 LEFT BSTEP
COMPSWAP PTR 2 LEFT COMPSWAP
\ \ RSHIFT RSHIFT
— PTR 1 RIGHT PTR 1 RIGHT
t=3 2 3 4 9 1 PTR 2 RIGHT PTR 2 RIGHT

Excerpt from the trace of the learned
bubblesort program



Neural Programmer-Interpreters [Reed & Freitas ‘16]

* Task: Canonicalizing 3D models

Q € R2Xx1IxK K = 24 corresponding to 15° pose increments

the pad containing canonical azimuth
and elevation

fene(Q, 01,12, a;) = MLP([Q(1, 1), Q(Qa’iz),fCNN(T/{: at(1),a:(2), a:(3)])

x: a car rendering at the current pose

GOTO 1 2 GOTO 1 2 3 5 :
HGOTO 1 5 3 HGOTO
RGOTO LGOTO Tt vt i
acT(RIGHT) (e . ACT (LEFT)
VGOTO ACT (LEFT) 4 5 6
ACT (LEFT)
UGOTO ACT(LEFT) TN =
ACT (UP) ACT(LEFT) .
1 2 VGOTO
GOTO 1 2 3 Ueoto Q
g
ACT (RIGHT) GOTO 1 2
ACT (RIGHT) HGOZg o 1 2 3
ACT (RIGHT LGOT — p—
( a4 5 6 ACT (LEFT) A I\ =
DGOTO i DGOTO
ACT (DOWN) ACT (DOWN)
ACT (DOWN)

Importantly, NPI can generalize to car appearances not encountered
in the training set



Neural Programmer-Interpreters [Reed & Freitas ‘16]

— Programs learned for addition, sorting and 3D car canonicalization.

Program Descriptions Calls

ADD Perform multi-digit addition ADDI, LSHIFT
ADDI Perform single-digit addition ACT, CARRY
CARRY Mark a 1 in the carry row one unit left ACT

LSHIFT Shift a specified pointer one step left ACT

RSHIFT Shift a specified pointer one step right ACT

ACT Move a pointer or write to the scratch pad -

BUBBLESORT | Perform bubble sort (ascending order) BUBBLE, RESET
BUBBLE Perform one sweep of pointers left to right ACT, BSTEP
RESET Move both pointers all the way left LSHIFT

BSTEP Conditionally swap and advance pointers COMPSWAP, RSHIFT
COMPSWAP Conditionally swap two elements ACT

LSHIFT Shift a specified pointer one step left ACT

RSHIFT Shift a specified pointer one step right ACT

ACT Swap two values at pointer locations or move a pointer | -

GOTO Change 3D car pose to match the target HGOTO, VGOTO
HGOTO Move horizontally to the target angle LGOTO, RGOTO
LGOTO Move left to match the target angle ACT

RGOTO Move right to match the target angle ACT

VGOTO Move vertically to the target elevation UGOTO, DGOTO
UGOTO Move up to match the target elevation ACT

DGOTO Move down to match the target elevation ACT

ACT Move camera 15° up, down, left or right -

RIMP Move all pointers to the rightmost posiiton RSHIFT

MAX Find maximum element of an array BUBBLESORT.RIMP




Neural Programmer-interpreters
[Reed & Freitas ‘16]

* Sample complexity
— Sorting task

Sorting per-sequence accuracy vs. # training examples
100 & 4

>
~p
>
= 4

6 32 64 128 256 512 1024 2048
Training examples
~&— Seq2Seq —e— NPI

:1'1‘ -



Neural Programmer-interpreters
[Reed & Freitas ‘16]

* Strong vs. weak generalization
— Sorting task

Sgrting pei-sequence accuracy vs sequence length

100 e @ o o

75

|
_ i
Training i

50 sequence
lengths !
|
|
|

% 30 35 N

Sequence length
—&— Seq2Seq —@— NP



Neural Programmer-Interpreters [Reed & Freitas ‘16]

* Learning new programs with a fixed core

— Adding a maximum-finding program MAX

e MAX first calls BUBBLESORT and then a new program RIMP, which moves
pointers to the right of the sorted array

— To avoid catastrophic forgetting

* Fix the weights of the core routing module, and only make sparse updates to
the program memory

* When adding a new program the core module’s routing computation will be
completely unaffected;
— All the learning for a new task occurs in program embedding space.

— An old program could mistakenly call a newly added program

* The addition of new programs to the memory adds a new choice of program at
each time step, and an old program could mistakenly call a newly added
program

* To overcome this, two methods are considered

— 1) when learning a new set of program vectors with a fixed core, in practice we train not
only on example traces of the new program, but also traces of existing programs

— 2) Alternatively, a simpler approach is to prevent existing programs from calling
subsequently added programs, allowing addition of new programs without ever looking
back at training data for known programs.

* In either case, note that only the memory slots of the new programs are
updated, and all other weights, including other program embeddings, are fixed



Neural Programmer-Interpreters [Reed & Freitas ‘16]

* Solving multi-task with a single network

— Perform a controlled experiment to compare the
performance of a multi-task NPI with several single-task

NPl models
Task Single | Multi | + Max
Addition 100.0 97.0 97.0
Sorting 100.0 | 100.0 | 100.0
Canon. seen car 89.5 914 014
Canon. unseen 88.7 89.9 89.9
Maximum - - 100.0




Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

* Deep reinforcement learning (DRL)

* Recently been shown to be effective in a number of domains, including Atari
video games, robotics, and the game of Go

* Can be thought of as a step towards instantiating the formal characterisation of
universal artificial intelligence presented by Hutter, a theoretical framework for
AGI founded on reinforcement learning

* Contemporary DRL systems: Shortcomings

— 1) they inherit from deep learning the need for very large training sets,
which entails that they learn very slowly

— 2) they are brittle in the sense that a trained network that performs well
on one task often performs very poorly on a new task, even if the new
task is very similar to the one it was originally trained on.

— 3) they are strictly reactive, meaning that they do not use high-level
processes such as planning, causal reasoning, or analogical reasoning to
fully exploit the statistical regularities present in the training data.

— 4) they are opaque. It is typically difficult to extract a humanly-
comprehensible chain of reasons for the action choice the system
makes



Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

* Propose a novel hybrid reinforcement learning
architecture that combines neural network learning with

aspects of classical symbolic Al

e Classical symbolic Al: Pros
— The use of language-like propositional representations to encode
knowledge
— Thanks to their compositional structure, such representations are

amenable to endless extension and recombination
* This is an essential feature for the acquisition and deployment of high-level
abstract concepts, which are key to general intelligence
— Knowledge expressed in propositional form can be exploited by
multiple high-level reasoning processes and has general-purpose
application across multiple tasks and domains.

— Features such as these, derived from the benefits of human
language, motivated several decades of research in symbolic Al



Towards Deep Symbolic Reinforcement
Learning [Garnelo et al ‘16]
» Classical symbolic Al: Limits

— The symbol grounding problem

* The symbolic elements of a representation in classical Al — the
constants, functions, and predicates — are typically hand-
crafted, rather than grounded in data from the real world.

* This means their semantics are parasitic on meanings in the
heads of their designers rather than deriving from a direct
connection with the world

* Hand-crafted representations cannot capture the rich statistics
of realworld perceptual data, cannot support ongoing
adaptation to an unknown environment, and are an obvious
barrier to full autonomy



Towards Deep Symbolic Reinforcement
Learning [Garnelo et al ‘16]

* Deep learning

— Have proven to be remarkably effective for supervised
learning from large datasets using backpropagation.

— Deep learning is therefore already a viable solution to
the symbol grounding problem in the supervised case,
and for the unsupervised case, which is essential for a
full solution, rapid progress is being made

 The approach of this work for the hybrid approach

— The hybrid neural-symbolic reinforcement learning
relies on a deep learning solution to the symbol
grounding problem.



Towards Deep Symbolic Reinforcement
Learning [Garnelo et al ‘16]

Unsupervised learning
of mapping from high-
dimensional raw input

Reinforcement learning of
mapping from symbolic
representation to action with

Compoaositionally structured
symbolic representation

to low-dimensional symbolic \ maximum expected reward
representation over time
¥ >
> .
Neural Symbolic
—_—
»| | back end front end
Sensory \ / Motor
input Reward Agent output
e
Environment




Towards Deep Symbolic Reinforcement
Learning [Garnelo et al ‘16]

* Four fundamental principles of the architectural
manifesto.

— 1) Conceptual abstraction

* Determining that a new situation is similar or analogous to
one (or several) encountered previously is an operation
fundamental to general intelligence, and to reinforcement
learning in particular

* The present architecture maps high-dimensional raw input
into a lower-dimensional conceptual state space

— It is possible to establish similarity between states using symbolic
methods that operate at a higher level of abstraction.

— Facilitates both data efficient learning and transfer learning as well as
providing a foundation for other high-level cognitive processes such as
planning, innovative problem solving, and communication with other
agents (including humans).



Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

— 2) Compositional structure
* A representational medium is required that has a compositional structure.

* Thus use probabilistic first-order logic for the semantic underpinnings of
the low-dimensional conceptual state space representation into which the
neural front end must map the system’s high-dimensional raw input

— 3) Common sense priors

* The everyday physical world is structured according to many other
common sense priors

— Consisting mostly of empty space, it contains a variety of objects that tend to
persist over time and have various attributes such as shape, colour, and texture.

— Objects frequently move, typically in continuous trajectories. Objects participate in
a number of stereotypical events, such as starting to move or coming to a halt,
appearing or disappearing, and coming into contact with other objects.
* Thus graft a suitable ontology onto the underlying representational
language, greatly reducing the learning workload and facilitating various
forms of common sense reasoning



Towards Deep Symbolic Reinforcement
Learning [Garnelo et al ‘16]

— 4) Causal reasoning

* The current generation of DRL architectures eschews model-
based reinforcement learning, ensuring that the resulting
systems are purely reactive

* Instead, the current architecture attempts to discover the
causal structure of the domain, and to encode this as a set of
symbolic causal rules expressed in terms of the common
sense ontology described above

* These causal rules enable conceptual abstraction

* The narrative structure of the ongoing situation needs to be
mapped to the causal structure of a set of previously
encountered situations

— Carry out analogical inference at a more abstract level, and thereby
facilitate the transfer of expertise from one domain to another



Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
e Game environment

— The agent (shaped as a ‘+’) has to learn either to avoid or
to collect objects depending on their shape.

— Once the agent reaches an object using one of four
possible move actions (up, down, left, or right), this object
disappears and the agent obtains either a positive or a
negative reward.

— Encountering a circle (‘0’) results in a negative reward
while collecting a cross (‘x’) yields a positive reward

OX 0O X
X 0OX O
ﬂ'I.I.'DI

X O X O




Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

* The four different game environments

— Variant 1

* In this environment there are only objects that return negative rewards
(‘0”) and they are positioned in a grid across the screen. This layout is the
same for every new game. Encountering an object returns a score of -1
and at the beginning of the game the player is located in the middle of the
board.

— Variant 2.

* The layout is the same as in version 1 but there are two types of objects.
As before, circles give -1 points and we introduce crosses that return 1
points.

— Variant 3.

e Asin version 1 this game only contains objects that return a negative
reward. In order to increase the difficulty of the learning process howeuver,
the position of these objects is determined at random and changes at
every new game.

— Variant 4.

e This version combines the randomness from environment 3 and the
different object types from version 2.



Towards Deep Symbolic Reinforcement
Learning [Garnelo et al ‘16]

* The four different game environments

— The agent is represented by the ‘+’ symbol. The static objects
return positive or negative reward depending on their shape
(‘x” and ‘0’ respectively).

0000 OXO X
0000 X O.XO
0 070 0 0 X0 x
O000 XOXO
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* The four different game environments

— The agent is represented by the ‘+’ symbol. The static objects
return positive or negative reward depending on their shape
(‘x” and ‘0’ respectively).
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Learning [Garnelo et al ‘16]

* Low-level symbol generation

— Generate, in an unsupervised manner, a set of symbols
that can be used to represent the objects in a scene

— Use a CNN, since such networks are well-suited to feature
extraction, especially from images.

* Train a convolutional autoencoder on 5000 randomly generated
images of varying numbers of game objects sattered across the
screen

— The CNN consists of a 5x5 convolutional layer followed by
a 2x2 pooling layer plus the corresponding decoding
layers

— Directly use the activations across features in the middle
layer of the CNN for the detection of the objects in the
scene.



Towards Deep Symbolic Reinforcement
Learning [Garnelo et al ‘16]

 Low-level symbol generation

— Object detection and characterization
» 1) first select, for each pixel, the feature with the highest activation
» 2) Then threshold these activation values, forming a list of those that are
sufficiently salient
— ldeally, each member of this list is a representative pixel for a single object.
* 3) The objects identified this way are then assigned a symbolic type
according to the geometric properties computed by the autoencoder

— Procedures for the object identification
— Compare the activation spectra of the salient pixels across features.

» This comparison is carried out using the sum of the squared distances, which
involves setting an ad hoc threshold for the maximal ditance between two
objects of the same type.

=>» The information extracted at this stage consists of a symbolic
representation of the positions of salient objects in the frame
along with their types



Towards Deep Symbolic Reinforcement Learning
[Garnelo et al ‘16]

Unsupervised extraction of low-level symbols from the information provided
by the convolutional autoencoder

1. Extract activation spectrum

2. Compare spectrum to averages of
existing types Type 1

VS.

@ I \1 lype 2
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* Representation building

— Track the low-level symbols across frames in order to
observe and learn from their dynamics

— Take account of the first common sense prior: object
persistence across time

e Based on three measures
— 1) Spatial proximity

 Build in the notion of continuity by defining the likelihood to
be inversely proportional to the distance between two
objects in consecutive frames
1 the Euclidean distance between two

dist — 1+d objects it and i in consecutive frames
tand t + 1 respectively.
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* Representation building

— 2) Type transitions

* Given the types of two objects 7(i{) = 7;; and 7(i5) = 745 in
consecutive frames, we can determine the probability that
they are the same object that has changed from one type to
the other

— By learning a transition matrix T from previously observed frames

Lt?’*ans — Til1+sT42

* Introduce the object type 0O: corresponds to ‘non-existent’

— To describe all transitions, including the ones that correspond to
objects appearing and disappearing
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* Representation building
— 3) Neighbourhood

* The neighbourhood of an object will typically be similar from
one frame to the next.

 AN: The difference in the number of neighbours between
two objects

— Define a neighbour to be any object, i,, within a distance d,,,5 of
another object i4.

1
1+ AN

Lneigh —

L = wlLdist + wQLtfra,ns + wSLneigh
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Extracting Labelling
low-level persistent
symbols objects
Type Pos. Objects
™2 B2 Gon ba)
Type = Pos. Objects
wona |
2 B2 G e
Tp2 (1, 3] Type(Obj3, Tp2)

Loc(Obj3, [1,3])

Building
spatio-temporal
representations

Interaction(Obj1, Obj2)
Types before(Tp1, Tp2)
Types_after(Tp1, Tp2)
Loc_difference([1,0])

Interaction(Obj1, Obj3)
Types_before(Tp1, Tp2)
Types_after(Tp1, Tp2)
Loc_difference([-1,0])
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* Symbolic interactions and dynamics

— The final, reinforcement learning stage of the
algorithm will require information about the
dynamics of objects and their spatial interactions

— 1) consider the difference between frames rather
than working with single frames, thus moving to a
temporally extended representation

— 2) Represent the positions of objects relative to
other objects rather than using absolute coordinates.

* only record relative positions of objects that lie within a
certain maximum distance of each other.
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* Approximate the optimal policy using tabular
Q-learning with the update rule for the
interaction between objects of types i and |

Q(s{ 1) = QU(sy?,ar) + o (reg1 +(max Q7 (s 1, a) — QU (s, ay))

e choose the next action that will return the
highest reward overall

41 = arg m{?X(Z(Q(St-I-l: a))
Q
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Experiment results

IOne type, objects on a grid
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* Experiment results
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* Comparison between DQN and symbolic approach

— Average percentage of objects collected over 200 games
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* Average percentage of objects collected over 200 games that return
positive reward by an agent that is trained on the grid environment
and tested on random environments. (domain transfer)
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* Goal: Integrate probabilistic logical reasoning with the
powerful infrastructure of the deep learning

— To enable deep learners to incorporate first-order probabilistic KBs

— conversely, to enable probabilistic reasoning over the outputs of deep
learners

 Deductive database (DDB): a database DB with a theory
T defines a set of facts fq, -, f;, which can be derived by accessing
the database and reasoning using T

* Probabilistic deductive database (PrDDB)

— A soft extension of a DDB, where
— Derived facts have a numeric confidence, augmenting DB with
a set of parameters ©

— Computation of confidences is computationally expensive,
often not conductive to learning ©
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* TensorlLog:

— Probabilistic deductive database (PrDDB) in which reasoning
uses a differentiable process

— Each clause is converted into certain type of factor graph

* Each logical variable is associated with a random variable in the
factor graph

e Each literal is associated with a factor

— Inference is linear in database size and the num of massage-
passing steps used in BP

— Inference is also differentiable

— Subsumes some prior probabilistic logic programming
models, including several variants of stochastic logic
programs (SLPs)
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* A motivating example: A simple theory for QA against a KB

* The goal of learning is to find appropriate weights for the soft predicate facts

e TensorlLog: can learn from 10,000 questions against a KB of 420,00 triples, in around
200 seconds per epoch in a single GPU

answer (Question,Answer) :-
classification(Question,aboutActedIn),
mentionsEntity(Question,Entity), actedIn(Answer,Entity).

answer (Question,Answer) :-
classification(Question,aboutDirected),
mentionsEntity(Question,Entity), directed(Answer,Entity).

answer (Question,Answer) :-
classification(Question,aboutProduced),

mentionsEntity(Question,Entity) Produced(ﬁnswer,EntiEy). _ _
For NLP tasks, the KB sfores ward n-grams in the question, the

strings that are possible names of an entity, and the words that are
mentionsEntity(Question,Entity) :- contained in these names and n-grams

containsNGram(Question,NGram), matches(NGram,Name),

possibleName (Entity,Name), p0pu1aﬁ‘EH—i4;¥l-\ :
— Soft KB predicates

classification(Question,Y) :- /
containsNGram(Question,NGram), indicatesLabel (NGram,Y).

matches (NGram,Name) :-
containsWord (NGram,Word), containsWord(Name,Word), important(Word).
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— Inefficiency in integration of PrDDB and deep learning

* Integration of probabilistic logics into deep learners is that most
existing first-order probabilistic logics are not easily adapted to
evaluation on a GPU

— The most common approach to first-order inference: the grounding

* To ground a first-order logic by converting it to a zeroth-order format,
such as a boolean formula or a probabilistic graphical model

p(X,Y) (Y. Z),r(Z,Y)

l Grounding \ Even this small rule gives a grounding
of size o(|C|?)

\V  (p(z.y)V gy, z) vV —r(z,y))
J2,y,2€C the set of objects in the KB

But, groundings can be very large: a grounding of size
o(|C|™) is produced by a rule:

p(XUa Xn) — QI(XO:'XI)& QQ(XI-;XQ)& s ey qTL(XTL—l'; Xn)
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* 1) Propose the use of a restricted family of probabilistic
deductive databases (PrDDBs) called polytree-limited
stochastic deductive knowledge graphs (ptree-SDKGs)

— Ptree-SDKGs are tractable, but still reasonably expressive

— Ptree-SDKGs are in some sense maximally expressive

e we cannot drop the polytree restriction, or switch to a more
conventional possible-worlds semantics, without making inference

intractable

e 2) Present an inference algorithm for ptree-SDKGs
— performs inference with a dynamic-programming method

* Formalize as belief propagation on a certain factor graph
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 Deductive database (DDB)

1. uncle(X,Y) :-child(X,W) ,brother(W,Y).
2. uncle(X,Y) :—aunt (X,W) ,husband (W,Y) .
3. status(X,tired) :-child(W,X),infant (W) .

child(liam,eve)
child(dave,eve)
child(liam,bob)
husband (eve,bob)
infant (liam)
infant (dave)

aunt (joe,eve)
brother (eve,chip)

0.99
0.99
0.75
0.9
0.7
0.1
0.9
0.9
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e Deductive database (DDB)

—DR: A database, which is a set (fi,ee o )
ot ground facts

— T : Atheory, which is a set of function-free Horn clauses

— Aclauseis writtenas: A:-B1,..., BL
* A:the head of the clause, By, ..., By: the body
A & B;: literals
* Clauses can be understood as logical implications
— A literal has the form: p(le o ij)
* p: a predicate symbol
* X;: either logical variables or database constants
* Arity: the number of arguments k to a literal

— C :the set of all database constants

* We assume that constants appear only in the database, not in the
theory
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Deductive database (DDB)
— Knowledge graph (KG)

* The database where all literals are binary or unary

* A deductive knowledge graph (DKG)
— The program for KG

— 0 : a substitution, a mapping from logical variables to
constants in C

- o'(L) . the result of replacing all logical variables X in
the literal L with o(X)

— A set of tuples S is deductively closed with respect to
the clause A < By, ..., By iff for all substitutions o

either g(A) € Sor dB; : 0(B;) € S

Deductively closed = KG completeness
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 Deductive database (DDB)

1. uncle(X,Y) :-child(X,W) ,brother(W,Y).
2. uncle(X,Y) :—aunt (X,W) ,husband (W,Y) .
3. status(X,tired) :-child(W,X),infant (W) .

child(liam,eve) 0.99
child(dave,eve) 0.99
child(1liam,bob) 0.75
husband (eve,bob) 0.9

infant(liam) 0.7
infant (dave) 0.1
aunt (joe,eve) 0.9

brother (eve,chip) 0.9

Not deductively closed with respect to the clause 1
unless it also contains uncle(chip,liam) and uncle(chip,dave)
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* Deductive database (DDB)

e E.g.) Deductively closed: If S contains the facts in our example,
S is not deductively closed with respect to the clause 1 unless
it also contains uncle(liam, chip) and uncle(dave, chip)

— Model(DB, T ): the smallest superset of DB that is
deductively closed with respect to every clausein T

* This least model is unique, and in the usual DDB semantics
* a ground fact f is considered “true” iff f € Model(DB,T)

— Bottom-up inference

* Explicitly generates the set Model(DB, T ) iteratively

— Repeatedly extends a set of facts S, which initially contains just the
database facts, by looking for rules which “fire” on S and using them
derive new facts

* This can be much larger than the original database
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* Deductive database (DDB)

— Top-down inference
* Does not compute a least model explicitly

* instead, it takes as input a querv fact f and determines
whether f is derivable, i.e., if f € Model(DB,T)

* E.g.) find all values of Y such that uncle(joe, Y) holds:

— Formally, given () = uncle(joe,Y)
findall f € Model(DB,7) which are instances of Q, where an f
is defined to be an instance of Q iff Jo : f = 0(Q)

e 3 unit clause: a fact clause p(a,b) <

« T7+DB: denote the theory T augmented with unit clauses
for each database fact
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 Top-down theorem prover

— Root vertex: a pair (S,L) = (Q, [Q])

— For any vertex (S,L) where L = |G, -+, Gy], thereis a
child vertex (S', L") for each rule
A« By,...,B, € TtPB and o for which 6(G;) =

o(A).Then, §/ = 5(S)
L = [O’(Gl), - ,O'(G?',—l)a J(Bl)a ‘e aJ(Bk:): J(Gi+1): e vJ(Gn)]

e L' is empty: a solution vertex
e L’ is smaller than L if the clause selected is a unit clause (i.e.,
a fact).

— In any solution vertex (S, L), if S contains no variables,
then S is an instance of Q andisin Model(T ,DB)
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 Top-down theorem prover

— An example proof tree.

(S=uncle(liam,Y), L=[uncle(liam,Y)])
l
(S=uncle(liam,Y’), L=|child(liam,W),brother(W,Y)|)
\J 3
(S=uncle(liam,Y), L=[brother(bob,Y)]) (S=uncle(liam,Y), L=[brother(eve,Y)])

! l
dead end (S=uncle(liam,chip), L=[|)
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» Stochastic logic programs (SLPs) [Cussens ‘01]
— Putting probabilistic reasoning in first-order logics

 Theory T is extended by associating with each rule 7 a non-
negative scalar weight 6,

— The weight of an edge: when a rule r is used to create an
edge (5, L) — (5", L"), this edge is given weight 8,
— The weight of a path V1 — ... — Un:
* The product of the weights of the edges in the path

— The weight of a node v in the proof graph for Q

* the sum of the weights of the paths
from the root node ¢y = (Qﬁ [Q]) tov
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* Ifr,, istherule used for the edge from v to v’
* The weight of wo (vn)

n—1
wQ (Un) = Z H 97"%:’”@'+1

vVo—7...—2Un 1=0

* The weight of an answer f to query Q

wo(f)= ) wolv
v=(f[)
* The conditional probablllty distribution over

answers [ to the query Q:

Pr(f]Q) = Zuq(/)
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» Stochastic logic programs (SLPs)

— Thought of as logic-program analogs to probabilistic
programming languages like Church [Goodman et al '12]

— Normalized SLPs are also conceptually quite similar to
stochastic grammars such as PCFG

» Stochastic deductive knowledge graph (SDKG)
— Three restrictions on SLPs:

— 1) restrict the program to be in DDB form

e Consist of a theory T which contains function-free clauses, and a
database DB (of unit clauses)

— 2) restrict all predicates to be unary or binary

— 3) restrict the clauses in the theory T to have weight 1, so
that the only meaningful weights are associated with
database facts.
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 Complexity of reasoning with stochastic deductive
KGs

* The similarity between SLPs and probabilistic context-free
grammars suggests that efficient schemes might exist, since
there are efficient dynamic programming methods for
probabilistic parsing. Unfortunately, this is not the case:

e even for the restricted case of SDKGs, computing P(f| Q) is
#P-hard

Theorem 1 Computing P(f|Q) (relative to a SDKG T,DB) for all possible answers f of
the query Q) 1s #P-hard, even if there are only two such answers, the theory contains only
two non-recursive clauses, and the KG contains only 13 facts.
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* Fortunately, one further restriction makes SLP

theorem-proving efficient.

— For atheory clause r = A < Bj,..., By define the literal
influence graph for r to be a graph where each B; is a vertex,
and there is an edge from B; to B; iff they share a variable

— A graph is a polytree iff there is at most one path between

any pair of vertices: if each strongly connected component of the
graph is a tree

 Atheoryis polytree-limited iff the influence graph for
every clause is a polytree = This additional restriction
makes inference tractable

Theorem 2 For any SDKG with a non-recursive polytree-limited theory T, P(f|Q) can be
computed in computed in time linear in the size of T and DB.



TensorLog [Cohen ’16]: Differentiable inference
for polytree-limited SDKGs

* |Inference for polytree-limited SDKGs

— Formalize this method as belief propagation on a
certain factor graph

* The random variables in the factor graph correspond to
possible bindings to a logical variable in a proof

* The factors correspond to database predicates

— Though simple, a novel method for first-order
probabilistic inference

* While other common methods use Bernoulli random
variables which correspond to potential ground database
facts (i.e., elements of the Herbrand base of the
program.)



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

* Numeric encoding of PrDDB’s and queries

- U, for aconstantc & C,
* a one hot row-vector representation for c
culc]=1&ul[c']=0forc’ #c
- Mp : a sparse matrix for a binary predicate p
M, la,b] = Op4p) if p(a,b) € DB
— V4 : arow vector for a unary predicate g
— Collectively, Myp,, ..., My, areviewed as a

three-dimensio\qaLtenserﬂ/

Parameters
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inference for polytree-limited SDKGs

 An argument-retrieval query
— query of the form p(¢,Y) or p(Y, ¢)

* p(c,Y) has an input-output mode of in,out (io)
* p(Y, c) has out,in (oi)
— The response to a query p(c,Y)
 a distribution over possible substitutions for Y
* encoded as a vector VY such that for all constantsd € C
vy|d] = Pr(p(c,d)|Q = p(z,Y), T, DB, O)
— Notation Vy|c : formally if Up(e,y) is the set of facts

f that “match” (are instances of) p(c,Y ) Q=p(Y)

vy(old] = Pr(f = ple.d)| € Uy, T.DB,6) = —ug(f = ple,d)



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

* More complex queries can be answered by
extending the theory

—To find {Y: uncle(joe,X) ,husband(X,Y) }
— We add the clause q1(Y) to the theory

ql1(Y) :—-uncle(joe,X) ,husband (X,Y)
— and find the answer tog1(Y)



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

. P . : .
i o . for predicate p, a query response function for al

gueries with predicate p and mode 1o

jgiio (uC) = VY|C

. Q?io the unnormalized version of this function, i.e.,
the weight of f according to wg (f)

QEO(UC) = wQ(f)
* any: special DB predicate
any (a,b) is conceptually true for any pair of a,b
Many Need not be explicitly stored.



TensorLog [Cohen ’16]: Differentiable
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 Efficient inference for one-clause theories

— Consider first programs containing only one non-
recursive polytree-limited clause r

— Build a factor graph G, forr

* for each logical variable W in the body =2 there is a
random variable W

* for every literal g(IW; , W;) in the body of the clause, there
is a factor with potentials M, linking variables W; and W

* Finally, if the factor graph is disconnected, we add any
factors between the components until it is connected



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

* Examples of factor graphs for the example theory

The variables appearing in the clause’s head are starred

uncle(X,Y):-parent(X,W),brother(W,Y)

brother

parent r—@

aunt

@
@

husband

@

@
@

uncle(X,Y):-aunt(X,W),husband(W,Y)

status(X,T):-
assign_tired(T),parent(X,W),

infant(W),any(T,W).

@ assign_tired

parent any @

W infant
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 Efficient inference for one-clause theories

— BP on the factor graph G,
» Compute the conditional vectors f7,(u.) and fg; (uc)

* E.g.) to compute ig (u,) for clause 1,
— 1) set the message for the evidence variable X to u,
— 2) run BP
— 3) read out as the value of f the marginal distribution for Y

* The correctness of BP inference follow immediately from the
convergence of belief propagation on factor graphs for
polytrees [Kschischang et al '01]



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

* Differentiable inference for one-clause theories
— “unroll” the message-passing steps into a series of operations

define compileMessage(L — X):

assume wolg that L = ¢(X) or L = p(X;, X,)

generate a new variable name v, x

if L = q(X) then
emitOperation( vz x = vy)

else if X is the output variable X, of L then
v; = compileMessage(X; — L)
emitOperation( v x =v; - M, )

else if X is the input variable X; of L then
v, = compileMessage(X; — L)
emitOperation( vr x = v, - Mg )

return vy, x

f [ = p(XmXi) then replace Mp with Mg
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inference for polytree-limited SDKGs

define compileMessage(X — L):
if X is the input variable X then
return u., the input
else
generate a new variable name vy
assume Ly, Lo, ..., L; are the
neighbors of X excluding L
for:=1,....k do
v; = compileMessage(L; — X)
emitOperation(vxy = vio---0vy)
return vy

the Hadamard (componentwise) product, and if k =0
an all-ones vector is returned



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

* Chains of messages constructed for the three
sample clauses

Rule rl: uncle(X,Y):- r2: uncle(X,Y):- r3: status(X,T):-
parent (X, W), aunt (X, W), assign_tired(T),
brother(W,Y) husband(W.Y) parent(X, W),

infant(W),any(T,W)
Function | g% () g9%< (i) 953 (i)
vi,w = UcMparent | Vi,w = ucMaunt vow = UcMparent
Operation | viy = viw Vi = V1.w V3w = Vinfant
sequence Voy = Vw Mbrother Voy = VWMhusband W = Vow © V3w
defining | vy = voy Vy = Voy V1,7 = Vassign tired
function var = ViwMany
T=vyrovyr
Returns | vy vy VT

o (tic) = 1o (tc) /1950 (i) |1
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inference for polytree-limited SDKGs

uncle(X,Y):-parent(X,W),brother(W,Y)

(e ){garentHw )-{rover ()

U,- Viw = Vi = Vi.w Voy =

lchparent VWMbrother
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inference for polytree-limited SDKGs

status(X,T):-
assign_tired(T),parent(X,W),
infant(W),any(T,W).
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 Differentiable inference for one-clause theories

— Belief propagation to compute f3,(u.)

* Emit a series of operations, and return the name of a register
that contains the unnormalized conditional probability vector
for the output variable.

* Use g"{o(ﬁc) for the unnormalized version of the query
response function build from G,

Ei::::v (ﬁﬂ) = gio(ﬁc)/”g?{o (ﬁc)ul
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inference for polytree-limited SDKGs

* Extension to Multi-clause programs
— Extend to theories with many clauses

— if there are several clauses with the same predicate symbol
in the head, we simply sum the unnormalized query
response functions

— E.g) for the predicate uncle, defined by rules r; and 1,

we would define
uncle __ rl r2
o . Jio = 0io T Yio
— This is equivalent to building a new factor graph G,
* Approximately U; G,;, together global input and output variables,

* plus a factor that constrains the input variables of the G,;’s to be
equal,

 plus a factor that constrains the output variable of ¢ to be the sum
of the outputs of the G,;’s.



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

e Extension to Multi-clause programs

— A more complex situation is when the clauses for
one predicate, p, use a second theory predicate q,
in their body

— E.g.) the case if aunt was also defined in the theory,
rather than the database
* Replace the message-passing operations vy = vxM,
with vy = ggo(vx) ,0r Vy = VXMQT with vy = ggi(v){)

* This is equivalent to taking the factor graph for g and
“splicing” it into the graph for p



TensorLog [Cohen ’16]: Differentiable
inference for polytree-limited SDKGs

e Extension to Multi-clause programs
— Adding depth argument d

* Allow function calls to recurse to a fixed maximum depth

* Ensure function calls inside .»  to g always call the next-deeper

version of the function for ¢, £2:¢

q
— Computationally, the algorithm woUescribe is quite efficient.

* Assuming the matrices M,, exist, the additional memory needed for
the factor-graph G, is linear in the size of the clause r
— The compilation to response functions is linear in the theory size and the
number of steps of BP.
* For ptree-SDKGs, G, is a tree, the number of message-passing steps
is also linear.

— Message size is (by design) limited to |C|, and is often smaller in practice,
due to sparsity or type restrictions



TensorLog [Cohen ’16]

tlog = tensorlog.simple.Compiler(db="data.db”, prog="rules.tlog”)
train_data = tlog.load_dataset(” train.exam” )

test_data = tlog.load_dataset(”test.exam”)

# data is stored dictionary mapping a function specification, like p;,,

# to a pair X, Y. The rows of X are possible inputs fzo’ and the rows of
# Y are desired outputs.

function_spec = train_data.keys()[0]

# assume only one function spec

X,Y = train_data[function_spec]

# construct a tensorflow version of the loss function, and function used for inference
unregularized_loss = tlog.loss(function_spec)

f = tlog.inference(function_spec)

# run the optimizer for 10 epochs
session = tf.Session()
session.run(tf.global_variables_initializer())
for i in range(10):
session.run(train_step, feed_dict=train_step_input)

# now run the learned function on some new data
result = session.run(f, feed_dict={tlog.input_placeholder_name(function_spec): X2})



TensorLog [Cohen ’16]

* Experiments

— Inference task

* “Friends and smokers” inference task.

Social Influence Task
ProbLog2 20 nodes  40-50 sec
TensorLog | 3327 nodes 9.2 msec

e Path-finding task in a grid

Path-finding
Size Time Acc

ProbLog2 | 16x16 grid, d = 10 100-120 sec

TensorLog | 16x16 grid, d = 10 2.1 msec
64x64 grid, d = 99 2.2 msec
trained 16x16 grid, d = 10 6.2 msec  99.89%




TensorLog [Cohen ’16]

* Experiments
— Learning task

e Relational learning tasks

ProPPR | TensorLog
CORA (13k facts,10 rules) | AUC 83.2 | AUC 97.6
UMLS (5k facts, 226 rules) acc 49.8 | acc 52.5
Wordnet (276k facts)
Hypernym (46 rules) acc 93.4 acc 93.3
Hyponym (46 rules) acc 92.1 acc 92.8
— Path finding after learning
Grid Size Max Depth | # Graph Nodes Acc Time (30 epochs)
Local TF Local TF Local
16 10 68 2696 99.9 97.2 | 37.6sec 1.1 sec
18 12 30 3164 93.9 96.9 | 126.1 sec 1.8 sec
20 14 92 3632 25.2  99.1 | 144.9 sec 2.8 sec
22 16 104 4100 8.6 98.4 | 83.8sec 4.2 sec
24 18 116 4568 2.4 0.0 | 611.7 sec 6.3 sec




TensorLog [Cohen ’16]

* Experiments
— KBQA on WikiMovies

* The KB consists of over 420k tuples containing
information about 10 relations and 16k movies

e Question: Who acted in the movie Wise Guys?
Answers: “Harvey Keitel”, “Danny DeVito”, “Joe Piscopo”, ...

e Question: what is a film written by Luke Ricci?
Answer: “How to be a Serial Killer”

* Encode the questions into the KB by extending it with two
additional relations

mentionsEnt ity(Q ,E) true if question Q mentions entity E

hasFeature(Q,W) true if question Q contains feature W



TensorLog [Cohen ’16]
* Experiments

— KBQA on WikiMovies

* The entities mentioned in a question were extracted by
looking for every longest match to a name in the KB

* The features of a question are simply the words in the
guestion (minus a short stoplist)

* The simple longest-exact-match heuristic described above
identifies entities accurately for this dataset, =» take
mentionsEntity as a hard KB predicate.

* The final theory contains two rules and two “soft” unary
relations QuestionTyper 1, indicatesQuestionTyper o> for
each relation R in the original movie KB



TensorLog [Cohen ’16]
* Experiments

— KBQA on WikiMovies

* The final theory contains two rules and two “soft” unary
relations QuestionTypepr 1, indicatesQuestionTyper o for

each relation R in the original movie KB
* for the relation directedBy the theory has the two rules

answer (Question,Movie) :-

mentionsEntity(Question,Entity), directedBy(Movie,Entity),

hasFeature(Question,Word), indicatesQuestionTypegirectedBy,1 (Word)

answer (Question,Entity) :-
mentionsEntity(Question,Movie), directedBy(Movie,Entity),
hasFeature(Question,Word), indicatesQueé@ionTypemﬂmuﬂByg(Wordﬂ

acts as a linear classifier for that rule.



TensorLog [Cohen ’16]

* Experiments
— KBQA on WikiMovies

Original KB Extended KB Num Examples
Num Tuples Num Relations | Num Tuples Num Relations | Train  Devel  Test
421,243 10 1,362,670 12 96,182 20,000 10,000
Method Accuracy Time per epoch
Subgraph/question embedding 93.5%
Key-value memory network 93.9%

TensorLog (1,000 training examples) 89.4%
TensorLog (10,000 training examples)  94.8%
TensorLog (96,182 training examples)  95.0%

6.1 sec

1.7 min
49.5 min




Neural Logic Programming [Yang et al ‘17]

HasOfficelnCity(New York, Uber)
In which country Y
does X have office?
o

CitylInCountry(USA, New York)
&)

Y = USA
X = Uber X\/
__ HasOfficelnCountry(Y, X) ? X=Lyft 7\
= FI‘EI'IEE"

HasOfficelnCountry(Y, X) € HasOfficelnCity(Z, X), CitylnCountry(Y, Z)
e HasOfficelnCity(Paris, Lyft)

CitylnCountry(France, Paris)

* TensorlLog
— Limited as a learning system because it only learns parameters, not rules

* Neural Logic Programming

— learn parameters and structure simultaneously in a differentiable
framework

— Based on a neural controller system with an attention mechanism and
memory
* Sequentially compose the primitive differentiable operations used by TensorLog
— At each stage of the computation, the controller uses attention to “softly

choose a subset of TensorLog’s operations, and then performs the
operations with contents selected from the memory

”



Neural Logic Programming [Yang et al ‘17]
* Knowledge base

— Collections of relational data of the format
Relation(head,tail)

 head and tail: entities
« Relation: a binary relation between entities

* E.g.) HasOfficeInCity(New York,Uber) and
CityInCountry(USA,New York).

 Knowledge base reasoning task

— Consists of a query , an entity tail that the query is
about, and an entity head that is the answer to the

query
— Goal: to retrieve a ranked list of entities based on the

query such that the desired answer (i.e. head) is
ranked as high as possible.



Neural Logic Programming [Yang et al ‘17]

 Knowledge base reasoning task
— for each query, we are interested in learning weighted
chain-like logical rules of the following form:
. query (Y,X) <R, (Y,Z,) A--- ARy (Z1,X)
\ /

confidence relations in the knowledge base.

— During inference, given an entity X, the score of each y:
* The sum of the confidence of rules that imply query(y, x)

— Then return a ranked list of entities
 Where higher the score implies higher the ranking.



Neural Logic Programming [Yang et al ‘17]
* TensorLog for KB reasoning

— E : the set of all entities,
* each entity i is associated with a one-hot vector Vi € {0, 1}|E‘

—R.: the set of all binary relations
— M : a matrix in {0, 1}/EIxIEl for each relation R
« 1if R (i, j) inthe KB

— For each query, we want to learn Z allxe g, Mg,

ol /

. . /
indexes over all possible rules /

an ordered list of all relations in this particular rule



Neural Logic Programming [Yang et al ‘17]

* TensorLog for KB reasoning
R(Y,X)«<P(Y,Z) NQ(Z,X)
—Foranyentity X =x, Mp - Mg vy =S
— During inference, given an entity v,., the score of

each retrieved entity is then equivalent to the
entries in the vector s

S = Z (o (Ixep, Mg, vy)), score(y | x) = V;FS
l
— Then, learning problem for each query is:

T
max SCOre X) = max Vv II M vy
{ahﬁz}z [ {ou,B1) ’ (Z(@ " )))

{x,y} {x,y} !

To be learned



Neural Logic Programming [Yang et al ‘17]

* Learning the logical rules

— Difficult to formulate a differentiable process to directly
learn the parameters and the structure {ay, B}

* because each parameter is associated with a particular rule,
and enumerating rules is an inherently discrete task.

— Alternatively, rewrite the original equation with a
different parametrization _the number of relations in the KB

R
[12

i—1 ® max length of rules

* The key difference is that here we associate each relation in
the rule with a weight

* But, this parameterization is not sufficiently expressive, as it
assumes that all rules are of the same length

* Thus, we introduce a recurrent formulation



Neural Logic Programming [Yang et al ‘17]

 The recurrent formulation
— Use auxiliary memory vectors u;
— Initially the memory vector is set to the given entity v,.

— The model first computes a weighted average of previous
memory vectors using the memory attention vector b;

— Then the model “softly” applies the TensorLog operators
using the operator attention vector a;

* This formulation allows the model to apply the TensorLog
operators on all previous partial inference results, instead of just
the last step’s.

— Finally, the model computes a weighted average of all
memory vectors, thus using attention to select the proper
rule length

— Given the recurrent formulation, the learnable parameters
for each query are:

fag |1 <t<T}and{by |1<t<T+1)}



Neural Logic Programming [Yang et al ‘17]

* A neural controller system
— Learn the operator and memory attention vectors.

* Use recurrent neural networks not only because they fit with
the recurrent formulation, but also because it is likely that
current step’s attentions are dependent on previous steps’.

— The network predicts operator and memory attention
vectors:

hy = update (h¢_1, input)
a; = softmax (Why + b)
by = softmax ([ho, ..., h¢_1]" h)



Neural Logic Programming [Yang et al ‘17]

* The neural controller system

!

query ——{ Controller Operators
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Neural Logic Programming [Yang et al ‘17]
* The recurrent formulation

Ug = Vx
R/ t—1

Ui = ZanRk (Z thu,r) forl1 <t <T
k 7=0

T
ury1 = Y bpygus
7=0

hy = update (h_4, input)
a; = softmax (Whg + b)
by = softmax ([ho, ..., h¢—1]" hy)

— The input is the query for 1 £t < T and a special END token whent=T+1
— The memory holds each step’s partial inference results {ug,...,U¢,..., U1}
— The final inference result u is just the last vector in memory UT41

— The objective is to maximize log \IFTU
v



Neural Logic Programming [Yang et al ‘17]

e Recovering logical rules from the neural controller system

— write rules and their confidences {;, 81} in terms of the attention
vectors {a¢, bt}

Algorithm 1 Recover logical rules from attention vectors

Input: attention vectors {ay |t =1,...,T}and{by |t =1,...,T + 1}
Notation: Let R; = {ry,...,r;} be the set of partial rules at step ¢. Each rule r; is represented by
a pair of (c, [3) as described in Equation 1, where « is the confidence and /3 is an ordered list of
relation indexes.
Initialize: Ry = {ro} where ro = (1, ()).
fort < 1to7 + 1do
Initialize: R; = (), a placeholder for storing intermediate results.
forr < Otot —1do
for rule (o, ) in R, do
Update o < « - b] . Store the updated rule (o/, ) in R;.
if ¢ < 7T then
Initialize: R; =
for rule (o, 3) in R; do
for k < 1to |R|do
Update o’ < « - af, 3’ + 3 append k. Add the updated rule (o, ') to R,.
else e
R: = Ry
return Rp




Neural Logic Programming [Yang et al ‘17]

* Experiments: Statistical relation learning

# Data # Relation # Entity

UMLS 5960 46 135
Kinship 9587 25 104
ISG Neural LP

T=2 T=3 T=2 T=3

UMLS 435 43.3 92.0 93.2
Kinship  59.2 59.0 90.2 90.1




Neural Logic Programming [Yang et al ‘17]

* Grid path finding

— query: randomly generated by combining a series
of directions, such as North_SouthWest

9@ Neural LP
1.00 4 ISG
0.75/
=
(W)
o
< 0.50
O
b
0.25
0.00 ¢
2-4 4-6 6-8 8-10

Path length



Neural Logic Programming [Yang et al ‘17]

* Knowledge base completion

— query: E.g.) HasOfficeInCountry and Uber

* Use an embedding lookup table for eaNery
HasOfficeInCountry (USA, Uber)

Dataset # Facts #Train #Test # Relation # Entity
WNI8 106,088 35,354 5,000 18 40,943
FB15K 362,538 120,604 59,071 1,345 14,951
FB15KSelected 204,087 68,028 20,466 237 14,541
WNI8 FB15K FB15KSelected
MRR Hits@10 MRR Hits@10 MRR Hits@10
Neural Tensor Network (.53 66.1 0.25 41.4 -
TransE 0.38 90.9 0.32 53.9 - -
DISTMULT [29] 0.83 04.2 0.35 57.7 0.25 40.8
Node+LinkFeat [25] 0.94 94.3 0.82 87.0 0.23 34.7
Implicit ReasoNets [23] - 95.3 - 92.7 - -
Neural LP 0.94 94.5 0.76 83.7 0.24 36.2




Neural Logic Programming [Yang et al ‘17]

* Examples of logical rules learned by Neural LP on FB15KSelected.
The letters A,B,C are ungrounded logic variables.

1.00 partially_contains (C, A) <—contains (B, A) A contains (B, C)
0.45 partially_contains (C, A) <—contains (A, B) A contains (B, C)
0.35 partially_contains (C, A) <—contains (C, B) A contains (B, A)

1.00 marriage_location (C, A) <—nationality (C,B) A contains (B, A)
0.35 marriage_location (B,A) <—nationality (B, A)
0.24 marriage_location (C,A) <—place_lived (C,B) A contains (B, A)

1.00 film_edited_by (B, A) «—nominated_for (A, B)
0.20 film_edited_by (C, A) <—award_nominee (B, A) A nominated_for (B, C)




Neural Logic Programming [Yang et al ‘17]

* Inductive knowledge base completion

— conduct experiments where training and testing
use disjoint sets of entities

WNI18 FBISK FBI15KSelected

TransE 0.01 0.48 0.53
Neural LP 94.49 73.28 27.97




Neural Logic Programming [Yang et al ‘17]

* Question answering against knowledge base
— WikiMovies

directed_by (Blade Runner,Ridley Scott)
written_by (Blade Runner,Philip K. Dick)
starred_actors (Blade Runner,Harrison Ford)
starred_actors (Blade Runner, Sean Young)

Knowledge base

What year was the movie Blade Runner released?

Questions Who is the writer of the film Blade Runner?

— query: the average of the embeddings of the words

Model Accuracy
Memory Network 78.5
QA system 93.5

Key-Value Memory Network [16] 93.9
Neural LP 94.6




Neural Logic Programming [Yang et al ‘17]

e Question answering against knowledge base

— Visualization of learned logical rules

ihv_directed_by inv_release %ﬁ, tags
Wit@RPYy .
) inv_has_tags
f;arred_x?.pf_s'n_language inv_written_by

»e
” 4 my fad _genre

JQV starred_actors

?4* (s



Scalable Neural Methods for Reasoning With a
Symbolic Knowledge Base [Cohen et al ’20]

* Propose a sparse-matrix reified KB
— representing a symbolic KB

— Enables neural modules that are
1) fully differentiable,
 2) faithful to the original semantics of the KB,
* 3) expressive enough to model multi-hop inferences, and
 4) scalable enough to use with realistically large KBs



Scalable Neural Methods for Reasoning With a
Symbolic Knowledge Base [Cohen et al ’20]

 Summary of notation

x: an entity X : weighted set of entities
r: an relation R: weighted set of relations
M,.: matrix forr Mg: weighted sum of M,.’s, see Eq 1

x: vector encoding X  Ng: # entities in KB
r: vector encoding R Npg: # relations in KB
follow(x,r): see EQq2  Nr: # triples in KB

Mupi, Mow;i, Myei: the reified KB, encoded as matrices
mapping triple id £ to subject, object, and relation ids



Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

* Weighted sets as “k-hot” vectors

— Each element x of weighted set X is associated with a non-
negative real number

— a weight less than 1: a confidence that the set contains x
— weights more than 1: make X a multiset
— Xis a hard set if all elements of X have weight 1

— If X is a hard entity set, then this will be a “k-hot” vector, for
k=1X]

— The support of x: the set of indices of x with non-zero
values



Scalable Neural Methods for Reasoning With a
Symbolic Knowledge Base [Cohen et al ’20]

e Sparse vs. dense matrices for relations

— for all but the smallest KBs, a relation matrix must be
implemented using a sparse matrix data structure
* a sparse coordinate pair (COO) encoding: with a COO

encoding, each KB fact requires storing only two integers and
one float



Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

* The relation-set following operation

— r-neighbors of an entity x;: the set of entities x;
that are connected to x; by an edge labeled r
r-neighbors(x) = {z; : (x;,z;) € r}
— R-neighbors: Extension to relation sets
R-neighbors(X) = {zx; : 3r € R,x; € X sothat (z;,x;) € r}
—E.g)

q ="“what movies were produced or directed by Quentin Tarantino”
— The answer to q is the set R-neighbors(X) with

R = {pmducér_oﬁ writer_of} X = {Quentin_Tarantino}



Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

* The relation-set following operation

— Approximate the R-neighbors computation with
differentiable operations

* Can be performed on the vectors encoding the sets X
and R Nr
= (D _r[k]
k=1
— The relation-set following operation forxandr

follow(x, ) Z rik



Scalable Neural Methods for Reasoning With a
Symbolic Knowledge Base [Cohen et al ’20]

* The relation-set following operation

— Baseline implementations: Not efficient

* The naive mixing

— But, tensorflow does not support general sparse tensor contractions,
it is not always possible to extend sparse-matrix computations to
minibatches

* The late mixing: mixes the output of many single-relation
following steps, rather than mixing the KB itself

follow(x,r) Z (rlk| - xM,, )

— can be extended easily to a minibatches



Scalable Neural Methods for Reasoning With a
Symbolic Knowledge Base [Cohen et al ’20]
* The relation-set following operation

— A reified knowledge base
* Represent each KB assertion T'j, (;’131,;j :Ej) as a tuple (i, ], k)
. (ig:.jg, kg) : I-th triple

1 ifm =1 Il ifm =
Mossltom] = { g for =™ Mot = { § 57 =7

1 ifm =k
0 else

M, [€, m| = {

follow(x,r) = (xM,,,,; ® M., )My,

suby rel



Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

* The relation-set following operation

Strategy Definition | Batch? Space complexity # Operations
sp-dense  dense  sparse
matmul  +or® +
naive mixing | Eq1-2 no O(Nr + Ng + Ng) 1 0 Ng
late mixing Eq 3 yes O(Nt + bNg + bNR) Ngr Ngr 0
reified KB Eq 4 yes O(bNt + bNg) 3 | 0




* Experiments: Scalability

10# 5
10° 3
107 5
10% -

loﬂ .

Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

— the speed of the key-value network is similar to the reified KB for only four
relations, however it is about 7x slower for 50 relations and 10k entities

— Comparing to the key-value network, the reified KB scales much better,
and can handle 10x as many entities and 20x as many relations

Queries/sec (4 relations)

— reified

—— |ate mixing
—— naive
—— key-value

L) T
104 105 108
Num Entities

10°

102 .

10 5

100 -

101 4

Queries/sec (10k entities)

\
BN

— reified

—— naive

— late mixing \
— key-value

L
10!

T T
102 103
Num Relations

104 -

103 -

102 -

101 n

10[] 4

Reified KB speedup

—— vs late mixing
—— Vs Naive

L
10!

1 T
102 103
Num Relations




Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

Entity linking

 KBQA for multi-hop questions -

— X: the set of entities associated with g
fort =1,2,3: r' = f'(q); x' = follow(x'~*,r")
* KBQA on FreeBase

— FreeBase contains two kinds of nodes: real-world
entities, and compound value types (CVTs)

* CVT: non-binary relationships or events

re-g = fE>E(q); TEscvr = fesevr(q); rovr—i = fovr—Ee(q)
a :fOHOW(fO”OW(Xj I']g_;,(jw.,rr)j rCVT—}E) JrfOllOW(X, rE—}E)



Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

 Knowledge base completion x! = x for every i

i —

fori=1,...,Nandt=1,...,T: ri= fl(q); x'=follow(x!"' r!)+x!

— The final output: & = softmax(d_,c 1 Ny X; )

* An encoder-decoder architecture for varying
inferential structures

e generated simple artificial natural-language sentences

describing longer chains of relationships on a 10-by-10 grid.
h, : The encoded values of the question with the final
hidden state of an LSTM, written here

p' = fp(h' 1) = f (W),
x! = follow(x!~1,r'); h* =LSTM(h* ' ri71)

" T /
— Final output: @ = softmax(y_,_y x" - p" [[, (1 —p"))



Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

* Experimental results

ReifKB ReifKB KV-Mem | VRN GRAFT- PullNet non-differentiable components
(ours) + mask  (baseline) Net of architectures

WebQSP 52.7 — 46.7 — 67.8 68.1 KV-Mem initial memory
MetaQA retrieval

1-hop 96.2 — 95.8 97.5 97.0 97.0

2-hop 81.1 95.4 25.1 89.9 94.8 99.9 VRN question-specific

3-hop 72.3 79.7 10.1 62.5 77.2 914 GRAFTNet subgraph retrieval
Grid PullNet all iterative retrievals

5-hop 98.4 — — — — -

10-hop 89.7 — — — — — ReifKB(ours) none




Scalable Neural Methods for Reasoning With
a Symbolic Knowledge Base [Cohen et al ’20]

* Experimental results

NELL-995 ReifKB (Ours) MINERVA
H@l H@I0 NELL-995 64.1 66.3
ReifKB (Ours) | 64.1 82.4 Grid with seed entity
DistMult* | 61.0 79.5 10-hop NSEW 98.9 99.3
ComplEx* | 61.2 82.7 10-hop NSEW-VH 73.6 34.4
ConvE* | 67.2 86.4 MetaQA 3-hop 72.3 41.7




Neural Query Language: A Knowledge Base
Query Language for Tensorflow [Cohen et al ‘19]

* Neural Query Language

— A framework for accessing soft symbolic database
using only differentiable operators

— Simple NQL expressions
* create singleton, unit-weighted sets:

henry8 = c.one(‘Henry_VIII of house of Tudor’, ’person_t’)

NQL expression Vector-matrix specification Comments

s.rel() = sM;
s.rel(-1) = SMz
s |t = s+t

s&t = sOt ® is Hadamard product

s.follow(r) = S (Zle r[ﬂﬂﬂ'(ﬁi)

s.if_any(t) = s|t|;

s *xa = Sa a s a Tensorflow scalar




Neural Query Language: A Knowledge Base
Query Language for Tensorflow [Cohen et al ‘19]

Input: an entity x; Output: entity-set y so that y = {y’ : m(x,y)}
def trainable_rel_var():
return c.as_nqgl(tf.Variable(tf.ones_initializer() [k]))
rl = trainable_rel_var()
r2 = trainable_rel_var()
r3 = trainable_rel_var()
r4 = trainable_rel_var()
y = x.follow(rl).follow(r2) | x.follow(r3).follow(r4d)
loss = /(y.tf,target_labels)

Inputs: a question q containing an entity e; Qutput: entity-set y answering the question q.
rel = c.as_nql(f(q))
y = e.follow(rel)
loss = {(y.tf,target_labels)

Inputs: a question q containing an entity e; Qutput: entity-set y answering the question q.
r1 = c.as_nql(fi(q))
r2 = c.as_nql(f2(q))
switchl = f3(q)
switch2 = fi(q)
y = e.follow(rl) * switchl | e.follow(rl).follow(r2) * switch2
loss = {(y.tf,target_labels)




Neural Query Language: A Knowledge Base
Query Language for Tensorflow [Cohen et al ‘19]

Input: an initial entity e and encoded state s; Qutput: entity-set y
p=1; y = tf.zeros(k)
for i in range(MAX_HOPS):
s, r, p_stop = f(s)
e = e.follow(xr)
y += p * p_stop * e.as_tf()
p=p* (1 - p_stop)




Deep Learning for Symbolic Mathematics
[Lample and Charton ‘19]

* Seq2seq model
— Converting tree (math expression) to sequence

— Use automatically generated training sets

* Accuracy of our models on integration and
differential equation solving

| Integration (FWD)  Integration (BWD) Integration (IBP) ODE (order 1) ODE (order 2)

Beam size 1 93.6 98.4 96.8 77.6 43.0
Beam size 10 95.6 99.4 99.2 90.5 73.0
Beam size 50 96.2 99.7 99.5 94.0 81.2




Deep Learning for Symbolic Mathematics
[Lample and Charton ‘19]

e Comparison of our model with Mathematica,
Maple and Matlab on a test set of 500

equations

Integration (BWD)

ODE (order 1) ODE (order 2)

Mathematica (30s) 84.0 77.2 61.6
Matlab 65.2 - -
Maple 67.4 -

Beam size 1 98.4 81.2 40.8
Beam size 10 99.6 94.0 73.2
Beam size 50 99.6 97.0 81.0




Deep Learning for Symbolic Mathematics
[Lample and Charton ‘19]

 Examples of problems that our model is able
to solve, on which Mathematica and Matlab

were not able to find a soluti

Equation Solution

) 162> — 422° + 2z (4 142 4 22
v (—16x8 + 11227 — 20426 + 2825 — 24 + 1)1/2 y = sin x —14z" 4+ x

3zy cos(z) — /922 sin(x)2 + 1y’ + 3ysin(z) = 0 Yy = cexp (sinh_l(Sm sin(z)))

c1 + 3z + 3log (x)
datyy” =82y —8a”yy =327y —8a’y" —62"y =327y 92y =3y = 0 | ¥ = T s




Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Logic rules: provide a flexible declarative language for
communicating high-level cognition and expressing
structured knowledge

— Desirable to integrate logic rules into DNNs, to transfer human

intention and domain knowledge to neural models, and regulate
the learning process

* Present a framework capable of enhancing general types of
neural networks with logic rule knowledge.

* Previous works in exploiting a priori knowledge in general
neural architectures

— Augments each raw data instance with useful features while
network training (Collobert et al., 2011)

* However, is still limited to instance-label supervision and suffers from the
same issues mentioned above.

* Besides, a large variety of structural knowledge cannot be naturally
encoded in the feature label form.



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* [terative rule knowledge distillation procedure

— Learn simultaneously from labeled instances as well as
logic rules

— Transfers the structured information encoded in the
logic rules into the network parameters

— Combination of the knowledge distillation [Hinton et al.,
2015; Bucilu et al., 2006] and the posterior
regularization (PR) method [Ganchev et al., 2010]



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

teacher network construction rule knowledge distillation

- loss -

- —® éxnm“w
y P (VIx)

-~

¥
back
teacher propagation student

"l pe Ix)

_______________________________________________________________________________________________

./ N /

[ Lo
~ unlabeled data Ebeled dataj
At each iteration,

* Teacher network construction (projection): the teacher network is obtained by
projecting the student network to a rule-regularized subspace (red dashed arrow)

* Back propagation: the student network is updated to balance between emulating
the teacher’s output and predicting the true labels (black/blue solid arrows).




Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Learning Resources: Instances and Rules

— Assume we have input variable x € A’ and target

variable y ¢ )
— K-way classification setting:
.V = AH:the K-dimensional probability simplex
*y € {[)j 1}K C ) :aone-hot encoding of the class label
‘D — {(men) N : thetraining data

n=1

/the Ith rule over the input-target space
(X,Y)

_ L
_R = {(Rl-,« )\Z)}zzl : a set of first-order logic (FOL)
rules with confidences

_{?"lg(Xj Y)}g’il : the set of groundings of R,



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

» Soft logic for the FOL rules
— Allows continuous truth values from the interval [0, 1]
— Reformulate Boolean logic operators:

A&B = max{A+ B — 1,0}
AV B =min{A + B, 1}

Ay A=~ NAy =) AN
-A=1-A



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

Rule Knowledge Distillation

— po(y|x) : a conditional probability using a softmax
output layer that produces a K-dimensional soft
prediction vector

- O'Q(X) . a K-dimensional soft prediction vector
— q(y|x): a rule-regularized projection of pg (y|x)

— In each iteration q is constructed by projecting pg into a
subspace constrained by the rules, and thus has
desirable properties

— The prediction behavior of g reveals the information of
the regularized subspace and structured rules



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Rule Knowledge Distillation

— Emulating the g outputs serves to transfer this
knowledge into pg.

— The objective function
N
1
(t+1) _ T _
0 arg min — > (1 =m)ly,, o0(xn))

n=1

(t)
the imitation parameter calibramg/_‘;ﬂ'g(sn , T 6 (Xn))a

the relative importance of the two
objectives

— Dg (ylx) : the student the soft prediction vector
of g on x, at iteration t

— q(y|x): teacher



Harnessing deep neural networks
with logic rules [Hu et al ‘16]
Teacher Network Construction
— Find the optimal g that fits the rules while at the same
time staying close to pg
* 1) Eq(Y|X) [’I‘gg(X, Y)} = 1, with confidence \;
* 2) measure the closeness between g and pg with KL-divergence

— The optimization problem:

min KL(g(Y|X)||po (Y |X)) +CZ g

[ 1,....},G,§, [ = 1,....;L,

* Can be seen as projecting pg into the constrained subspace

m) ¢ (Y[X) x pp(Y[X) exp{ Yy on TLQI(X?Y))}

l,9



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

Algorithm 1 Harnessing NN with Rules

N
’n,:]_ﬂ

Input: The training data D = {(x,,y,,)
The rule set R = {(R;, \) }-,
Parameters: m — imitation parameter

C — regularization strength
: Initialize neural network parameter @
repeat
Sample a minibatch (X,Y) C D
Construct teacher network ¢ with Eq.(4)
Transfer knowledge into pg by updating 8 with Eq.(2)
: until convergence
utput: Distill student network pg and teacher network ¢

O v wior




Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Experiments: Sentiment classification

— Logic rules
e consider sentences S with an “A-but-B” structure

» expect the sentiment of the whole sentence to be
consistent with the sentiment of clause B

‘ ] the element of
has-‘A-but-B’-structure(.5) é{% (B) for class "+
(Ly=+) = 09(B)+ N 09(B)+ = Ly =+))

* According to the soft logic, the truth value of the logic rule
when S has the ‘A-but-B’ structure:

* (1409(B)y)/2 fory =+
" (2—0o9(B)y)/2 Tory =



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Sentiment classification
Padding I like thisbookstore a lot  Padding

Word
Embedding

Convolution

Max Pooling (

N )

Sentence . r

Representation ‘ ‘

VYUY YYYOY oYy




Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Named Entity Recognition
— Logic Rules

equal(y;_1, FORG) = — equal(y;, B-PER)

— Leverage the list structures within and across sentences
of the same documents.

 E.g.) “1. Juventus, 2. Barcelona, 3...”
is-counterpart(X, A) = 1 — ||c(ey) — c(oa(A))]|2

— ¢(+) collapses the probability mass on the labels with
the same categories into a single probability

* vielding a vector with length equaling to the number of
categories



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

NYC locates 1n USA

ChartWord
Representation

Forward
LSTM

Backward
LSTM

Output
Representation




Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Experiment results

— Sentiment classification

Model SST2 MR CR

1 CNN (Kim, 2014) 87.2 81.34+0.1 84.3+0.2
2 CNN-Rule-p 38.8 81.640.1 85.04+0.3
3 CNN-Rule-q 39.3 81.7+0.1 85.3+0.3
4  MGNC-CNN (Zhang et al., 2016) 88.4 — -

5 MVCNN (Yin and Schutze, 2015) 89.4 - -

6 ~CNN-multichannel (Kim, 2014) 88.1 81.1 85.0

7 Paragraph-Vec (Le and Mikolov, 2014) 87.8 - -

8 CRF-PR (Yang and Cardie, 2014) - - 82.7

9 RNTN (Socher et al., 2013) 85.4 — —~
10  G-Dropout (Wang and Manning, 2013) — 79.0 82.1




Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Experiment results

— Sentiment classification

Model Accuracy (%)
1 CNN (Kim, 2014) 87.2
2 -but-clause 87.3
3 —€g—reg 87.9
4  -project 87.9
5 -opt-project 88.3
6 -pipeline 87.9
7 -Rule-p 88.8
8 -Rule-¢g 89.3




Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Experiment results

— Sentiment classification

Data size 5% 10% 30% 100%
1 CNN 79.9 81.6 83.6 &87.2
2 -Rule-p 81.5 83.2 84.5 88.8
3 -Rule-q 82.50 &83.9 &85.6 89.3
4 -semi-PR 81.5 83.1 84.6 -
5 -semi-Rule-p 81.7 &83.3 84.7 -
6 -semi-Rule-q 82.7 84.2 85.7 -

N\

semi-supervised learning where the
remaining training data are used as
unlabeled examples



Harnessing deep neural networks
with logic rules [Hu et al ‘16]

* Experiment results

— NER
Model F1
BLSTM 89.55

BLSTM-Rule-trans
BLSTM-Rules

p: 89.80, g: 91.11
p: 89.93, q: 91.18

OO0 JO O | W=

NN-lex (Collobert et al., 2011)
S-LSTM (Lample et al., 2016)
BLSTM-lex (Chiu and Nichols, 2015)
BLSTM-CRF; (Lample et al., 2016)
Joint-NER-EL (Luo et al., 2015)
BLSTM-CRF2 (Ma and Hovy, 2016)

89.59
90.33
90.77
90.94
91.20
91.21




The Consciousness Prior [Bengio ’17]

 Kahneman’s system 2 cognitive abilities
[Kahneman, 2011]

e System 1 tasks

— Align well with the current successful applications
of deep learning

 E.g.)

— low-level perception (and to a lesser extent low-level action)

— intuitive knowledge (e.g. knowing that a particular Go move is
good or that a given picture contains the image of a dog), i.e.,
knowledge which is difficult to verbalize, and which can
typically be applied very quickly (in less than a second).



The Consciousness Prior [Bengio ’17]

 Kahneman’s system 2 cognitive abilities [Kahneman,
2011]

e System 2 cognitive abilities

— can be described verbally, and thus includes the part of
our cognitive abilities which we can communicate
explicitly to a computer (typically as a sequence of
computational steps)

— Include things like reasoning, planning and imagination.

— Typical system 2 tasks require a sequence of conscious
steps, also means that they tend to take more time than
system 1 tasks.

— Closely related to consciousness



The Consciousness Prior [Bengio ’17]

Global Workspace Theory [Baars, 1988, 1997, 2002, Dehaene
and Naccache, 2001, Dehaene et al., 2017]

— Posits that we become aware of specific pieces of information
which will momentarily form the content of working memory.

— A conscious thought is thus a set of these elements of which we
have become aware, joined together and made globally available
to other computational processes taking place in the brain at an
unconscious level.

Consciousness thus provides a form of bottleneck for
information which has a strong influence on
— Decision-making (voluntary action),

— Memory (we tend to very quickly forget what we have not been
consciously aware of), and

— Perception (we may be blind to elements of our sensory input
which may distract us from the current focus of conscious
attention)



The Consciousness Prior [Bengio ’17]
* System 2 Processing
— Global Workspace Theory of Consciousness

* Conscioushess Prior Theory

— Extracting a Conscious State he = F(zt, he-1)
* x;:the observation at time t for a learning agent
* h;: the unconscious representation state.
* F: Representation RNN

— Define the conscious state ¢;
* as a very low-dimensional set which is derived from h; by a
form of attention mechanism applied on h;
Ct =— C(ht, Ct—1,Mt—1, Zt)

mt = M (m¢—1,ct). z:arandom noise source
m;. the content of memory at time t.

* The function C: the consciousness process



The Consciousness Prior [Bengio ’17]
* Factor Graph S={V,...V,,}

B Hj fj(Sj)
- Z

P(S)
e Sparse Factor Graph

— the consciousness prior amounts to the assumption of
Sparse Factor Graph:

* the factor graph for the joint distribution between the
elements in the set h; (or more generally for the set containing

all of the elements in mt and all those one could think of in the
future) is sparse

* The motivation comes from observing

— The structure of natural language (broken down into phrases,
statements or sentences, each of which involves very few words)

— The structure of formal knowledge representations such as the sets
of facts and rules studied in classical symbolic / logic Al or in
ontologies and knowledge graphs



The Consciousness Prior [Bengio ’17]

* Verifier network

— To capture the assumptiontion a conscious thought
can encapsulate a statement about the future

— match a current representation state h; with a past
conscious state ¢;_j stored in memory m;_4

V(ht, Ct—k) c R

* indicates the consistency of ¢;_; with h, e.g., estimating
the probability of the correspo nding statement being
true, given ht



