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Neural-Symbolic Models

• Integrating two most fundamental cognitive abilities: 
Learning & reasoning [Valiant ]
– 1) Learning: The ability to learn from the environment
– 2) Reasoning: The ability to reason from what has been 

learned

• Neural-symbolic computing [Garcez et al ‘19]
– Aims at reconciling the dominating symbolic and 

connectionist paradigms of AI under a principled foundation
– Knowledge is represented in symbolic form
– Learning and reasoning are computed by a neural network

➔Make Interpretability & explainability of AI systems 
enriched 

https://arxiv.org/pdf/1905.06088.pdf

https://arxiv.org/pdf/1905.06088.pdf


Neural-Symbolic Models

• Neural-symbolic computing [Garcez et al ‘19]
– Neural learning and inference under uncertainty 

• may address the brittleness of symbolic systems

– Symbolism provides additional knowledge for learning 
• May ameliorate neural network’s well-known catastrophic 

forgetting or difficulty with extrapolating

– The integration of neural models with logic-based 
symbolic models provides an AI system 
• Capable of bridging lower-level information processing (for 

perception and pattern recognition)

• Higher-level abstract knowledge (for reasoning and 
explanation)



Neural-symbolic models 

• Neural symbolic computing: Issues [Garcez et al ‘19]
– Representation 

• Knowledge representation in NN
– Propositional logic, first-order logic, tensorisation

– Learning
• Inductive logic programming

– 𝜕ILP [Evans and Grenfenstette ’18]

• Horizontal hybrid learning
– Combining logic rules/formula with data during learning, also using the 

data to fine-tune knowledge

– E.g.) Self-transfer with symbolic knowledge distillation [Hu et al ‘16]

• Vertical hybrid learning
– Low-level: neural model

– High-level: symbolic knowledge

– E.g.) logic tensor network [Donadello et al ‘17]



Neural-symbolic models 

• Neural symbolic computing: Issues [Garcez et al 
‘19]
– Reasoning

• Forward /backward chaining

• Neural theorem prover [Rocktaschel et al ’16]

• Neural logic machine [Dong et al ‘19]

– Extraction
• Explainable AI 

• Neural program induction 
– Neural Programmer-Interpreters [Reed & Freitas ‘16]



KBANN [Towell & Shavlik ‘94]

• The need for hybrid systems
– 1. Hand-built classifiers: Non-learning systems

• Assume that domain theory is complete and correct; but, for most real-
world tasks, completeness and correctness are extremely difficult

• Domain theories can be intractable to use and difficult to modify 

– 2. Empirical learning
• An unbounded number of features can be used to describe any object 
• Feature construction is a difficult, error-prone, enterprise 
• Uncommon cases may be very difficult to correctly handle

– 3. ANN
• Training times are lengthy
• The initial parameters of the network can greatly affect how well 

concepts are learned 
• There is not yet a problem-independent way to choose a good network 

topology 
• The lack interpretability 



KBANN [Towell & Shavlik ‘94]

• Hybrid Learning systems

– Use both hand-constructed rules and classified 
examples during learning 

Theory-refinement by KBANN



KBANN [Towell & Shavlik ‘94]

“All-symbolic” theory-refinement



KBANN [Towell & Shavlik ‘94]

• Correspondences between knowledge-bases 
and neural networks



KBANN [Towell & Shavlik ‘94]

• The rules-to-networks algorithm of KBANN
– 1. Rewriting: Rewrite rules so that disjuncts are expressed as a 

set of rules that each have only one antecedent. 
– 2. Mapping: Directly map the rule structure into a neural 

network. 
– 3. Numbering: Label units in the KBANN-net according to their 

“level.” 
– 4. Adding hidden units: Add hidden units to the network at 

user-specified levels (optional). 
– 5. Adding input units: Add units for known input features that 

are not referenced in the rules. 
– 6. Adding links: Add links not specified by translation between 

all units in topologically-contiguous levels. 
– 7. Perturbing: Perturb the network by adding near-zero 

random numbers to all link weights and biases. 



KBANN [Towell & Shavlik ‘94]



• Translation of a conjunctive rule into a KBANN-net

– Weights of all links to positive (i.e., unnegated) 
antecedents: 𝜔

– Weights of all links to negated antecedents: −𝜔

– Weight of the bias: (𝑃 −
1

2
)𝜔



• Translation of a conjunctive rule into a KBANN-net

– The same as the case of conjunctive rules, with two 
exceptions: 

– 1) KBANN rewrites disjuncts as multiple rules with the 
same consequent in step 1 of the rules-to-network 
algorithm ➔ as independent rules 

– 2) The bias in the unit encoding the consequent: 𝜔/2



KBANN [Towell & Shavlik ‘94]

• Task1: Promoter recognition
• Promoters: short DNA sequences that precede the 

beginnings of genes

• Task: Given a sequence of 57 consecutive DNA nucleotides, 
the reference point for promoter recognition is the site at 
which gene transcription begins (if the example is a 
promoter). The reference point is located seven nucleotides 
from the right of the 57-long sequence



KBANN [Towell & Shavlik ‘94]

• Initial rules for promoter recognition



KBANN [Towell & Shavlik ‘94]

• The initial KBANN-net for promoter recognition



KBANN [Towell & Shavlik ‘94]

• Task2: Splice-junction determination

– Splice junctions: points on a DNA sequence at 
which the cell removes superfluous DNA during 
the process of protein creation



KBANN [Towell & Shavlik ‘94]

• The initial splice-junction KBANN-net



KBANN [Towell & Shavlik ‘94]

• Test-set performance on the promoter 
recognition task

– leaving-one-out cross-validation



KBANN [Towell & Shavlik ‘94]

• Test-set performance, assessed using 10-fold 
cross-validation, on the splice-junction 
determination task with 1000 training 
examples



KBANN [Towell & Shavlik ‘94]



KBANN [Towell & Shavlik ‘94]

• Comparing KBANN to standard backpropagation 

– Two hypotheses

– 1) Structure is responsible for KBANN’s strength

– 2) Initial weights are responsible for KBANN’s strength



KBANN [Towell & Shavlik ‘94]



KBANN [Towell & Shavlik ‘94]

The classification performance of standard ANNs that initially have links 
only to those features specified by the promoter domain theory.



KBANN [Towell & Shavlik ‘94]

• Discussion

– These tests indicate that alone neither structure nor 
weight (focusing) account for the superiority of 
KBANN-nets over standard ANNs. 

– Therefore, the third hypothesis, that it is a 
combination the structure and the focusing weights 
that give KBANN its advantage over backpropagation, 
is likely true.



KBANN [Towell & Shavlik ‘94]

• Limitations
– The concepts KBANN learns are incomprehensible to humans. 

– KBANN’s rule syntax is limited

– There is no mechanism for handling uncertainty in rules

– Neural learning in KBANN ignores the symbolic meaning of the 
initial network

– There is no mechanism for changing the topology of the network



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]

• An extensional predicate: a predicate that is wholly 
defined by a set of ground atoms

– E.g.) , edge is an extensional predicate 

• An intensional predicate: defined by a set of clauses.

– E.g.) connected is an intensional predicate defined by the 
clauses:



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]

• Inductive Logic Programming (ILP)
– A tuple                    of ground atoms 

– is a set of background assumptions, a set of 
ground atoms

– is a set of positive instances - examples taken 
from the extension of the target predicate to be 
learned 

– is a set of negative instances - examples taken 
outside the extension of the target predicate   



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]

• Given an ILP problem (𝐵, 𝑃, 𝑁 ), a solution is a 
set 𝑅 of definite clauses such that 

• Examples: 



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]

• one solution is the set 𝑅: 



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]

• Language frame
– target: the target predicate, the intensional

predicate we are trying to learn

– 𝑃𝑒: a set of extensional predicates

– 𝑎𝑟𝑖𝑡𝑦𝑒: a map                                          specifying 
the arity of each predicate

– 𝐶: a set of constants



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]

• ILP problem
– 𝐿: a language frame

– 𝐵: a set of background assumptions, ground atoms 
formed from the predicates in 𝑃𝑒 and the constants in 𝐶

– 𝑃: a set of positive examples, ground atoms formed 
from the target predicate and the constants in C

– 𝑁: a set of negative examples, ground atoms formed 
from the target predicate and the constants in C



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]
• Rule template 𝜏 = (𝑣, 𝑖𝑛𝑡): a range of clauses that can be 

generated
– 𝑣 ∈ 𝑁: specifies the number of existentially quantified variables 

allowed in the clause
– 𝑖𝑛𝑡 ∈ {0, 1}: specifies whether the atoms in the body of the 

clause can use intensional predicates (𝑖𝑛𝑡 = 1) or only 
extensional predicates (𝑖𝑛𝑡 = 0)

• Program template Π = 
– 𝑃𝑎: a set of auxiliary (intensional) predicates; these are the 

additional invented predicates used to help define the target 
predicate

– 𝑎𝑟𝑖𝑡𝑦𝑎: a map                    specifying the arity of each auxiliary 
predicate 

– 𝑟𝑢𝑙𝑒𝑠: a map from each intensional predicate 𝑝 to a pair of rule 
templates (𝜏𝑝

1, 𝜏𝑝
2)

– 𝑇 ∈ 𝑁: specifies the max number of steps of forward chaining 
inference



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]

– 𝑟𝑢𝑙𝑒𝑠: a map from each intensional predicate 𝑝 to a 
pair of rule templates (𝜏𝑝

1, 𝜏𝑝
2)

– 𝑟𝑢𝑙𝑒𝑠

• defines each intensional predicate by a pair of rule templates. 

• In our system, we insist, without loss of generality that each 
predicate can be defined by exactly two clauses.



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]

• Language:

– Combine the extensional predicates from the language-
frame

– with the intensional predicates from the program 
templete

– A language determines the set G of all ground atoms

• E.g.) If we restrict ourselves to nullary, unary, and dyadic 
predicates



Learning explanatory rules from noisy 

data [Evans and Grefenstette ‘18]
• Generating Clauses

– For each rule template 𝜏, we can generate a set 𝑐𝑙(𝜏) of 
clauses that satisfy the template

– Restrictions to keep 𝑐𝑙(𝜏) manageable  
• 1) we only consider clauses composed of atoms involving free 

variables
– We do not allow any constants in any of our clauses ➔

– If we need a predicate whose meaning depends on particular constants, 
then we treat it as an extensional predicate, rather than an intensional
predicate.

• 2) we only allow predicates of arity 0, 1, or 2
– We do not currently support ternary predicates or higher

• 3) we insist that all clauses have exactly two atoms in the body



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: Example 

– The language-frame: 

– The ILP problem: 



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: Example 

– Use the program template

– Suppose template 𝜏𝑞
1 for 𝑞 is 𝑣 = 0, 𝑖𝑛𝑡 = 0

• Then, clauses generated after pruning are: 



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: Example 

– Suppose template 𝜏𝑞
2 for 𝑞 is 𝑣 = 1, 𝑖𝑛𝑡 = 1

• Then, there are 58 clauses generated after pruning, of 
which the first 16 are:



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: 

Differentiable ILP (𝜕ILP)
• Valuations

– Given a set 𝐺 of 𝑛 ground atoms, a vector 0, 1 𝑛

mapping each ground atom 𝛾𝑖 ∈ 𝐺 to the real unit 
interval

– E.g.)

– One possible valuation on the ground atoms 𝐺 of 𝐿



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: 

Differentiable ILP (𝜕ILP)

• Induction by Gradient Descent

– given an ILP problem                       , a program template      
and a set of clause weights 𝑊, we construct a 
differentiable model that implements the conditional 
probability of 𝜆 for a ground atom 𝛼

– Loss: The expected negative log likelihood 
Clause weights Program template Language frame Background 



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: 

Differentiable ILP (𝜕ILP)

• Induction by Gradient Descent

– To calculate the probability of the label 𝜆 given the atom 
𝛼, we infer the consequences of applying the rules to 
the background facts (using T steps of forward chaining). 

– These consequences are called the Conclusion Valuation 

– Then, we extract 𝜆 as the probability of α in this 
valuation.



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: 

Differentiable ILP (𝜕ILP)

Differentiable Non-differentiable 

Valuation 
Atom 

Takes a set of atoms and converts it into a 
valuation mapping the elements of 𝐵 to 1 and all 
other elements of 𝐺 to 0

Takes a valuation x and an atom γ and 
extracts the value for that atom

a function that assigns each ground 
atom a unique integer index

the i’th ground atom 
in G for i = 1..n



Learning explanatory rules from noisy data 

[Evans and Grefenstette ‘18]: 

Differentiable ILP (𝜕ILP)

Differentiable Non-differentiable 

produces a set of clauses from a program 
template Π and a language 𝐿

All the heavy-lifting takes place. 
It performs 𝑇 steps of forward-chaining inference using the 
generated clauses, amalgamating the various conclusions together 
using the clause weights 𝑊



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

• Rule Weights

– Weights 𝑊: 

one matrix for 𝑝 ∈ 𝑃𝑖

the number of clauses generated by the first rule 
templates 𝜏𝑝

1, 𝜏𝑝
2

represents how strongly the system believes that 
the pair of clauses                      is the right way to 
define the intensional predicate 𝑝

note that each predicate is defined by exactly two clauses



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

• Inference

– The idea: each clause 𝑐 induces a function              
on valuations

– E.g.)
Applying                              treated as a function 



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

• : the valuation function corresponding to 
the clause

• :another indexed set of functions that combines 
the application of two functions            & 

• The initial value 𝒂0: 

Intuitively, 𝒄𝑡
𝑝,𝑗,𝑘

the result of applying one step of forward 
chaining inference to at using clauses             &

the 𝑗’th clause of the 𝑖’th rule template 𝜏𝑝
𝑖 for 

intensional predicate 𝑝.



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

• The weighted average of the           , using the 
softmax of the weights

• The successor function:
𝒃𝑡
𝑝

are disjoint for different 𝑝, so we 

can simply sum these valuations

𝒃𝑡
𝑝

is also zero everywhere except 

for the p’th intensional predicate



Differentiable ILP (𝜕ILP) [Evans and Grefenstette ‘18]

• Computing the 𝐹𝑐 Functions

– Let                             be a set of sets of pairs of indices of 
ground atoms for clause 𝑐

– Each 𝑥𝑘 contains all the pairs of indices of atoms that 
justify atom 𝛾𝑘 according to the current clause 𝑐:

true if   given  

there is a substitution 𝜃 such that                  & 

: the head atom produced when applying clause c 
to the pair of atoms (𝛾1, 𝛾2)

if the pair of ground atoms 𝛾1, 𝛾2 satisfies the 
body of clause 𝑐

If                              ,                    &



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]
• E.g.) Suppose                          &  

– Then our ground atoms 𝐺 are:

– Suppose clause 𝑐 is:

– Then                               is: 



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

– Transform 𝑋𝑐 into



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

– Slicing 𝑿 into 𝑿1 and 𝑿2

After assembling the elements of a according to the matrix of indices 
in 𝑿1 and 𝑿2, we obtain 𝒀1 and 𝒀2: 

:  the vector of fuzzy conjunctions of all the pairs of atoms that 
contribute to the truth of 𝛾𝑘, according to the current clause.

where



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

• Defining fuzzy conjunction

– For other choices, need an operator                               
satisfying the conditions on a t-norm [Esteva & Godo, 2001]

• commutativity: x ∗ y = y ∗ x

• associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z)

• monotonicity (i): x1 ≤ x2 implies x1 ∗ y ≤ x2 ∗ y

• monotonicity (ii): y1 ≤ y2 implies x ∗ y1 ≤ x ∗ y

• unit (i): x ∗ 1 = x

• unit (ii): x ∗ 0 = 0

– Operators satisfying these conditions include:

• Godel t-norm: x ∗ y = min(x, y)

• Lukasiewicz t-norm: x ∗ y = max(0, x + y − 1)

• Product t-norm: x ∗ y = x · y



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

• Experiments 



Differentiable ILP (𝜕ILP) 

[Evans and Grefenstette ‘18]

• Experiments 



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Neural Programmer-Interpreter (NPI)
– a recurrent and compositional neural network that 

learns to represent and execute programs

– Three learnable components:

– 1) a task-agnostic recurrent core

– 2) a persistent key-value program memory

– 3) domain-specific encoders that enable a single NPI to 
operate in multiple perceptually diverse environment

– In experiment, a single NPI learns to execute three 
compositional programs (addition, sorting, and 
canonicalizing 3D models) and all 21 associated 
subprograms.



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Neural Programmer-Interpreter (NPI)
– a compositional architecture that learns to represent and 

interpret programs. 

– The core module: an LSTM-based sequence model 
• Input: a learnable program embedding, program arguments 

passed on by the calling program, and a feature representation 
of the environment. 

• Output: a key indicating what program to call next, arguments 
for the following program and a flag indicating whether the 
program should terminate. 

– Includes a learnable key-value memory of program 
embeddings. 
• Essential for learning and re-using programs in a continual 

manner. 



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Neural Programmer-Interpreter (NPI)
– In experiments, can learn 21 programs, including addition, 

sorting, and trajectory planning from image pixels

– Crucially, this can be achieved using a single core model
with the same parameters shared across all tasks.

– Different environments (for example images, text, and 
scratch-pads) may require specific perception modules or 
encoders to produce the features used by the shared core, 
as well as environment-specific actuators. 
• Both perception modules and actuators can be learned from 

data when training the NPI architecture

– To train the NPI we use curriculum learning and 
supervision via example execution traces.



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]
• Neural Programmer-Interpreter (NPI)

– Exhibit strong generalization.
• Specifically, when trained to sort sequences of up to twenty 

numbers in length, they can sort much longer sequences at test 
time. 

• In contrast, standard sequence to sequence LSTMs only exhibit 
weak generalization

– Act both as an interpreter and as a programmer
• A trained NPI with fixed parameters and a learned library of 

programs, can act both as an interpreter and as a programmer. 

• As an interpreter, it takes input in the form of a program embedding 
and input data and subsequently executes the program. 

• As a programmer, it uses samples drawn from a new task to 
generate a new program embedding that can be added to its library 
of programs.



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Example execution of canonicalizing 3D car models

The task is to move the camera such that a target angle and elevation are 
reached. There is a read-only scratch pad containing the target (angle 1, elevation 
2 here). The image encoder is a convnet trained from scratch on pixels



Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Example execution trace of single-digit addition

The task is to perform a single-digit add on the numbers at pointer locations in 
the first two rows. At each time step, an observation of the environment (viewed 
from each pointer on a scratch pad) is encoded into a fixed-length vector.



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Inference
– : the environment observation at time t

– : the current program arguments
• Here, consider only 3-tuple of integers

– : domain-specific encoder

– : the current program embedding

– key-value memory structures

• : program keys 

• : program embeddings



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• 𝑠𝑡: state encoding 

• Given 𝑘𝑡, the program embedding is retrieved 

• The next environmental state 𝑒𝑡+1 will be 
determined by the dynamics of the 𝑒𝑛𝑣



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]



Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Training

– Use execution traces                                       and 

Program IDs 𝑖𝑡 and 𝑖𝑡+1 are row-indices in 𝑀𝑘𝑒𝑦 and 𝑀𝑝𝑟𝑜𝑔 of the 
programs to run at time t and t+1, respectively



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Task: Addition 

Actual trace of addition program 
generated by NPI 

Example scratch pad and pointers used 
for computing “96 + 125 = 221”

pointers, one per scratch pad row



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Task: Sorting

Excerpt from the trace of the learned 
bubblesort program



Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Task: Canonicalizing 3D models

Importantly, NPI can generalize to car appearances not encountered 
in the training set 

𝑥: a car rendering at the current posethe pad containing canonical azimuth 
and elevation



Neural Programmer-Interpreters [Reed & Freitas ‘16]

– Programs learned for addition, sorting and 3D car canonicalization.



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Sample complexity 

– Sorting task



Neural Programmer-Interpreters 

[Reed & Freitas ‘16]

• Strong vs. weak generalization

– Sorting task



Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Learning new programs with a fixed core
– Adding a maximum-finding program MAX

• MAX first calls BUBBLESORT and then a new program RJMP, which moves 
pointers to the right of the sorted array

– To avoid catastrophic forgetting 
• Fix the weights of the core routing module, and only make sparse updates to 

the program memory
• When adding a new program the core module’s routing computation will be 

completely unaffected; 
– All the learning for a new task occurs in program embedding space.

– An old program could mistakenly call a newly added program
• The addition of new programs to the memory adds a new choice of program at 

each time step, and an old program could mistakenly call a newly added 
program

• To overcome this, two methods are considered
– 1) when learning a new set of program vectors with a fixed core, in practice we train not 

only on example traces of the new program, but also traces of existing programs
– 2) Alternatively, a simpler approach is to prevent existing programs from calling 

subsequently added programs, allowing addition of new programs without ever looking 
back at training data for known programs. 

• In either case, note that only the memory slots of the new programs are 
updated, and all other weights, including other program embeddings, are fixed



Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Solving multi-task with a single network 

– Perform a controlled experiment to compare the 
performance of a multi-task NPI with several single-task 
NPI models



Towards Deep Symbolic Reinforcement 

Learning [Garnelo et al ‘16]
• Deep reinforcement learning (DRL)

• Recently been shown to be effective in a number of domains, including Atari 
video games, robotics, and the game of Go

• Can be thought of as a step towards instantiating the formal characterisation of 
universal artificial intelligence presented by Hutter, a theoretical framework for 
AGI founded on reinforcement learning

• Contemporary DRL systems: Shortcomings
– 1) they inherit from deep learning the need for very large training sets, 

which entails that they learn very slowly
– 2) they are brittle in the sense that a trained network that performs well 

on one task often performs very poorly on a new task, even if the new 
task is very similar to the one it was originally trained on. 

– 3) they are strictly reactive, meaning that they do not use high-level 
processes such as planning, causal reasoning, or analogical reasoning to 
fully exploit the statistical regularities present in the training data. 

– 4) they are opaque. It is typically difficult to extract a humanly-
comprehensible chain of reasons for the action choice the system 
makes
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• Propose a novel hybrid reinforcement learning 

architecture that combines neural network learning with 
aspects of classical symbolic AI

• Classical symbolic AI: Pros
– The use of language-like propositional representations to encode 

knowledge

– Thanks to their compositional structure, such representations are 
amenable to endless extension and recombination
• This is an essential feature for the acquisition and deployment of high-level 

abstract concepts, which are key to general intelligence

– Knowledge expressed in propositional form can be exploited by 
multiple high-level reasoning processes and has general-purpose 
application across multiple tasks and domains. 

– Features such as these, derived from the benefits of human 
language, motivated several decades of research in symbolic AI
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• Classical symbolic AI: Limits

– The symbol grounding problem

• The symbolic elements of a representation in classical AI – the 
constants, functions, and predicates – are typically hand-
crafted, rather than grounded in data from the real world.

• This means their semantics are parasitic on meanings in the 
heads of their designers rather than deriving from a direct 
connection with the world

• Hand-crafted representations cannot capture the rich statistics 
of realworld perceptual data, cannot support ongoing 
adaptation to an unknown environment, and are an obvious 
barrier to full autonomy
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• Deep learning
– Have proven to be remarkably effective for supervised 

learning from large datasets using backpropagation. 

– Deep learning is therefore already a viable solution to 
the symbol grounding problem in the supervised case, 
and for the unsupervised case, which is essential for a 
full solution, rapid progress is being made

• The approach of this work for the hybrid approach 
– The hybrid neural-symbolic reinforcement learning 

relies on a deep learning solution to the symbol 
grounding problem.
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• Four fundamental principles of the architectural 
manifesto.
– 1) Conceptual abstraction

• Determining that a new situation is similar or analogous to 
one (or several) encountered previously is an operation 
fundamental to general intelligence, and to reinforcement 
learning in particular

• The present architecture maps high-dimensional raw input 
into a lower-dimensional conceptual state space 
– It is possible to establish similarity between states using symbolic 

methods that operate at a higher level of abstraction. 

– Facilitates both data efficient learning and transfer learning as well as 
providing a foundation for other high-level cognitive processes such as 
planning, innovative problem solving, and communication with other 
agents (including humans).
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– 2) Compositional structure

• A representational medium is required that has a compositional structure.

• Thus use probabilistic first-order logic for the semantic underpinnings of 
the low-dimensional conceptual state space representation into which the 
neural front end must map the system’s high-dimensional raw input

– 3) Common sense priors
• The everyday physical world is structured according to many other 

common sense priors 
– Consisting mostly of empty space, it contains a variety of objects that tend to 

persist over time and have various attributes such as shape, colour, and texture. 

– Objects frequently move, typically in continuous trajectories. Objects participate in 
a number of stereotypical events, such as starting to move or coming to a halt, 
appearing or disappearing, and coming into contact with other objects.

• Thus graft a suitable ontology onto the underlying representational 
language, greatly reducing the learning workload and facilitating various 
forms of common sense reasoning
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– 4) Causal reasoning
• The current generation of DRL architectures eschews model-

based reinforcement learning, ensuring that the resulting 
systems are purely reactive

• Instead, the current architecture attempts to discover the 
causal structure of the domain, and to encode this as a set of 
symbolic causal rules expressed in terms of the common 
sense ontology described above

• These causal rules enable conceptual abstraction

• The narrative structure of the ongoing situation needs to be 
mapped to the causal structure of a set of previously 
encountered situations
– Carry out analogical inference at a more abstract level, and thereby 

facilitate the transfer of expertise from one domain to another
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• Game environment

– The agent (shaped as a ‘+’) has to learn either to avoid or 
to collect objects depending on their shape. 

– Once the agent reaches an object using one of four 
possible move actions (up, down, left, or right), this object 
disappears and the agent obtains either a positive or a 
negative reward. 

– Encountering a circle (‘o’) results in a negative reward 
while collecting a cross (‘x’) yields a positive reward
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• The four different game environments

– Variant 1
• In this environment there are only objects that return negative rewards 

(‘o’) and they are positioned in a grid across the screen. This layout is the 
same for every new game. Encountering an object returns a score of -1 
and at the beginning of the game the player is located in the middle of the 
board. 

– Variant 2. 
• The layout is the same as in version 1 but there are two types of objects. 

As before, circles give -1 points and we introduce crosses that return 1 
points. 

– Variant 3. 
• As in version 1 this game only contains objects that return a negative 

reward. In order to increase the difficulty of the learning process however, 
the position of these objects is determined at random and changes at 
every new game. 

– Variant 4. 
• This version combines the randomness from environment 3 and the 

different object types from version 2.
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• The four different game environments
– The agent is represented by the ‘+’ symbol. The static objects 

return positive or negative reward depending on their shape 
(‘x’ and ‘o’ respectively).
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• The four different game environments
– The agent is represented by the ‘+’ symbol. The static objects 

return positive or negative reward depending on their shape 
(‘x’ and ‘o’ respectively).
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• Low-level symbol generation

– Generate, in an unsupervised manner, a set of symbols 
that can be used to represent the objects in a scene

– Use a CNN, since such networks are well-suited to feature 
extraction, especially from images.
• Train a convolutional autoencoder on 5000 randomly generated 

images of varying numbers of game objects sattered across the 
screen

– The CNN consists of a 5x5 convolutional layer followed by 
a 2x2 pooling layer plus the corresponding decoding 
layers

– Directly use the activations across features in the middle 
layer of the CNN for the detection of the objects in the 
scene. 
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• Low-level symbol generation

– Object detection and characterization
• 1) first select, for each pixel, the feature with the highest activation

• 2) Then threshold these activation values, forming a list of those that are 
sufficiently salient
– Ideally, each member of this list is a representative pixel for a single object.

• 3) The objects identified this way are then assigned a symbolic type 
according to the geometric properties computed by the autoencoder
– Procedures for the object identification

– Compare the activation spectra of the salient pixels across features. 

» This comparison is carried out using the sum of the squared distances, which 
involves setting an ad hoc threshold for the maximal ditance between two 
objects of the same type.

➔ The information extracted at this stage consists of a symbolic 
representation of the positions of salient objects in the frame 
along with their types
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[Garnelo et al ‘16]
Unsupervised extraction of low-level symbols from the information provided 
by the convolutional autoencoder
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• Representation building
– Track the low-level symbols across frames in order to 

observe and learn from their dynamics

– Take account of the first common sense prior: object 
persistence across time

• Based on three measures

– 1) Spatial proximity

• Build in the notion of continuity by defining the likelihood to 
be inversely proportional to the distance between two 
objects in consecutive frames

the Euclidean distance between two 
objects 𝑖1

𝑡 and 𝑖2
𝑡 in consecutive frames 

𝑡 and 𝑡 + 1 respectively.
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• Representation building
– 2) Type transitions

• Given the types of two objects 𝜏(𝑖1
𝑡) = 𝜏𝑖1 and 𝜏(𝑖2

𝑡) = 𝜏𝑖2 in 
consecutive frames, we can determine the probability that 
they are the same object that has changed from one type to 
the other 
– By learning a transition matrix T from previously observed frames

• Introduce the object type 0: corresponds to ’non-existent’
– To describe all transitions, including the ones that correspond to 

objects appearing and disappearing
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• Representation building
– 3) Neighbourhood

• The neighbourhood of an object will typically be similar from 
one frame to the next. 

• Δ𝑁: The difference in the number of neighbours between 
two objects
– Define a neighbour to be any object, 𝑖𝑛, within a distance 𝑑max of 

another object 𝑖1.



Towards Deep Symbolic Reinforcement 

Learning [Garnelo et al ‘16]



Towards Deep Symbolic Reinforcement 

Learning [Garnelo et al ‘16]

• Symbolic interactions and dynamics
– The final, reinforcement learning stage of the 

algorithm will require information about the 
dynamics of objects and their spatial interactions

– 1) consider the difference between frames rather 
than working with single frames, thus moving to a 
temporally extended representation

– 2) Represent the positions of objects relative to 
other objects rather than using absolute coordinates.
• only record relative positions of objects that lie within a 

certain maximum distance of each other.
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• Approximate the optimal policy using tabular 
Q-learning with the update rule for the 
interaction between objects of types i and j

• choose the next action that will return the 
highest reward overall 
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• Experiment results 
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• Experiment results 
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• Comparison between DQN and symbolic approach

– Average percentage of objects collected over 200 games

The grid environment The random environment
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• Average percentage of objects collected over 200 games that return 
positive reward by an agent that is trained on the grid environment 
and tested on random environments. (domain transfer)
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• Goal: Integrate probabilistic logical reasoning with the 
powerful infrastructure of the deep learning 
– To enable deep learners to incorporate first-order probabilistic KBs

– conversely, to enable probabilistic reasoning over the outputs of deep 
learners

• Deductive database (DDB): a database 𝐷𝐵 with a theory 
𝑇 defines a set of facts 𝑓1, ⋯ , 𝑓𝑛 which can be derived by accessing 
the database and reasoning using 𝑇

• Probabilistic deductive database (PrDDB)
– A soft extension of a DDB, where

– Derived facts have a numeric confidence, augmenting DB with  
a set of parameters Θ

– Computation of confidences is computationally expensive, 
often not conductive to learning Θ
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• TensorLog: 
– Probabilistic deductive database (PrDDB) in which reasoning 

uses a differentiable process

– Each clause is converted into certain type of factor graph 
• Each logical variable is associated with a random variable in the 

factor graph 

• Each literal is associated with a factor 

– Inference is linear in database size and the num of massage-
passing steps used in BP

– Inference is also differentiable

– Subsumes some prior probabilistic logic programming 
models, including several variants of stochastic logic 
programs (SLPs)
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• A motivating example: A simple theory for QA against a KB

• The goal of learning is to find appropriate weights for the soft predicate facts

• TensorLog: can learn from 10,000 questions against a KB of 420,00 triples, in around 
200 seconds per epoch in a single GPU 

Soft KB predicates

For NLP tasks, the KB stores word n-grams in the question, the 
strings that are possible names of an entity, and the words that are 
contained in these names and n-grams 
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– Inefficiency in integration of PrDDB and deep learning

• Integration of probabilistic logics into deep learners is that most 
existing first-order probabilistic logics are not easily adapted to 
evaluation on a GPU

– The most common approach to first-order inference: the grounding 

• To ground a first-order logic by converting it to a zeroth-order format, 
such as a boolean formula or a probabilistic graphical model

Grounding 

But, groundings can be very large: a grounding of size 
𝑜 𝐶 𝑛 is produced by a rule: 

the set of objects in the KB

Even this small rule gives a grounding 
of size 𝑜( 𝐶 3)
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• 1) Propose the use of a restricted family of probabilistic 
deductive databases (PrDDBs) called polytree-limited 
stochastic deductive knowledge graphs (ptree-SDKGs)

– Ptree-SDKGs are tractable, but still reasonably expressive

– Ptree-SDKGs are in some sense maximally expressive
• we cannot drop the polytree restriction, or switch to a more 

conventional possible-worlds semantics, without making inference 
intractable

• 2) Present an inference algorithm for ptree-SDKGs

– performs inference with a dynamic-programming method
• Formalize as belief propagation on a certain factor graph
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• Deductive database (DDB) 
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• Deductive database (DDB)
– : A database, which is a set 

of ground facts

– : A theory, which is a set of function-free Horn clauses

– A clause is written as: 
• 𝐴: the head of the clause, 𝐵1, . . . , 𝐵𝑘: the body

• 𝐴 & 𝐵𝑖: literals

• Clauses can be understood as logical implications

– A literal has the form: 
• 𝑝: a predicate symbol

• 𝑋𝑖: either logical variables or database constants

• Arity: the number of arguments k to a literal

– : the set of all database constants 
• We assume that constants appear only in the database, not in the 

theory
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• Deductive database (DDB)

– Knowledge graph (KG)

• The database where all literals are binary or unary

• A deductive knowledge graph (DKG)
– The program for KG 

– : a substitution, a mapping from logical variables to 
constants in 𝐶

– : the result of replacing all logical variables 𝑋 in 
the literal 𝐿 with 𝜎 𝑋

– A set of tuples 𝑆 is deductively closed with respect to 
the clause                                iff for all substitutions              
either 

Deductively closed ➔ KG completeness
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• Deductive database (DDB) 

Not deductively closed with respect to the clause 1

unless it also contains uncle(chip,liam) and uncle(chip,dave)
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• Deductive database (DDB)
• E.g.) Deductively closed: If 𝑆 contains the facts in our example, 
𝑆 is not deductively closed with respect to the clause 1 unless 
it also contains 𝑢𝑛𝑐𝑙𝑒(𝑙𝑖𝑎𝑚, 𝑐ℎ𝑖𝑝) and 𝑢𝑛𝑐𝑙𝑒 𝑑𝑎𝑣𝑒, 𝑐ℎ𝑖𝑝

– : the smallest superset of 𝐷𝐵 that is 
deductively closed with respect to every clause in T

• This least model is unique, and in the usual DDB semantics

• a ground fact 𝑓 is considered “true” iff

– Bottom-up inference 

• Explicitly generates the set 𝑀𝑜𝑑𝑒𝑙(𝐷𝐵, 𝑇 ) iteratively
– Repeatedly extends a set of facts 𝑆, which initially contains just the 

database facts, by looking for rules which “fire” on 𝑆 and using them 
derive new facts

• This can be much larger than the original database
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• Deductive database (DDB)

– Top-down inference 

• Does not compute a least model explicitly

• instead, it takes as input a query fact 𝑓 and determines 
whether 𝑓 is derivable, i.e., if

• E.g.) find all values of 𝑌 such that 𝑢𝑛𝑐𝑙𝑒(𝑗𝑜𝑒, 𝑌) holds:
– Formally, given   

find all                                          which are instances of Q, where an 𝑓
is defined to be an instance of 𝑄 iff

• a unit clause: a fact clause

• : denote the theory T augmented with unit clauses 
for each database fact  
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• Top-down theorem prover

– Root vertex: a pair 𝑆, 𝐿 = (𝑄, 𝑄 )

– For any vertex (𝑆, 𝐿) where 𝐿 = 𝐺1, ⋯ , 𝐺𝑛 , there is a 
child vertex (𝑆′, 𝐿′) for each rule 

and σ for which 𝜎 𝐺𝑖 =
𝜎 𝐴 . Then, 

• 𝐿’ is empty: a solution vertex

• 𝐿’ is smaller than 𝐿 if the clause selected is a unit clause (i.e., 
a fact).

– In any solution vertex (𝑆, 𝐿), if 𝑆 contains no variables, 
then 𝑆 is an instance of 𝑄 and is in 𝑀𝑜𝑑𝑒𝑙(𝑇 , 𝐷𝐵)
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• Top-down theorem prover

– An example proof tree.
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• Stochastic logic programs (SLPs) [Cussens ‘01]

– Putting probabilistic reasoning in first-order logics

• Theory 𝑇 is extended by associating with each rule 𝑟 a non-
negative scalar weight 𝜃𝑟

– The weight of an edge: when a rule 𝑟 is used to create an 
edge                              , this edge is given weight 𝜃𝑟

– The weight of a path                                  :

• The product of the weights of the edges in the path

– The weight of a node 𝑣 in the proof graph for Q

• the sum of the weights of the paths 
from the root node                               to 𝑣
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• If 𝑟𝑣,𝑣′ is the rule used for the edge from 𝑣 to 𝑣’

• The weight of

• The weight of an answer 𝑓 to query 𝑄

• The conditional probability distribution over 
answers 𝑓 to the query 𝑄:
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• Stochastic logic programs (SLPs)

– Thought of as logic-program analogs to  probabilistic 
programming languages like Church [Goodman et al ’12]

– Normalized SLPs are also conceptually quite similar to 
stochastic grammars such as PCFG

• Stochastic deductive knowledge graph (SDKG)
– Three restrictions on SLPs:
– 1) restrict the program to be in DDB form

• Consist of a theory T which contains function-free clauses, and a 
database DB (of unit clauses)

– 2) restrict all predicates to be unary or binary
– 3) restrict the clauses in the theory T to have weight 1, so 

that the only meaningful weights are associated with 
database facts. 
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• Complexity of reasoning with stochastic deductive 
KGs

• The similarity between SLPs and probabilistic context-free 
grammars suggests that efficient schemes might exist, since 
there are efficient dynamic programming methods for 
probabilistic parsing. Unfortunately, this is not the case:

• even for the restricted case of SDKGs, computing P(f|Q) is 
#P-hard
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• Fortunately, one further restriction makes SLP 
theorem-proving efficient.
– For a theory clause                                        define the literal 

influence graph for 𝑟 to be a graph where each 𝐵𝑖 is a vertex, 
and there is an edge from 𝐵𝑖 to 𝐵𝑗 iff they share a variable  

– A graph is a polytree iff there is at most one path between 
any pair of vertices: if each strongly connected component of the 
graph is a tree

• A theory is polytree-limited iff the influence graph for 
every clause is a polytree ➔ This additional restriction 
makes inference tractable
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for polytree-limited SDKGs

• Inference for polytree-limited SDKGs

– Formalize this method as belief propagation on a 
certain factor graph

• The random variables in the factor graph correspond to 
possible bindings to a logical variable in a proof

• The factors correspond to database predicates

– Though simple, a novel method for first-order 
probabilistic inference

• While other common methods use Bernoulli random 
variables which correspond to potential ground database 
facts (i.e., elements of the Herbrand base of the 
program.)
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inference for polytree-limited SDKGs

• Numeric encoding of PrDDB’s and queries

– for a constant c ∈ C,

• a one hot row-vector representation for c

• 𝒖 𝑐 = 1 & 𝒖 𝑐′ = 0 for 𝑐′ ≠ 𝑐

– : a sparse matrix  for  a binary predicate 𝑝

– : a row vector for a unary predicate 𝑞

– Collectively,                                     are viewed as a 
three-dimensional tensor

Parameters 
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inference for polytree-limited SDKGs

• An argument-retrieval query 

– query of the form 𝑝(𝑐, 𝑌) or 𝑝(𝑌, 𝑐)

• p(c,Y) has an input-output mode of in,out (io) 

• p(Y, c) has out,in (oi)

– The response to a query p(c,Y)

• a distribution over possible substitutions for Y

• encoded as a vector           such that for all constants 𝑑 ∈ 𝐶

– Notation            : formally if                 is the set of facts 
𝑓 that “match” (are instances of) 𝑝(𝑐, 𝑌 ) 𝑄 = 𝑝(𝑐, 𝑌 )
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inference for polytree-limited SDKGs

• More complex queries can be answered by 
extending the theory

– To find 

– We add the clause 𝑞1(𝑌) to the theory 

– and find the answer to 
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inference for polytree-limited SDKGs

• : for predicate p, a query response function for all 
queries with predicate p and mode io

• : the unnormalized version of this function, i.e., 
the weight of f according to 

• : special DB predicate

is conceptually true for any pair of a,b

need not be explicitly stored. 
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inference for polytree-limited SDKGs

• Efficient inference for one-clause theories

– Consider first programs containing only one non-
recursive polytree-limited clause 𝑟

– Build a factor graph 𝐺𝑟 for 𝑟

• for each logical variable 𝑊 in the body ➔ there is a 
random variable 𝑊

• for every literal 𝑞(𝑊𝑖 ,𝑊𝑗) in the body of the clause, there 

is a factor with potentials 𝑀𝑞 linking variables 𝑊𝑖 and 𝑊𝑗

• Finally, if the factor graph is disconnected, we add any

factors between the components until it is connected
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inference for polytree-limited SDKGs

• Examples of factor graphs for the example theory
The variables appearing in the clause’s head are starred



TensorLog [Cohen ’16]: Differentiable 
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• Efficient inference for one-clause theories

– BP on the factor graph 𝐺𝑟
• Compute the conditional vectors                    and 

• E.g.)  to compute 𝑓𝑖𝑜
𝑝
(𝒖𝑐) for clause 1, 

– 1) set the message for the evidence variable X to 𝒖𝑐, 

– 2) run BP

– 3) read out as the value of 𝑓 the marginal distribution for 𝑌

• The correctness of BP inference follow immediately from the 
convergence of belief propagation on factor graphs for 
polytrees [Kschischang et al ’01]
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inference for polytree-limited SDKGs

• Differentiable inference for one-clause theories

– “unroll” the message-passing steps into a series of operations

If then replace             with  
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the Hadamard (componentwise) product, and if 𝑘 = 0 
an all-ones vector is returned
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inference for polytree-limited SDKGs

• Chains of messages constructed for the three 
sample clauses
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inference for polytree-limited SDKGs

• Differentiable inference for one-clause theories

– Belief propagation to compute 

• Emit a series of operations, and return the name of a register 
that contains the unnormalized conditional probability vector 
for the output variable.

• Use                  for the unnormalized version of the query 
response function build from 𝐺𝑟
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• Extension to Multi-clause programs 
– Extend to theories with many clauses

– if there are several clauses with the same predicate symbol 
in the head, we simply sum the unnormalized query 
response functions

– E.g) for the predicate uncle, defined by rules 𝑟1 and 𝑟2, 
we would define 

– This is equivalent to building a new factor graph 𝐺, 
• Approximately ∪𝑖 𝐺𝑟𝑖, together global input and output variables, 

• plus a factor that constrains the input variables of the 𝐺𝑟𝑖’s to be 
equal, 

• plus a factor that constrains the output variable of 𝐺 to be the sum 
of the outputs of the 𝐺𝑟𝑖’s.
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inference for polytree-limited SDKGs

• Extension to Multi-clause programs 

– A more complex situation is when the clauses for 
one predicate, p, use a second theory predicate q, 
in their body

– E.g.) the case if aunt was also defined in the theory, 
rather than the database

• Replace the message-passing operations
with                             , or                            with  

• This is equivalent to taking the factor graph for 𝑞 and 
“splicing” it into the graph for 𝑝
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• Extension to Multi-clause programs 
– Adding depth argument 𝑑

• Allow function calls to recurse to a fixed maximum depth

• Ensure function calls inside             to q always call the next-deeper 
version of the function for q, i.e.,

– Computationally, the algorithm we describe is quite efficient. 
• Assuming the matrices 𝑴𝑝 exist, the additional memory needed for 

the factor-graph 𝐺𝑟 is linear in the size of the clause 𝑟
– The compilation to response functions is linear in the theory size and the 

number of steps of BP. 

• For ptree-SDKGs, 𝐺𝑟 is a tree, the number of message-passing steps 
is also linear. 
– Message size is (by design) limited to |C|, and is often smaller in practice, 

due to sparsity or type restrictions 



TensorLog [Cohen ’16]

…



TensorLog [Cohen ’16]

• Experiments

– Inference task 

• “Friends and smokers” inference task.

• Path-finding task in a grid



TensorLog [Cohen ’16]
• Experiments

– Learning task 

• Relational learning tasks

– Path finding after learning 



TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies

• The KB consists of over 420k tuples containing 
information about 10 relations and 16k movies

• Encode the questions into the KB by extending it with two 
additional relations



TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies

• The entities mentioned in a question were extracted by 
looking for every longest match to a name in the KB

• The features of a question are simply the words in the 
question (minus a short stoplist)

• The simple longest-exact-match heuristic described above 
identifies entities accurately for this dataset, ➔ take 
mentionsEntity as a hard KB predicate.

• The final theory contains two rules and two “soft” unary 
relations                                                                                    for 
each relation 𝑅 in the original movie KB



TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies

• The final theory contains two rules and two “soft” unary 
relations                                                                                    for 
each relation 𝑅 in the original movie KB

• for the relation directedBy the theory has the two rules

acts as a linear classifier for that rule.



TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies



Neural Logic Programming [Yang et al ‘17]

• TensorLog
– Limited as a learning system because it only learns parameters, not rules

• Neural Logic Programming
– learn parameters and structure simultaneously in a differentiable 

framework
– Based on a neural controller system with an attention mechanism and 

memory
• Sequentially compose the primitive differentiable operations used by TensorLog

– At each stage of the computation, the controller uses attention to “softly” 
choose a subset of TensorLog’s operations, and then performs the 
operations with contents selected from the memory



Neural Logic Programming [Yang et al ‘17]
• Knowledge base

– Collections of relational data of the format 
Relation(head,tail)
• head and tail: entities

• Relation: a binary relation between entities

• E.g.) HasOfficeInCity(New York,Uber) and 
CityInCountry(USA,New York).

• Knowledge base reasoning task
– Consists of a query , an entity tail that the query is 

about, and an entity head that is the answer to the 
query

– Goal: to retrieve a ranked list of entities based on the 
query such that the desired answer (i.e. head) is 
ranked as high as possible.



Neural Logic Programming [Yang et al ‘17]

• Knowledge base reasoning task
– for each query, we are interested in learning weighted 

chain-like logical rules of the following form:

– During inference, given an entity x, the score of each y:

• The sum of the confidence of rules that imply query(y,x)

– Then return a ranked list of entities

• Where higher the score implies higher the ranking.

confidence relations in the knowledge base.



Neural Logic Programming [Yang et al ‘17]

• TensorLog for KB reasoning

– : the set of all entities, 

• each entity i is associated with a one-hot vector

– : the set of all binary relations

– : a matrix in                        for each relation R

• 1 if                     in the KB 

– For each query, we want to learn

indexes over all possible rules

an ordered list of all relations in this particular rule



Neural Logic Programming [Yang et al ‘17]

• TensorLog for KB reasoning

– For any entity             , 

– During inference, given an entity 𝑣𝑥, the score of 
each retrieved entity is then equivalent to the 
entries in the vector 𝒔

– Then, learning problem for each query is:  

To be learned



Neural Logic Programming [Yang et al ‘17]

• Learning the logical rules
– Difficult to formulate a differentiable process to directly 

learn the parameters and the structure 
• because each parameter is associated with a particular rule, 

and enumerating rules is an inherently discrete task.

– Alternatively, rewrite the original equation with a 
different parametrization

• The key difference is that here we associate each relation in 
the rule with a weight 

• But, this parameterization is not sufficiently expressive, as it 
assumes that all rules are of the same length

• Thus, we introduce a recurrent formulation

the number of relations in the KB

The max length of rules



Neural Logic Programming [Yang et al ‘17]

• The recurrent formulation 
– Use auxiliary memory vectors 𝒖𝑡
– Initially the memory vector is set to the given entity 𝒗𝑥.
– The model first computes a weighted average of previous 

memory vectors using the memory attention vector 𝒃𝑡
– Then the model “softly” applies the TensorLog operators 

using the operator attention vector 𝒂𝑡
• This formulation allows the model to apply the TensorLog

operators on all previous partial inference results, instead of just 
the last step’s.

– Finally, the model computes a weighted average of all 
memory vectors, thus using attention to select the proper 
rule length

– Given the recurrent formulation, the learnable parameters 
for each query are:



Neural Logic Programming [Yang et al ‘17]

• A neural controller system 

– Learn the operator and memory attention vectors. 

• Use recurrent neural networks not only because they fit with 
the recurrent formulation, but also because it is likely that 
current step’s attentions are dependent on previous steps’.

– The network predicts operator and memory attention 
vectors:



Neural Logic Programming [Yang et al ‘17]

• The neural controller system



Neural Logic Programming [Yang et al ‘17]

– The input is the query for 1 ≤ t ≤ T and a special END token when t = T + 1

– The memory holds each step’s partial inference results

– The final inference result 𝒖 is just the last vector in memory 

– The objective is to maximize 

• The recurrent formulation 



Neural Logic Programming [Yang et al ‘17]

• Recovering logical rules from the neural controller system

– write rules and their confidences                  in terms of the attention 
vectors



Neural Logic Programming [Yang et al ‘17]

• Experiments: Statistical relation learning



Neural Logic Programming [Yang et al ‘17]

• Grid path finding

– query: randomly generated by combining a series 
of directions, such as North_SouthWest



Neural Logic Programming [Yang et al ‘17]

• Knowledge base completion

– query: E.g.) HasOfficeInCountry and Uber

• Use an embedding lookup table for each query



Neural Logic Programming [Yang et al ‘17]

• Examples of logical rules learned by Neural LP on FB15KSelected. 
The letters A,B,C are ungrounded logic variables.



Neural Logic Programming [Yang et al ‘17]

• Inductive knowledge base completion

– conduct experiments where training and testing 
use disjoint sets of entities



Neural Logic Programming [Yang et al ‘17]

• Question answering against knowledge base

– WikiMovies

– query: the average of the embeddings of the words 



Neural Logic Programming [Yang et al ‘17]

• Question answering against knowledge base

– Visualization of learned logical rules



Scalable Neural Methods for Reasoning With a 

Symbolic Knowledge Base [Cohen et al ’20]

• Propose a sparse-matrix reified KB

– representing a symbolic KB

– Enables neural modules that are 

• 1) fully differentiable, 

• 2) faithful to the original semantics of the KB, 

• 3) expressive enough to model multi-hop inferences, and 

• 4) scalable enough to use with realistically large KBs



Scalable Neural Methods for Reasoning With a 

Symbolic Knowledge Base [Cohen et al ’20]

• Summary of notation 



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• Weighted sets as “k-hot” vectors

– Each element x of weighted set 𝑋 is associated with a non-
negative real number

– a weight less than 1: a confidence that the set contains x

– weights more than 1: make X a multiset

– X is a hard set if all elements of X have weight 1

– If X is a hard entity set, then this will be a “k-hot” vector, for 
k = |X|

– The support of x: the set of indices of 𝒙 with non-zero 
values



Scalable Neural Methods for Reasoning With a 

Symbolic Knowledge Base [Cohen et al ’20]

• Sparse vs. dense matrices for relations

– for all but the smallest KBs, a relation matrix must be 
implemented using a sparse matrix data structure

• a sparse coordinate pair (COO) encoding: with a COO 
encoding, each KB fact requires storing only two integers and 
one float



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– r-neighbors of an entity 𝑥𝑖: the set of entities 𝑥𝑗
that are connected to 𝑥𝑖 by an edge labeled r

– R-neighbors: Extension to relation sets

– E.g) 

– The answer to 𝑞 is the set R-neighbors(X) with 



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– Approximate the R-neighbors computation with 
differentiable operations

• Can be performed on the vectors encoding the sets X 
and R

– The relation-set following operation for x and r



Scalable Neural Methods for Reasoning With a 

Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– Baseline implementations: Not efficient 

• The naive mixing
– But, tensorflow does not support general sparse tensor contractions, 

it is not always possible to extend sparse-matrix computations to 
minibatches

• The late mixing: mixes the output of many single-relation 
following steps, rather than mixing the KB itself

– can be extended easily to a minibatches



Scalable Neural Methods for Reasoning With a 

Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– A reified knowledge base
• Represent each KB assertion                         as a tuple (𝑖, 𝑗, 𝑘)

• : l-th triple              



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• Experiments: Scalability 
– the speed of the key-value network is similar to the reified KB for only four 

relations, however it is about 7x slower for 50 relations and 10k entities

– Comparing to the key-value network, the reified KB scales much better, 
and can handle 10x as many entities and 20x as many relations



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• KBQA for multi-hop questions

– 𝒙0: the set of entities associated with q 

• KBQA on FreeBase

– FreeBase contains two kinds of nodes: real-world 
entities, and compound value types (CVTs)

• CVT: non-binary relationships or events

Entity linking



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• Knowledge base completion

– The final output: 

• An encoder-decoder architecture for varying 
inferential structures

• generated simple artificial natural-language sentences 
describing longer chains of relationships on a 10-by-10 grid.

– Final output:

𝒉0 : The encoded values of the question with the final 
hidden state of an LSTM, written here



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• Experimental results



Scalable Neural Methods for Reasoning With 

a Symbolic Knowledge Base [Cohen et al ’20]

• Experimental results



Neural Query Language: A Knowledge Base 

Query Language for Tensorflow [Cohen et al ‘19]

• Neural Query Language

– A framework for accessing soft symbolic database 
using only differentiable operators

– Simple NQL expressions

• create singleton, unit-weighted sets:



Neural Query Language: A Knowledge Base 

Query Language for Tensorflow [Cohen et al ‘19]



Neural Query Language: A Knowledge Base 

Query Language for Tensorflow [Cohen et al ‘19]



Deep Learning for Symbolic Mathematics 

[Lample and Charton ‘19]

• Seq2seq model

– Converting tree (math expression) to sequence

– Use automatically generated training sets

• Accuracy of our models on integration and 
differential equation solving



Deep Learning for Symbolic Mathematics 

[Lample and Charton ‘19]

• Comparison of our model with Mathematica, 
Maple and Matlab on a test set of 500 
equations



Deep Learning for Symbolic Mathematics 

[Lample and Charton ‘19]

• Examples of problems that our model is able 
to solve, on which Mathematica and Matlab
were not able to find a soluti



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Logic rules: provide a flexible declarative language for 
communicating high-level cognition and expressing 
structured knowledge
– Desirable to integrate logic rules into DNNs, to transfer human 

intention and domain knowledge to neural models, and regulate 
the learning process

• Present a framework capable of enhancing general types of 
neural networks with logic rule knowledge. 

• Previous works in exploiting a priori knowledge in general 
neural architectures
– Augments each raw data instance with useful features while 

network training (Collobert et al., 2011)
• However, is still limited to instance-label supervision and suffers from the 

same issues mentioned above. 
• Besides, a large variety of structural knowledge cannot be naturally 

encoded in the feature label form.



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Iterative rule knowledge distillation procedure
– Learn simultaneously from labeled instances as well as 

logic rules

– Transfers the structured information encoded in the 
logic rules into the network parameters

– Combination of the knowledge distillation [Hinton et al., 
2015; Bucilu et al., 2006] and the posterior 
regularization (PR) method [Ganchev et al., 2010]



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

At each iteration, 
• Teacher network construction (projection): the teacher network is obtained by 

projecting the student network to a rule-regularized subspace (red dashed arrow)
• Back propagation: the student network is updated to balance between emulating 

the teacher’s output and predicting the true labels (black/blue solid arrows).



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Learning Resources: Instances and Rules
– Assume we have input variable                and target 

variable

– K-way classification setting: 

• : the K-dimensional probability simplex

• : a one-hot encoding of the class label

• :   the training data

– : a set of first-order logic (FOL) 
rules with confidences 

– : the set of groundings of 𝑅𝑙

the lth rule over the input-target space 
(𝑋 , 𝑌)



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Soft logic for the FOL rules
– Allows continuous truth values from the interval [0, 1]

– Reformulate Boolean logic operators:



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Rule Knowledge Distillation
– : a conditional probability using a softmax

output layer that produces a K-dimensional soft 
prediction vector

– : a K-dimensional soft prediction vector

– 𝑞(𝒚|𝒙): a rule-regularized projection of 𝑝𝜃(𝒚|𝒙)

– In each iteration 𝒒 is constructed by projecting 𝑝𝜃 into a 
subspace constrained by the rules, and thus has 
desirable properties

– The prediction behavior of 𝑞 reveals the information of 
the regularized subspace and structured rules



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Rule Knowledge Distillation
– Emulating the 𝑞 outputs serves to transfer this 

knowledge into 𝑝𝜃.

– The objective function

– 𝑝𝜃(𝒚|𝒙): the student

– 𝑞(𝒚|𝒙): teacher

the soft prediction vector 
of 𝑞 on 𝑥𝑛 at iteration 𝑡

the imitation parameter calibrating 
the relative importance of the two 
objectives



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]
• Teacher Network Construction

– Find the optimal 𝑞 that fits the rules while at the same 
time staying close to 𝑝𝜃
• 1)

• 2) measure the closeness between 𝑞 and 𝑝𝜃 with KL-divergence

– The optimization problem:

• Can be seen as projecting 𝑝𝜃 into the constrained subspace



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Experiments: Sentiment classification 

– Logic rules

• consider sentences S with an “A-but-B” structure

• expect the sentiment of the whole sentence to be 
consistent with the sentiment of clause B

• According to the soft logic, the truth value of the logic rule 
when S has the ‘A-but-B’ structure:

• for 𝑦 = +

• for 𝑦 = −

the element of
𝜎𝜃(𝐵) for class ’+’



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Sentiment classification 



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Named Entity Recognition
– Logic Rules

– Leverage the list structures within and across sentences 
of the same documents.
• E.g.) “1. Juventus, 2. Barcelona, 3. ...”

– 𝑐(·) collapses the probability mass on the labels with 
the same categories into a single probability
• yielding a vector with length equaling to the number of 

categories



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Experiment results

– Sentiment classification



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Experiment results

– Sentiment classification



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Experiment results

– Sentiment classification

semi-supervised learning where the 
remaining training data are used as 
unlabeled examples



Harnessing deep neural networks 

with logic rules [Hu et al ‘16]

• Experiment results

– NER



The Consciousness Prior [Bengio ’17]

• Kahneman’s system 2 cognitive abilities 
[Kahneman, 2011]

• System 1 tasks 
– Align well with the current successful applications 

of deep learning
• E.g.) 

– low-level perception (and to a lesser extent low-level action) 

– intuitive knowledge (e.g. knowing that a particular Go move is 
good or that a given picture contains the image of a dog), i.e., 
knowledge which is difficult to verbalize, and which can 
typically be applied very quickly (in less than a second).



The Consciousness Prior [Bengio ’17]

• Kahneman’s system 2 cognitive abilities [Kahneman, 
2011]

• System 2 cognitive abilities 
– can be described verbally, and thus includes the part of 

our cognitive abilities which we can communicate 
explicitly to a computer (typically as a sequence of 
computational steps)

– Include things like reasoning, planning and imagination. 

– Typical system 2 tasks require a sequence of conscious 
steps, also means that they tend to take more time than 
system 1 tasks. 

– Closely related to consciousness



The Consciousness Prior [Bengio ’17]

• Global Workspace Theory [Baars, 1988, 1997, 2002, Dehaene
and Naccache, 2001, Dehaene et al., 2017]
– Posits that we become aware of specific pieces of information 

which will momentarily form the content of working memory. 
– A conscious thought is thus a set of these elements of which we 

have become aware, joined together and made globally available 
to other computational processes taking place in the brain at an 
unconscious level. 

• Consciousness thus provides a form of bottleneck for 
information which has a strong influence on 
– Decision-making (voluntary action), 
– Memory (we tend to very quickly forget what we have not been 

consciously aware of), and 
– Perception (we may be blind to elements of our sensory input 

which may distract us from the current focus of conscious 
attention)



The Consciousness Prior [Bengio ’17]
• System 2 Processing

– Global Workspace Theory of Consciousness

• Consciousness Prior Theory
– Extracting a Conscious State

• 𝑥𝑡: the observation at time t for a learning agent

• ℎ𝑡: the unconscious representation state.

• 𝐹: Representation RNN

– Define the conscious state 𝑐𝑡
• as a very low-dimensional set which is derived from ℎ𝑡 by a 

form of attention mechanism applied on ℎ𝑡

• The function C: the consciousness process

𝑧𝑡: a random noise source
𝑚𝑡: the content of memory at time t.



The Consciousness Prior [Bengio ’17]

• Factor Graph

• Sparse Factor Graph
– the consciousness prior amounts to the assumption of 

Sparse Factor Graph: 
• the factor graph for the joint distribution between the 

elements in the set ℎ𝑡 (or more generally for the set containing 
all of the elements in mt and all those one could think of in the 
future) is sparse

• The motivation comes from observing 
– The structure of natural language (broken down into phrases, 

statements or sentences, each of which involves very few words) 

– The structure of formal knowledge representations such as the sets 
of facts and rules studied in classical symbolic / logic AI or in 
ontologies and knowledge graphs



The Consciousness Prior [Bengio ’17]

• Verifier network

– To capture the assumptiontion a conscious thought 
can encapsulate a statement about the future

– match a current representation state ℎ𝑡 with a past 
conscious state 𝑐𝑡−𝑘 stored in memory 𝑚𝑡−1

• indicates the consistency of 𝑐𝑡−𝑘 with ℎ𝑡, e.g., estimating 
the probability of the correspo nding statement being 
true, given ht


