
Neuro-Symbolic Models in Deep Learning

2020.6.10

Seung-Hoon Na

Jeonbuk National University

Contents

• KBANN

• Differentiable ILP

• TensorLog, Neural logic programming, NQL

• Neural theorem prover

• Neural models with Symbolic constraints

• Neural models with Symbolic KBs

Reference
• The symbol grounding problem [Harnad ’90]
• Knowledge-based artificial neural networks [Towell & Shavlik ‘94]
• Harnessing Deep Neural Networks with Logic Rules [Hu et al ‘16]
• TensorLog: Deep Learning Meets Probabilistic DBs [Cohen et al ’16]
• Neural Programmer-Interpreters [Reed & Freitas ‘16]
• Neural theorem prover [Rocktäschel & Riedel ‘16]
• Neural Symbolic Machines [Liang et al ‘16]
• Harnessing Deep Neural Networks with Logic Rules [Hu et al ‘16]
• Towards Deep Symbolic Reinforcement Learning [Garnelo et al ‘16]
• Learning Explanatory Rules from Noisy Data [Evans & Grefenstette ‘17]
• Logic Tensor Networks for Semantic Image Interpretation [Denodello et al ‘17]
• The consciousness prior [Bengio ‘17]
• An Empirical Evaluation of Rule Extraction from Recurrent Neural Networks [Wang et al ’18]
• Neural-Symbolic Computing: An Effective Methodology for Principled Integration of

Machine Learning and Reasoning [Garcez et a’ 19]
• Scalable Neural Methods for Reasoning With a Symbolic Knowledge Base [Cohen et al ’20]
• Neural Query Language: A Knowledge Base Query Language for Tensorflow [Cohen et al

‘19]
• Greedy NTPs [Minervini et al ’19]

Neural-Symbolic Models

• Integrating two most fundamental cognitive abilities:
Learning & reasoning [Valiant]
– 1) Learning: The ability to learn from the environment
– 2) Reasoning: The ability to reason from what has been

learned

• Neural-symbolic computing [Garcez et al ‘19]
– Aims at reconciling the dominating symbolic and

connectionist paradigms of AI under a principled foundation
– Knowledge is represented in symbolic form
– Learning and reasoning are computed by a neural network

➔Make Interpretability & explainability of AI systems
enriched

https://arxiv.org/pdf/1905.06088.pdf

https://arxiv.org/pdf/1905.06088.pdf

Neural-Symbolic Models

• Neural-symbolic computing [Garcez et al ‘19]
– Neural learning and inference under uncertainty

• may address the brittleness of symbolic systems

– Symbolism provides additional knowledge for learning
• May ameliorate neural network’s well-known catastrophic

forgetting or difficulty with extrapolating

– The integration of neural models with logic-based
symbolic models provides an AI system
• Capable of bridging lower-level information processing (for

perception and pattern recognition)

• Higher-level abstract knowledge (for reasoning and
explanation)

Neural-symbolic models

• Neural symbolic computing: Issues [Garcez et al ‘19]
– Representation

• Knowledge representation in NN
– Propositional logic, first-order logic, tensorisation

– Learning
• Inductive logic programming

– 𝜕ILP [Evans and Grenfenstette ’18]

• Horizontal hybrid learning
– Combining logic rules/formula with data during learning, also using the

data to fine-tune knowledge

– E.g.) Self-transfer with symbolic knowledge distillation [Hu et al ‘16]

• Vertical hybrid learning
– Low-level: neural model

– High-level: symbolic knowledge

– E.g.) logic tensor network [Donadello et al ‘17]

Neural-symbolic models

• Neural symbolic computing: Issues [Garcez et al
‘19]
– Reasoning

• Forward /backward chaining

• Neural theorem prover [Rocktaschel et al ’16]

• Neural logic machine [Dong et al ‘19]

– Extraction
• Explainable AI

• Neural program induction
– Neural Programmer-Interpreters [Reed & Freitas ‘16]

KBANN [Towell & Shavlik ‘94]

• The need for hybrid systems
– 1. Hand-built classifiers: Non-learning systems

• Assume that domain theory is complete and correct; but, for most real-
world tasks, completeness and correctness are extremely difficult

• Domain theories can be intractable to use and difficult to modify

– 2. Empirical learning
• An unbounded number of features can be used to describe any object
• Feature construction is a difficult, error-prone, enterprise
• Uncommon cases may be very difficult to correctly handle

– 3. ANN
• Training times are lengthy
• The initial parameters of the network can greatly affect how well

concepts are learned
• There is not yet a problem-independent way to choose a good network

topology
• The lack interpretability

KBANN [Towell & Shavlik ‘94]

• Hybrid Learning systems

– Use both hand-constructed rules and classified
examples during learning

Theory-refinement by KBANN

KBANN [Towell & Shavlik ‘94]

“All-symbolic” theory-refinement

KBANN [Towell & Shavlik ‘94]

• Correspondences between knowledge-bases
and neural networks

KBANN [Towell & Shavlik ‘94]

• The rules-to-networks algorithm of KBANN
– 1. Rewriting: Rewrite rules so that disjuncts are expressed as a

set of rules that each have only one antecedent.
– 2. Mapping: Directly map the rule structure into a neural

network.
– 3. Numbering: Label units in the KBANN-net according to their

“level.”
– 4. Adding hidden units: Add hidden units to the network at

user-specified levels (optional).
– 5. Adding input units: Add units for known input features that

are not referenced in the rules.
– 6. Adding links: Add links not specified by translation between

all units in topologically-contiguous levels.
– 7. Perturbing: Perturb the network by adding near-zero

random numbers to all link weights and biases.

KBANN [Towell & Shavlik ‘94]

• Translation of a conjunctive rule into a KBANN-net

– Weights of all links to positive (i.e., unnegated)
antecedents: 𝜔

– Weights of all links to negated antecedents: −𝜔

– Weight of the bias: (𝑃 −
1

2
)𝜔

• Translation of a conjunctive rule into a KBANN-net

– The same as the case of conjunctive rules, with two
exceptions:

– 1) KBANN rewrites disjuncts as multiple rules with the
same consequent in step 1 of the rules-to-network
algorithm ➔ as independent rules

– 2) The bias in the unit encoding the consequent: 𝜔/2

KBANN [Towell & Shavlik ‘94]

• Task1: Promoter recognition
• Promoters: short DNA sequences that precede the

beginnings of genes

• Task: Given a sequence of 57 consecutive DNA nucleotides,
the reference point for promoter recognition is the site at
which gene transcription begins (if the example is a
promoter). The reference point is located seven nucleotides
from the right of the 57-long sequence

KBANN [Towell & Shavlik ‘94]

• Initial rules for promoter recognition

KBANN [Towell & Shavlik ‘94]

• The initial KBANN-net for promoter recognition

KBANN [Towell & Shavlik ‘94]

• Task2: Splice-junction determination

– Splice junctions: points on a DNA sequence at
which the cell removes superfluous DNA during
the process of protein creation

KBANN [Towell & Shavlik ‘94]

• The initial splice-junction KBANN-net

KBANN [Towell & Shavlik ‘94]

• Test-set performance on the promoter
recognition task

– leaving-one-out cross-validation

KBANN [Towell & Shavlik ‘94]

• Test-set performance, assessed using 10-fold
cross-validation, on the splice-junction
determination task with 1000 training
examples

KBANN [Towell & Shavlik ‘94]

KBANN [Towell & Shavlik ‘94]

• Comparing KBANN to standard backpropagation

– Two hypotheses

– 1) Structure is responsible for KBANN’s strength

– 2) Initial weights are responsible for KBANN’s strength

KBANN [Towell & Shavlik ‘94]

KBANN [Towell & Shavlik ‘94]

The classification performance of standard ANNs that initially have links
only to those features specified by the promoter domain theory.

KBANN [Towell & Shavlik ‘94]

• Discussion

– These tests indicate that alone neither structure nor
weight (focusing) account for the superiority of
KBANN-nets over standard ANNs.

– Therefore, the third hypothesis, that it is a
combination the structure and the focusing weights
that give KBANN its advantage over backpropagation,
is likely true.

KBANN [Towell & Shavlik ‘94]

• Limitations
– The concepts KBANN learns are incomprehensible to humans.

– KBANN’s rule syntax is limited

– There is no mechanism for handling uncertainty in rules

– Neural learning in KBANN ignores the symbolic meaning of the
initial network

– There is no mechanism for changing the topology of the network

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]

• An extensional predicate: a predicate that is wholly
defined by a set of ground atoms

– E.g.) , edge is an extensional predicate

• An intensional predicate: defined by a set of clauses.

– E.g.) connected is an intensional predicate defined by the
clauses:

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]

• Inductive Logic Programming (ILP)
– A tuple of ground atoms

– is a set of background assumptions, a set of
ground atoms

– is a set of positive instances - examples taken
from the extension of the target predicate to be
learned

– is a set of negative instances - examples taken
outside the extension of the target predicate

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]

• Given an ILP problem (𝐵, 𝑃, 𝑁), a solution is a
set 𝑅 of definite clauses such that

• Examples:

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]

• one solution is the set 𝑅:

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]

• Language frame
– target: the target predicate, the intensional

predicate we are trying to learn

– 𝑃𝑒: a set of extensional predicates

– 𝑎𝑟𝑖𝑡𝑦𝑒: a map specifying
the arity of each predicate

– 𝐶: a set of constants

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]

• ILP problem
– 𝐿: a language frame

– 𝐵: a set of background assumptions, ground atoms
formed from the predicates in 𝑃𝑒 and the constants in 𝐶

– 𝑃: a set of positive examples, ground atoms formed
from the target predicate and the constants in C

– 𝑁: a set of negative examples, ground atoms formed
from the target predicate and the constants in C

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]
• Rule template 𝜏 = (𝑣, 𝑖𝑛𝑡): a range of clauses that can be

generated
– 𝑣 ∈ 𝑁: specifies the number of existentially quantified variables

allowed in the clause
– 𝑖𝑛𝑡 ∈ {0, 1}: specifies whether the atoms in the body of the

clause can use intensional predicates (𝑖𝑛𝑡 = 1) or only
extensional predicates (𝑖𝑛𝑡 = 0)

• Program template Π =
– 𝑃𝑎: a set of auxiliary (intensional) predicates; these are the

additional invented predicates used to help define the target
predicate

– 𝑎𝑟𝑖𝑡𝑦𝑎: a map specifying the arity of each auxiliary
predicate

– 𝑟𝑢𝑙𝑒𝑠: a map from each intensional predicate 𝑝 to a pair of rule
templates (𝜏𝑝

1, 𝜏𝑝
2)

– 𝑇 ∈ 𝑁: specifies the max number of steps of forward chaining
inference

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]

– 𝑟𝑢𝑙𝑒𝑠: a map from each intensional predicate 𝑝 to a
pair of rule templates (𝜏𝑝

1, 𝜏𝑝
2)

– 𝑟𝑢𝑙𝑒𝑠

• defines each intensional predicate by a pair of rule templates.

• In our system, we insist, without loss of generality that each
predicate can be defined by exactly two clauses.

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]

• Language:

– Combine the extensional predicates from the language-
frame

– with the intensional predicates from the program
templete

– A language determines the set G of all ground atoms

• E.g.) If we restrict ourselves to nullary, unary, and dyadic
predicates

Learning explanatory rules from noisy

data [Evans and Grefenstette ‘18]
• Generating Clauses

– For each rule template 𝜏, we can generate a set 𝑐𝑙(𝜏) of
clauses that satisfy the template

– Restrictions to keep 𝑐𝑙(𝜏) manageable
• 1) we only consider clauses composed of atoms involving free

variables
– We do not allow any constants in any of our clauses ➔

– If we need a predicate whose meaning depends on particular constants,
then we treat it as an extensional predicate, rather than an intensional
predicate.

• 2) we only allow predicates of arity 0, 1, or 2
– We do not currently support ternary predicates or higher

• 3) we insist that all clauses have exactly two atoms in the body

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]: Example

– The language-frame:

– The ILP problem:

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]: Example

– Use the program template

– Suppose template 𝜏𝑞
1 for 𝑞 is 𝑣 = 0, 𝑖𝑛𝑡 = 0

• Then, clauses generated after pruning are:

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]: Example

– Suppose template 𝜏𝑞
2 for 𝑞 is 𝑣 = 1, 𝑖𝑛𝑡 = 1

• Then, there are 58 clauses generated after pruning, of
which the first 16 are:

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]:

Differentiable ILP (𝜕ILP)
• Valuations

– Given a set 𝐺 of 𝑛 ground atoms, a vector 0, 1 𝑛

mapping each ground atom 𝛾𝑖 ∈ 𝐺 to the real unit
interval

– E.g.)

– One possible valuation on the ground atoms 𝐺 of 𝐿

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]:

Differentiable ILP (𝜕ILP)

• Induction by Gradient Descent

– given an ILP problem , a program template
and a set of clause weights 𝑊, we construct a
differentiable model that implements the conditional
probability of 𝜆 for a ground atom 𝛼

– Loss: The expected negative log likelihood
Clause weights Program template Language frame Background

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]:

Differentiable ILP (𝜕ILP)

• Induction by Gradient Descent

– To calculate the probability of the label 𝜆 given the atom
𝛼, we infer the consequences of applying the rules to
the background facts (using T steps of forward chaining).

– These consequences are called the Conclusion Valuation

– Then, we extract 𝜆 as the probability of α in this
valuation.

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]:

Differentiable ILP (𝜕ILP)

Differentiable Non-differentiable

Valuation
Atom

Takes a set of atoms and converts it into a
valuation mapping the elements of 𝐵 to 1 and all
other elements of 𝐺 to 0

Takes a valuation x and an atom γ and
extracts the value for that atom

a function that assigns each ground
atom a unique integer index

the i’th ground atom
in G for i = 1..n

Learning explanatory rules from noisy data

[Evans and Grefenstette ‘18]:

Differentiable ILP (𝜕ILP)

Differentiable Non-differentiable

produces a set of clauses from a program
template Π and a language 𝐿

All the heavy-lifting takes place.
It performs 𝑇 steps of forward-chaining inference using the
generated clauses, amalgamating the various conclusions together
using the clause weights 𝑊

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

• Rule Weights

– Weights 𝑊:

one matrix for 𝑝 ∈ 𝑃𝑖

the number of clauses generated by the first rule
templates 𝜏𝑝

1, 𝜏𝑝
2

represents how strongly the system believes that
the pair of clauses is the right way to
define the intensional predicate 𝑝

note that each predicate is defined by exactly two clauses

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

• Inference

– The idea: each clause 𝑐 induces a function
on valuations

– E.g.)
Applying treated as a function

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

• : the valuation function corresponding to
the clause

• :another indexed set of functions that combines
the application of two functions &

• The initial value 𝒂0:

Intuitively, 𝒄𝑡
𝑝,𝑗,𝑘

the result of applying one step of forward
chaining inference to at using clauses &

the 𝑗’th clause of the 𝑖’th rule template 𝜏𝑝
𝑖 for

intensional predicate 𝑝.

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

• The weighted average of the , using the
softmax of the weights

• The successor function:
𝒃𝑡
𝑝

are disjoint for different 𝑝, so we

can simply sum these valuations

𝒃𝑡
𝑝

is also zero everywhere except

for the p’th intensional predicate

Differentiable ILP (𝜕ILP) [Evans and Grefenstette ‘18]

• Computing the 𝐹𝑐 Functions

– Let be a set of sets of pairs of indices of
ground atoms for clause 𝑐

– Each 𝑥𝑘 contains all the pairs of indices of atoms that
justify atom 𝛾𝑘 according to the current clause 𝑐:

true if given

there is a substitution 𝜃 such that &

: the head atom produced when applying clause c
to the pair of atoms (𝛾1, 𝛾2)

if the pair of ground atoms 𝛾1, 𝛾2 satisfies the
body of clause 𝑐

If , &

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]
• E.g.) Suppose &

– Then our ground atoms 𝐺 are:

– Suppose clause 𝑐 is:

– Then is:

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

– Transform 𝑋𝑐 into

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

– Slicing 𝑿 into 𝑿1 and 𝑿2

After assembling the elements of a according to the matrix of indices
in 𝑿1 and 𝑿2, we obtain 𝒀1 and 𝒀2:

: the vector of fuzzy conjunctions of all the pairs of atoms that
contribute to the truth of 𝛾𝑘, according to the current clause.

where

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

• Defining fuzzy conjunction

– For other choices, need an operator
satisfying the conditions on a t-norm [Esteva & Godo, 2001]

• commutativity: x ∗ y = y ∗ x

• associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z)

• monotonicity (i): x1 ≤ x2 implies x1 ∗ y ≤ x2 ∗ y

• monotonicity (ii): y1 ≤ y2 implies x ∗ y1 ≤ x ∗ y

• unit (i): x ∗ 1 = x

• unit (ii): x ∗ 0 = 0

– Operators satisfying these conditions include:

• Godel t-norm: x ∗ y = min(x, y)

• Lukasiewicz t-norm: x ∗ y = max(0, x + y − 1)

• Product t-norm: x ∗ y = x · y

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

• Experiments

Differentiable ILP (𝜕ILP)

[Evans and Grefenstette ‘18]

• Experiments

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Neural Programmer-Interpreter (NPI)
– a recurrent and compositional neural network that

learns to represent and execute programs

– Three learnable components:

– 1) a task-agnostic recurrent core

– 2) a persistent key-value program memory

– 3) domain-specific encoders that enable a single NPI to
operate in multiple perceptually diverse environment

– In experiment, a single NPI learns to execute three
compositional programs (addition, sorting, and
canonicalizing 3D models) and all 21 associated
subprograms.

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Neural Programmer-Interpreter (NPI)
– a compositional architecture that learns to represent and

interpret programs.

– The core module: an LSTM-based sequence model
• Input: a learnable program embedding, program arguments

passed on by the calling program, and a feature representation
of the environment.

• Output: a key indicating what program to call next, arguments
for the following program and a flag indicating whether the
program should terminate.

– Includes a learnable key-value memory of program
embeddings.
• Essential for learning and re-using programs in a continual

manner.

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Neural Programmer-Interpreter (NPI)
– In experiments, can learn 21 programs, including addition,

sorting, and trajectory planning from image pixels

– Crucially, this can be achieved using a single core model
with the same parameters shared across all tasks.

– Different environments (for example images, text, and
scratch-pads) may require specific perception modules or
encoders to produce the features used by the shared core,
as well as environment-specific actuators.
• Both perception modules and actuators can be learned from

data when training the NPI architecture

– To train the NPI we use curriculum learning and
supervision via example execution traces.

Neural Programmer-Interpreters

[Reed & Freitas ‘16]
• Neural Programmer-Interpreter (NPI)

– Exhibit strong generalization.
• Specifically, when trained to sort sequences of up to twenty

numbers in length, they can sort much longer sequences at test
time.

• In contrast, standard sequence to sequence LSTMs only exhibit
weak generalization

– Act both as an interpreter and as a programmer
• A trained NPI with fixed parameters and a learned library of

programs, can act both as an interpreter and as a programmer.

• As an interpreter, it takes input in the form of a program embedding
and input data and subsequently executes the program.

• As a programmer, it uses samples drawn from a new task to
generate a new program embedding that can be added to its library
of programs.

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Example execution of canonicalizing 3D car models

The task is to move the camera such that a target angle and elevation are
reached. There is a read-only scratch pad containing the target (angle 1, elevation
2 here). The image encoder is a convnet trained from scratch on pixels

Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Example execution trace of single-digit addition

The task is to perform a single-digit add on the numbers at pointer locations in
the first two rows. At each time step, an observation of the environment (viewed
from each pointer on a scratch pad) is encoded into a fixed-length vector.

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Inference
– : the environment observation at time t

– : the current program arguments
• Here, consider only 3-tuple of integers

– : domain-specific encoder

– : the current program embedding

– key-value memory structures

• : program keys

• : program embeddings

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• 𝑠𝑡: state encoding

• Given 𝑘𝑡, the program embedding is retrieved

• The next environmental state 𝑒𝑡+1 will be
determined by the dynamics of the 𝑒𝑛𝑣

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Training

– Use execution traces and

Program IDs 𝑖𝑡 and 𝑖𝑡+1 are row-indices in 𝑀𝑘𝑒𝑦 and 𝑀𝑝𝑟𝑜𝑔 of the
programs to run at time t and t+1, respectively

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Task: Addition

Actual trace of addition program
generated by NPI

Example scratch pad and pointers used
for computing “96 + 125 = 221”

pointers, one per scratch pad row

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Task: Sorting

Excerpt from the trace of the learned
bubblesort program

Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Task: Canonicalizing 3D models

Importantly, NPI can generalize to car appearances not encountered
in the training set

𝑥: a car rendering at the current posethe pad containing canonical azimuth
and elevation

Neural Programmer-Interpreters [Reed & Freitas ‘16]

– Programs learned for addition, sorting and 3D car canonicalization.

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Sample complexity

– Sorting task

Neural Programmer-Interpreters

[Reed & Freitas ‘16]

• Strong vs. weak generalization

– Sorting task

Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Learning new programs with a fixed core
– Adding a maximum-finding program MAX

• MAX first calls BUBBLESORT and then a new program RJMP, which moves
pointers to the right of the sorted array

– To avoid catastrophic forgetting
• Fix the weights of the core routing module, and only make sparse updates to

the program memory
• When adding a new program the core module’s routing computation will be

completely unaffected;
– All the learning for a new task occurs in program embedding space.

– An old program could mistakenly call a newly added program
• The addition of new programs to the memory adds a new choice of program at

each time step, and an old program could mistakenly call a newly added
program

• To overcome this, two methods are considered
– 1) when learning a new set of program vectors with a fixed core, in practice we train not

only on example traces of the new program, but also traces of existing programs
– 2) Alternatively, a simpler approach is to prevent existing programs from calling

subsequently added programs, allowing addition of new programs without ever looking
back at training data for known programs.

• In either case, note that only the memory slots of the new programs are
updated, and all other weights, including other program embeddings, are fixed

Neural Programmer-Interpreters [Reed & Freitas ‘16]

• Solving multi-task with a single network

– Perform a controlled experiment to compare the
performance of a multi-task NPI with several single-task
NPI models

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
• Deep reinforcement learning (DRL)

• Recently been shown to be effective in a number of domains, including Atari
video games, robotics, and the game of Go

• Can be thought of as a step towards instantiating the formal characterisation of
universal artificial intelligence presented by Hutter, a theoretical framework for
AGI founded on reinforcement learning

• Contemporary DRL systems: Shortcomings
– 1) they inherit from deep learning the need for very large training sets,

which entails that they learn very slowly
– 2) they are brittle in the sense that a trained network that performs well

on one task often performs very poorly on a new task, even if the new
task is very similar to the one it was originally trained on.

– 3) they are strictly reactive, meaning that they do not use high-level
processes such as planning, causal reasoning, or analogical reasoning to
fully exploit the statistical regularities present in the training data.

– 4) they are opaque. It is typically difficult to extract a humanly-
comprehensible chain of reasons for the action choice the system
makes

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
• Propose a novel hybrid reinforcement learning

architecture that combines neural network learning with
aspects of classical symbolic AI

• Classical symbolic AI: Pros
– The use of language-like propositional representations to encode

knowledge

– Thanks to their compositional structure, such representations are
amenable to endless extension and recombination
• This is an essential feature for the acquisition and deployment of high-level

abstract concepts, which are key to general intelligence

– Knowledge expressed in propositional form can be exploited by
multiple high-level reasoning processes and has general-purpose
application across multiple tasks and domains.

– Features such as these, derived from the benefits of human
language, motivated several decades of research in symbolic AI

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Classical symbolic AI: Limits

– The symbol grounding problem

• The symbolic elements of a representation in classical AI – the
constants, functions, and predicates – are typically hand-
crafted, rather than grounded in data from the real world.

• This means their semantics are parasitic on meanings in the
heads of their designers rather than deriving from a direct
connection with the world

• Hand-crafted representations cannot capture the rich statistics
of realworld perceptual data, cannot support ongoing
adaptation to an unknown environment, and are an obvious
barrier to full autonomy

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Deep learning
– Have proven to be remarkably effective for supervised

learning from large datasets using backpropagation.

– Deep learning is therefore already a viable solution to
the symbol grounding problem in the supervised case,
and for the unsupervised case, which is essential for a
full solution, rapid progress is being made

• The approach of this work for the hybrid approach
– The hybrid neural-symbolic reinforcement learning

relies on a deep learning solution to the symbol
grounding problem.

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Four fundamental principles of the architectural
manifesto.
– 1) Conceptual abstraction

• Determining that a new situation is similar or analogous to
one (or several) encountered previously is an operation
fundamental to general intelligence, and to reinforcement
learning in particular

• The present architecture maps high-dimensional raw input
into a lower-dimensional conceptual state space
– It is possible to establish similarity between states using symbolic

methods that operate at a higher level of abstraction.

– Facilitates both data efficient learning and transfer learning as well as
providing a foundation for other high-level cognitive processes such as
planning, innovative problem solving, and communication with other
agents (including humans).

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
– 2) Compositional structure

• A representational medium is required that has a compositional structure.

• Thus use probabilistic first-order logic for the semantic underpinnings of
the low-dimensional conceptual state space representation into which the
neural front end must map the system’s high-dimensional raw input

– 3) Common sense priors
• The everyday physical world is structured according to many other

common sense priors
– Consisting mostly of empty space, it contains a variety of objects that tend to

persist over time and have various attributes such as shape, colour, and texture.

– Objects frequently move, typically in continuous trajectories. Objects participate in
a number of stereotypical events, such as starting to move or coming to a halt,
appearing or disappearing, and coming into contact with other objects.

• Thus graft a suitable ontology onto the underlying representational
language, greatly reducing the learning workload and facilitating various
forms of common sense reasoning

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

– 4) Causal reasoning
• The current generation of DRL architectures eschews model-

based reinforcement learning, ensuring that the resulting
systems are purely reactive

• Instead, the current architecture attempts to discover the
causal structure of the domain, and to encode this as a set of
symbolic causal rules expressed in terms of the common
sense ontology described above

• These causal rules enable conceptual abstraction

• The narrative structure of the ongoing situation needs to be
mapped to the causal structure of a set of previously
encountered situations
– Carry out analogical inference at a more abstract level, and thereby

facilitate the transfer of expertise from one domain to another

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
• Game environment

– The agent (shaped as a ‘+’) has to learn either to avoid or
to collect objects depending on their shape.

– Once the agent reaches an object using one of four
possible move actions (up, down, left, or right), this object
disappears and the agent obtains either a positive or a
negative reward.

– Encountering a circle (‘o’) results in a negative reward
while collecting a cross (‘x’) yields a positive reward

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
• The four different game environments

– Variant 1
• In this environment there are only objects that return negative rewards

(‘o’) and they are positioned in a grid across the screen. This layout is the
same for every new game. Encountering an object returns a score of -1
and at the beginning of the game the player is located in the middle of the
board.

– Variant 2.
• The layout is the same as in version 1 but there are two types of objects.

As before, circles give -1 points and we introduce crosses that return 1
points.

– Variant 3.
• As in version 1 this game only contains objects that return a negative

reward. In order to increase the difficulty of the learning process however,
the position of these objects is determined at random and changes at
every new game.

– Variant 4.
• This version combines the randomness from environment 3 and the

different object types from version 2.

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• The four different game environments
– The agent is represented by the ‘+’ symbol. The static objects

return positive or negative reward depending on their shape
(‘x’ and ‘o’ respectively).

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• The four different game environments
– The agent is represented by the ‘+’ symbol. The static objects

return positive or negative reward depending on their shape
(‘x’ and ‘o’ respectively).

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
• Low-level symbol generation

– Generate, in an unsupervised manner, a set of symbols
that can be used to represent the objects in a scene

– Use a CNN, since such networks are well-suited to feature
extraction, especially from images.
• Train a convolutional autoencoder on 5000 randomly generated

images of varying numbers of game objects sattered across the
screen

– The CNN consists of a 5x5 convolutional layer followed by
a 2x2 pooling layer plus the corresponding decoding
layers

– Directly use the activations across features in the middle
layer of the CNN for the detection of the objects in the
scene.

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]
• Low-level symbol generation

– Object detection and characterization
• 1) first select, for each pixel, the feature with the highest activation

• 2) Then threshold these activation values, forming a list of those that are
sufficiently salient
– Ideally, each member of this list is a representative pixel for a single object.

• 3) The objects identified this way are then assigned a symbolic type
according to the geometric properties computed by the autoencoder
– Procedures for the object identification

– Compare the activation spectra of the salient pixels across features.

» This comparison is carried out using the sum of the squared distances, which
involves setting an ad hoc threshold for the maximal ditance between two
objects of the same type.

➔ The information extracted at this stage consists of a symbolic
representation of the positions of salient objects in the frame
along with their types

Towards Deep Symbolic Reinforcement Learning

[Garnelo et al ‘16]
Unsupervised extraction of low-level symbols from the information provided
by the convolutional autoencoder

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Representation building
– Track the low-level symbols across frames in order to

observe and learn from their dynamics

– Take account of the first common sense prior: object
persistence across time

• Based on three measures

– 1) Spatial proximity

• Build in the notion of continuity by defining the likelihood to
be inversely proportional to the distance between two
objects in consecutive frames

the Euclidean distance between two
objects 𝑖1

𝑡 and 𝑖2
𝑡 in consecutive frames

𝑡 and 𝑡 + 1 respectively.

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Representation building
– 2) Type transitions

• Given the types of two objects 𝜏(𝑖1
𝑡) = 𝜏𝑖1 and 𝜏(𝑖2

𝑡) = 𝜏𝑖2 in
consecutive frames, we can determine the probability that
they are the same object that has changed from one type to
the other
– By learning a transition matrix T from previously observed frames

• Introduce the object type 0: corresponds to ’non-existent’
– To describe all transitions, including the ones that correspond to

objects appearing and disappearing

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Representation building
– 3) Neighbourhood

• The neighbourhood of an object will typically be similar from
one frame to the next.

• Δ𝑁: The difference in the number of neighbours between
two objects
– Define a neighbour to be any object, 𝑖𝑛, within a distance 𝑑max of

another object 𝑖1.

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Symbolic interactions and dynamics
– The final, reinforcement learning stage of the

algorithm will require information about the
dynamics of objects and their spatial interactions

– 1) consider the difference between frames rather
than working with single frames, thus moving to a
temporally extended representation

– 2) Represent the positions of objects relative to
other objects rather than using absolute coordinates.
• only record relative positions of objects that lie within a

certain maximum distance of each other.

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Approximate the optimal policy using tabular
Q-learning with the update rule for the
interaction between objects of types i and j

• choose the next action that will return the
highest reward overall

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Experiment results

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Experiment results

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Comparison between DQN and symbolic approach

– Average percentage of objects collected over 200 games

The grid environment The random environment

Towards Deep Symbolic Reinforcement

Learning [Garnelo et al ‘16]

• Average percentage of objects collected over 200 games that return
positive reward by an agent that is trained on the grid environment
and tested on random environments. (domain transfer)

TensorLog [Cohen ‘16]

• Goal: Integrate probabilistic logical reasoning with the
powerful infrastructure of the deep learning
– To enable deep learners to incorporate first-order probabilistic KBs

– conversely, to enable probabilistic reasoning over the outputs of deep
learners

• Deductive database (DDB): a database 𝐷𝐵 with a theory
𝑇 defines a set of facts 𝑓1, ⋯ , 𝑓𝑛 which can be derived by accessing
the database and reasoning using 𝑇

• Probabilistic deductive database (PrDDB)
– A soft extension of a DDB, where

– Derived facts have a numeric confidence, augmenting DB with
a set of parameters Θ

– Computation of confidences is computationally expensive,
often not conductive to learning Θ

TensorLog [Cohen ‘16]

• TensorLog:
– Probabilistic deductive database (PrDDB) in which reasoning

uses a differentiable process

– Each clause is converted into certain type of factor graph
• Each logical variable is associated with a random variable in the

factor graph

• Each literal is associated with a factor

– Inference is linear in database size and the num of massage-
passing steps used in BP

– Inference is also differentiable

– Subsumes some prior probabilistic logic programming
models, including several variants of stochastic logic
programs (SLPs)

TensorLog [Cohen ‘16]

• A motivating example: A simple theory for QA against a KB

• The goal of learning is to find appropriate weights for the soft predicate facts

• TensorLog: can learn from 10,000 questions against a KB of 420,00 triples, in around
200 seconds per epoch in a single GPU

Soft KB predicates

For NLP tasks, the KB stores word n-grams in the question, the
strings that are possible names of an entity, and the words that are
contained in these names and n-grams

TensorLog [Cohen ’16]: Motivation

– Inefficiency in integration of PrDDB and deep learning

• Integration of probabilistic logics into deep learners is that most
existing first-order probabilistic logics are not easily adapted to
evaluation on a GPU

– The most common approach to first-order inference: the grounding

• To ground a first-order logic by converting it to a zeroth-order format,
such as a boolean formula or a probabilistic graphical model

Grounding

But, groundings can be very large: a grounding of size
𝑜 𝐶 𝑛 is produced by a rule:

the set of objects in the KB

Even this small rule gives a grounding
of size 𝑜(𝐶 3)

TensorLog [Cohen ’16]: Main Idea

• 1) Propose the use of a restricted family of probabilistic
deductive databases (PrDDBs) called polytree-limited
stochastic deductive knowledge graphs (ptree-SDKGs)

– Ptree-SDKGs are tractable, but still reasonably expressive

– Ptree-SDKGs are in some sense maximally expressive
• we cannot drop the polytree restriction, or switch to a more

conventional possible-worlds semantics, without making inference
intractable

• 2) Present an inference algorithm for ptree-SDKGs

– performs inference with a dynamic-programming method
• Formalize as belief propagation on a certain factor graph

TensorLog [Cohen ’16]

• Deductive database (DDB)

TensorLog [Cohen ’16]

• Deductive database (DDB)
– : A database, which is a set

of ground facts

– : A theory, which is a set of function-free Horn clauses

– A clause is written as:
• 𝐴: the head of the clause, 𝐵1, . . . , 𝐵𝑘: the body

• 𝐴 & 𝐵𝑖: literals

• Clauses can be understood as logical implications

– A literal has the form:
• 𝑝: a predicate symbol

• 𝑋𝑖: either logical variables or database constants

• Arity: the number of arguments k to a literal

– : the set of all database constants
• We assume that constants appear only in the database, not in the

theory

TensorLog [Cohen ’16]

• Deductive database (DDB)

– Knowledge graph (KG)

• The database where all literals are binary or unary

• A deductive knowledge graph (DKG)
– The program for KG

– : a substitution, a mapping from logical variables to
constants in 𝐶

– : the result of replacing all logical variables 𝑋 in
the literal 𝐿 with 𝜎 𝑋

– A set of tuples 𝑆 is deductively closed with respect to
the clause iff for all substitutions
either

Deductively closed ➔ KG completeness

TensorLog [Cohen ’16]

• Deductive database (DDB)

Not deductively closed with respect to the clause 1

unless it also contains uncle(chip,liam) and uncle(chip,dave)

TensorLog [Cohen ’16]

• Deductive database (DDB)
• E.g.) Deductively closed: If 𝑆 contains the facts in our example,
𝑆 is not deductively closed with respect to the clause 1 unless
it also contains 𝑢𝑛𝑐𝑙𝑒(𝑙𝑖𝑎𝑚, 𝑐ℎ𝑖𝑝) and 𝑢𝑛𝑐𝑙𝑒 𝑑𝑎𝑣𝑒, 𝑐ℎ𝑖𝑝

– : the smallest superset of 𝐷𝐵 that is
deductively closed with respect to every clause in T

• This least model is unique, and in the usual DDB semantics

• a ground fact 𝑓 is considered “true” iff

– Bottom-up inference

• Explicitly generates the set 𝑀𝑜𝑑𝑒𝑙(𝐷𝐵, 𝑇) iteratively
– Repeatedly extends a set of facts 𝑆, which initially contains just the

database facts, by looking for rules which “fire” on 𝑆 and using them
derive new facts

• This can be much larger than the original database

TensorLog [Cohen ’16]

• Deductive database (DDB)

– Top-down inference

• Does not compute a least model explicitly

• instead, it takes as input a query fact 𝑓 and determines
whether 𝑓 is derivable, i.e., if

• E.g.) find all values of 𝑌 such that 𝑢𝑛𝑐𝑙𝑒(𝑗𝑜𝑒, 𝑌) holds:
– Formally, given

find all which are instances of Q, where an 𝑓
is defined to be an instance of 𝑄 iff

• a unit clause: a fact clause

• : denote the theory T augmented with unit clauses
for each database fact

TensorLog [Cohen ’16]

• Top-down theorem prover

– Root vertex: a pair 𝑆, 𝐿 = (𝑄, 𝑄)

– For any vertex (𝑆, 𝐿) where 𝐿 = 𝐺1, ⋯ , 𝐺𝑛 , there is a
child vertex (𝑆′, 𝐿′) for each rule

and σ for which 𝜎 𝐺𝑖 =
𝜎 𝐴 . Then,

• 𝐿’ is empty: a solution vertex

• 𝐿’ is smaller than 𝐿 if the clause selected is a unit clause (i.e.,
a fact).

– In any solution vertex (𝑆, 𝐿), if 𝑆 contains no variables,
then 𝑆 is an instance of 𝑄 and is in 𝑀𝑜𝑑𝑒𝑙(𝑇 , 𝐷𝐵)

TensorLog [Cohen ’16]

• Top-down theorem prover

– An example proof tree.

TensorLog [Cohen ’16]

• Stochastic logic programs (SLPs) [Cussens ‘01]

– Putting probabilistic reasoning in first-order logics

• Theory 𝑇 is extended by associating with each rule 𝑟 a non-
negative scalar weight 𝜃𝑟

– The weight of an edge: when a rule 𝑟 is used to create an
edge , this edge is given weight 𝜃𝑟

– The weight of a path :

• The product of the weights of the edges in the path

– The weight of a node 𝑣 in the proof graph for Q

• the sum of the weights of the paths
from the root node to 𝑣

TensorLog [Cohen ’16]

• If 𝑟𝑣,𝑣′ is the rule used for the edge from 𝑣 to 𝑣’

• The weight of

• The weight of an answer 𝑓 to query 𝑄

• The conditional probability distribution over
answers 𝑓 to the query 𝑄:

TensorLog [Cohen ’16]
• Stochastic logic programs (SLPs)

– Thought of as logic-program analogs to probabilistic
programming languages like Church [Goodman et al ’12]

– Normalized SLPs are also conceptually quite similar to
stochastic grammars such as PCFG

• Stochastic deductive knowledge graph (SDKG)
– Three restrictions on SLPs:
– 1) restrict the program to be in DDB form

• Consist of a theory T which contains function-free clauses, and a
database DB (of unit clauses)

– 2) restrict all predicates to be unary or binary
– 3) restrict the clauses in the theory T to have weight 1, so

that the only meaningful weights are associated with
database facts.

TensorLog [Cohen ’16]

• Complexity of reasoning with stochastic deductive
KGs

• The similarity between SLPs and probabilistic context-free
grammars suggests that efficient schemes might exist, since
there are efficient dynamic programming methods for
probabilistic parsing. Unfortunately, this is not the case:

• even for the restricted case of SDKGs, computing P(f|Q) is
#P-hard

TensorLog [Cohen ’16]

• Fortunately, one further restriction makes SLP
theorem-proving efficient.
– For a theory clause define the literal

influence graph for 𝑟 to be a graph where each 𝐵𝑖 is a vertex,
and there is an edge from 𝐵𝑖 to 𝐵𝑗 iff they share a variable

– A graph is a polytree iff there is at most one path between
any pair of vertices: if each strongly connected component of the
graph is a tree

• A theory is polytree-limited iff the influence graph for
every clause is a polytree ➔ This additional restriction
makes inference tractable

TensorLog [Cohen ’16]: Differentiable inference

for polytree-limited SDKGs

• Inference for polytree-limited SDKGs

– Formalize this method as belief propagation on a
certain factor graph

• The random variables in the factor graph correspond to
possible bindings to a logical variable in a proof

• The factors correspond to database predicates

– Though simple, a novel method for first-order
probabilistic inference

• While other common methods use Bernoulli random
variables which correspond to potential ground database
facts (i.e., elements of the Herbrand base of the
program.)

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Numeric encoding of PrDDB’s and queries

– for a constant c ∈ C,

• a one hot row-vector representation for c

• 𝒖 𝑐 = 1 & 𝒖 𝑐′ = 0 for 𝑐′ ≠ 𝑐

– : a sparse matrix for a binary predicate 𝑝

– : a row vector for a unary predicate 𝑞

– Collectively, are viewed as a
three-dimensional tensor

Parameters

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• An argument-retrieval query

– query of the form 𝑝(𝑐, 𝑌) or 𝑝(𝑌, 𝑐)

• p(c,Y) has an input-output mode of in,out (io)

• p(Y, c) has out,in (oi)

– The response to a query p(c,Y)

• a distribution over possible substitutions for Y

• encoded as a vector such that for all constants 𝑑 ∈ 𝐶

– Notation : formally if is the set of facts
𝑓 that “match” (are instances of) 𝑝(𝑐, 𝑌) 𝑄 = 𝑝(𝑐, 𝑌)

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• More complex queries can be answered by
extending the theory

– To find

– We add the clause 𝑞1(𝑌) to the theory

– and find the answer to

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• : for predicate p, a query response function for all
queries with predicate p and mode io

• : the unnormalized version of this function, i.e.,
the weight of f according to

• : special DB predicate

is conceptually true for any pair of a,b

need not be explicitly stored.

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Efficient inference for one-clause theories

– Consider first programs containing only one non-
recursive polytree-limited clause 𝑟

– Build a factor graph 𝐺𝑟 for 𝑟

• for each logical variable 𝑊 in the body ➔ there is a
random variable 𝑊

• for every literal 𝑞(𝑊𝑖 ,𝑊𝑗) in the body of the clause, there

is a factor with potentials 𝑀𝑞 linking variables 𝑊𝑖 and 𝑊𝑗

• Finally, if the factor graph is disconnected, we add any

factors between the components until it is connected

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Examples of factor graphs for the example theory
The variables appearing in the clause’s head are starred

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Efficient inference for one-clause theories

– BP on the factor graph 𝐺𝑟
• Compute the conditional vectors and

• E.g.) to compute 𝑓𝑖𝑜
𝑝
(𝒖𝑐) for clause 1,

– 1) set the message for the evidence variable X to 𝒖𝑐,

– 2) run BP

– 3) read out as the value of 𝑓 the marginal distribution for 𝑌

• The correctness of BP inference follow immediately from the
convergence of belief propagation on factor graphs for
polytrees [Kschischang et al ’01]

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Differentiable inference for one-clause theories

– “unroll” the message-passing steps into a series of operations

If then replace with

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

the Hadamard (componentwise) product, and if 𝑘 = 0
an all-ones vector is returned

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Chains of messages constructed for the three
sample clauses

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Differentiable inference for one-clause theories

– Belief propagation to compute

• Emit a series of operations, and return the name of a register
that contains the unnormalized conditional probability vector
for the output variable.

• Use for the unnormalized version of the query
response function build from 𝐺𝑟

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Extension to Multi-clause programs
– Extend to theories with many clauses

– if there are several clauses with the same predicate symbol
in the head, we simply sum the unnormalized query
response functions

– E.g) for the predicate uncle, defined by rules 𝑟1 and 𝑟2,
we would define

– This is equivalent to building a new factor graph 𝐺,
• Approximately ∪𝑖 𝐺𝑟𝑖, together global input and output variables,

• plus a factor that constrains the input variables of the 𝐺𝑟𝑖’s to be
equal,

• plus a factor that constrains the output variable of 𝐺 to be the sum
of the outputs of the 𝐺𝑟𝑖’s.

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Extension to Multi-clause programs

– A more complex situation is when the clauses for
one predicate, p, use a second theory predicate q,
in their body

– E.g.) the case if aunt was also defined in the theory,
rather than the database

• Replace the message-passing operations
with , or with

• This is equivalent to taking the factor graph for 𝑞 and
“splicing” it into the graph for 𝑝

TensorLog [Cohen ’16]: Differentiable

inference for polytree-limited SDKGs

• Extension to Multi-clause programs
– Adding depth argument 𝑑

• Allow function calls to recurse to a fixed maximum depth

• Ensure function calls inside to q always call the next-deeper
version of the function for q, i.e.,

– Computationally, the algorithm we describe is quite efficient.
• Assuming the matrices 𝑴𝑝 exist, the additional memory needed for

the factor-graph 𝐺𝑟 is linear in the size of the clause 𝑟
– The compilation to response functions is linear in the theory size and the

number of steps of BP.

• For ptree-SDKGs, 𝐺𝑟 is a tree, the number of message-passing steps
is also linear.
– Message size is (by design) limited to |C|, and is often smaller in practice,

due to sparsity or type restrictions

TensorLog [Cohen ’16]

…

TensorLog [Cohen ’16]

• Experiments

– Inference task

• “Friends and smokers” inference task.

• Path-finding task in a grid

TensorLog [Cohen ’16]
• Experiments

– Learning task

• Relational learning tasks

– Path finding after learning

TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies

• The KB consists of over 420k tuples containing
information about 10 relations and 16k movies

• Encode the questions into the KB by extending it with two
additional relations

TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies

• The entities mentioned in a question were extracted by
looking for every longest match to a name in the KB

• The features of a question are simply the words in the
question (minus a short stoplist)

• The simple longest-exact-match heuristic described above
identifies entities accurately for this dataset, ➔ take
mentionsEntity as a hard KB predicate.

• The final theory contains two rules and two “soft” unary
relations for
each relation 𝑅 in the original movie KB

TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies

• The final theory contains two rules and two “soft” unary
relations for
each relation 𝑅 in the original movie KB

• for the relation directedBy the theory has the two rules

acts as a linear classifier for that rule.

TensorLog [Cohen ’16]

• Experiments

– KBQA on WikiMovies

Neural Logic Programming [Yang et al ‘17]

• TensorLog
– Limited as a learning system because it only learns parameters, not rules

• Neural Logic Programming
– learn parameters and structure simultaneously in a differentiable

framework
– Based on a neural controller system with an attention mechanism and

memory
• Sequentially compose the primitive differentiable operations used by TensorLog

– At each stage of the computation, the controller uses attention to “softly”
choose a subset of TensorLog’s operations, and then performs the
operations with contents selected from the memory

Neural Logic Programming [Yang et al ‘17]
• Knowledge base

– Collections of relational data of the format
Relation(head,tail)
• head and tail: entities

• Relation: a binary relation between entities

• E.g.) HasOfficeInCity(New York,Uber) and
CityInCountry(USA,New York).

• Knowledge base reasoning task
– Consists of a query , an entity tail that the query is

about, and an entity head that is the answer to the
query

– Goal: to retrieve a ranked list of entities based on the
query such that the desired answer (i.e. head) is
ranked as high as possible.

Neural Logic Programming [Yang et al ‘17]

• Knowledge base reasoning task
– for each query, we are interested in learning weighted

chain-like logical rules of the following form:

– During inference, given an entity x, the score of each y:

• The sum of the confidence of rules that imply query(y,x)

– Then return a ranked list of entities

• Where higher the score implies higher the ranking.

confidence relations in the knowledge base.

Neural Logic Programming [Yang et al ‘17]

• TensorLog for KB reasoning

– : the set of all entities,

• each entity i is associated with a one-hot vector

– : the set of all binary relations

– : a matrix in for each relation R

• 1 if in the KB

– For each query, we want to learn

indexes over all possible rules

an ordered list of all relations in this particular rule

Neural Logic Programming [Yang et al ‘17]

• TensorLog for KB reasoning

– For any entity ,

– During inference, given an entity 𝑣𝑥, the score of
each retrieved entity is then equivalent to the
entries in the vector 𝒔

– Then, learning problem for each query is:

To be learned

Neural Logic Programming [Yang et al ‘17]

• Learning the logical rules
– Difficult to formulate a differentiable process to directly

learn the parameters and the structure
• because each parameter is associated with a particular rule,

and enumerating rules is an inherently discrete task.

– Alternatively, rewrite the original equation with a
different parametrization

• The key difference is that here we associate each relation in
the rule with a weight

• But, this parameterization is not sufficiently expressive, as it
assumes that all rules are of the same length

• Thus, we introduce a recurrent formulation

the number of relations in the KB

The max length of rules

Neural Logic Programming [Yang et al ‘17]

• The recurrent formulation
– Use auxiliary memory vectors 𝒖𝑡
– Initially the memory vector is set to the given entity 𝒗𝑥.
– The model first computes a weighted average of previous

memory vectors using the memory attention vector 𝒃𝑡
– Then the model “softly” applies the TensorLog operators

using the operator attention vector 𝒂𝑡
• This formulation allows the model to apply the TensorLog

operators on all previous partial inference results, instead of just
the last step’s.

– Finally, the model computes a weighted average of all
memory vectors, thus using attention to select the proper
rule length

– Given the recurrent formulation, the learnable parameters
for each query are:

Neural Logic Programming [Yang et al ‘17]

• A neural controller system

– Learn the operator and memory attention vectors.

• Use recurrent neural networks not only because they fit with
the recurrent formulation, but also because it is likely that
current step’s attentions are dependent on previous steps’.

– The network predicts operator and memory attention
vectors:

Neural Logic Programming [Yang et al ‘17]

• The neural controller system

Neural Logic Programming [Yang et al ‘17]

– The input is the query for 1 ≤ t ≤ T and a special END token when t = T + 1

– The memory holds each step’s partial inference results

– The final inference result 𝒖 is just the last vector in memory

– The objective is to maximize

• The recurrent formulation

Neural Logic Programming [Yang et al ‘17]

• Recovering logical rules from the neural controller system

– write rules and their confidences in terms of the attention
vectors

Neural Logic Programming [Yang et al ‘17]

• Experiments: Statistical relation learning

Neural Logic Programming [Yang et al ‘17]

• Grid path finding

– query: randomly generated by combining a series
of directions, such as North_SouthWest

Neural Logic Programming [Yang et al ‘17]

• Knowledge base completion

– query: E.g.) HasOfficeInCountry and Uber

• Use an embedding lookup table for each query

Neural Logic Programming [Yang et al ‘17]

• Examples of logical rules learned by Neural LP on FB15KSelected.
The letters A,B,C are ungrounded logic variables.

Neural Logic Programming [Yang et al ‘17]

• Inductive knowledge base completion

– conduct experiments where training and testing
use disjoint sets of entities

Neural Logic Programming [Yang et al ‘17]

• Question answering against knowledge base

– WikiMovies

– query: the average of the embeddings of the words

Neural Logic Programming [Yang et al ‘17]

• Question answering against knowledge base

– Visualization of learned logical rules

Scalable Neural Methods for Reasoning With a

Symbolic Knowledge Base [Cohen et al ’20]

• Propose a sparse-matrix reified KB

– representing a symbolic KB

– Enables neural modules that are

• 1) fully differentiable,

• 2) faithful to the original semantics of the KB,

• 3) expressive enough to model multi-hop inferences, and

• 4) scalable enough to use with realistically large KBs

Scalable Neural Methods for Reasoning With a

Symbolic Knowledge Base [Cohen et al ’20]

• Summary of notation

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• Weighted sets as “k-hot” vectors

– Each element x of weighted set 𝑋 is associated with a non-
negative real number

– a weight less than 1: a confidence that the set contains x

– weights more than 1: make X a multiset

– X is a hard set if all elements of X have weight 1

– If X is a hard entity set, then this will be a “k-hot” vector, for
k = |X|

– The support of x: the set of indices of 𝒙 with non-zero
values

Scalable Neural Methods for Reasoning With a

Symbolic Knowledge Base [Cohen et al ’20]

• Sparse vs. dense matrices for relations

– for all but the smallest KBs, a relation matrix must be
implemented using a sparse matrix data structure

• a sparse coordinate pair (COO) encoding: with a COO
encoding, each KB fact requires storing only two integers and
one float

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– r-neighbors of an entity 𝑥𝑖: the set of entities 𝑥𝑗
that are connected to 𝑥𝑖 by an edge labeled r

– R-neighbors: Extension to relation sets

– E.g)

– The answer to 𝑞 is the set R-neighbors(X) with

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– Approximate the R-neighbors computation with
differentiable operations

• Can be performed on the vectors encoding the sets X
and R

– The relation-set following operation for x and r

Scalable Neural Methods for Reasoning With a

Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– Baseline implementations: Not efficient

• The naive mixing
– But, tensorflow does not support general sparse tensor contractions,

it is not always possible to extend sparse-matrix computations to
minibatches

• The late mixing: mixes the output of many single-relation
following steps, rather than mixing the KB itself

– can be extended easily to a minibatches

Scalable Neural Methods for Reasoning With a

Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

– A reified knowledge base
• Represent each KB assertion as a tuple (𝑖, 𝑗, 𝑘)

• : l-th triple

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• The relation-set following operation

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• Experiments: Scalability
– the speed of the key-value network is similar to the reified KB for only four

relations, however it is about 7x slower for 50 relations and 10k entities

– Comparing to the key-value network, the reified KB scales much better,
and can handle 10x as many entities and 20x as many relations

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• KBQA for multi-hop questions

– 𝒙0: the set of entities associated with q

• KBQA on FreeBase

– FreeBase contains two kinds of nodes: real-world
entities, and compound value types (CVTs)

• CVT: non-binary relationships or events

Entity linking

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• Knowledge base completion

– The final output:

• An encoder-decoder architecture for varying
inferential structures

• generated simple artificial natural-language sentences
describing longer chains of relationships on a 10-by-10 grid.

– Final output:

𝒉0 : The encoded values of the question with the final
hidden state of an LSTM, written here

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• Experimental results

Scalable Neural Methods for Reasoning With

a Symbolic Knowledge Base [Cohen et al ’20]

• Experimental results

Neural Query Language: A Knowledge Base

Query Language for Tensorflow [Cohen et al ‘19]

• Neural Query Language

– A framework for accessing soft symbolic database
using only differentiable operators

– Simple NQL expressions

• create singleton, unit-weighted sets:

Neural Query Language: A Knowledge Base

Query Language for Tensorflow [Cohen et al ‘19]

Neural Query Language: A Knowledge Base

Query Language for Tensorflow [Cohen et al ‘19]

Deep Learning for Symbolic Mathematics

[Lample and Charton ‘19]

• Seq2seq model

– Converting tree (math expression) to sequence

– Use automatically generated training sets

• Accuracy of our models on integration and
differential equation solving

Deep Learning for Symbolic Mathematics

[Lample and Charton ‘19]

• Comparison of our model with Mathematica,
Maple and Matlab on a test set of 500
equations

Deep Learning for Symbolic Mathematics

[Lample and Charton ‘19]

• Examples of problems that our model is able
to solve, on which Mathematica and Matlab
were not able to find a soluti

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Logic rules: provide a flexible declarative language for
communicating high-level cognition and expressing
structured knowledge
– Desirable to integrate logic rules into DNNs, to transfer human

intention and domain knowledge to neural models, and regulate
the learning process

• Present a framework capable of enhancing general types of
neural networks with logic rule knowledge.

• Previous works in exploiting a priori knowledge in general
neural architectures
– Augments each raw data instance with useful features while

network training (Collobert et al., 2011)
• However, is still limited to instance-label supervision and suffers from the

same issues mentioned above.
• Besides, a large variety of structural knowledge cannot be naturally

encoded in the feature label form.

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Iterative rule knowledge distillation procedure
– Learn simultaneously from labeled instances as well as

logic rules

– Transfers the structured information encoded in the
logic rules into the network parameters

– Combination of the knowledge distillation [Hinton et al.,
2015; Bucilu et al., 2006] and the posterior
regularization (PR) method [Ganchev et al., 2010]

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

At each iteration,
• Teacher network construction (projection): the teacher network is obtained by

projecting the student network to a rule-regularized subspace (red dashed arrow)
• Back propagation: the student network is updated to balance between emulating

the teacher’s output and predicting the true labels (black/blue solid arrows).

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Learning Resources: Instances and Rules
– Assume we have input variable and target

variable

– K-way classification setting:

• : the K-dimensional probability simplex

• : a one-hot encoding of the class label

• : the training data

– : a set of first-order logic (FOL)
rules with confidences

– : the set of groundings of 𝑅𝑙

the lth rule over the input-target space
(𝑋 , 𝑌)

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Soft logic for the FOL rules
– Allows continuous truth values from the interval [0, 1]

– Reformulate Boolean logic operators:

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Rule Knowledge Distillation
– : a conditional probability using a softmax

output layer that produces a K-dimensional soft
prediction vector

– : a K-dimensional soft prediction vector

– 𝑞(𝒚|𝒙): a rule-regularized projection of 𝑝𝜃(𝒚|𝒙)

– In each iteration 𝒒 is constructed by projecting 𝑝𝜃 into a
subspace constrained by the rules, and thus has
desirable properties

– The prediction behavior of 𝑞 reveals the information of
the regularized subspace and structured rules

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Rule Knowledge Distillation
– Emulating the 𝑞 outputs serves to transfer this

knowledge into 𝑝𝜃.

– The objective function

– 𝑝𝜃(𝒚|𝒙): the student

– 𝑞(𝒚|𝒙): teacher

the soft prediction vector
of 𝑞 on 𝑥𝑛 at iteration 𝑡

the imitation parameter calibrating
the relative importance of the two
objectives

Harnessing deep neural networks

with logic rules [Hu et al ‘16]
• Teacher Network Construction

– Find the optimal 𝑞 that fits the rules while at the same
time staying close to 𝑝𝜃
• 1)

• 2) measure the closeness between 𝑞 and 𝑝𝜃 with KL-divergence

– The optimization problem:

• Can be seen as projecting 𝑝𝜃 into the constrained subspace

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Experiments: Sentiment classification

– Logic rules

• consider sentences S with an “A-but-B” structure

• expect the sentiment of the whole sentence to be
consistent with the sentiment of clause B

• According to the soft logic, the truth value of the logic rule
when S has the ‘A-but-B’ structure:

• for 𝑦 = +

• for 𝑦 = −

the element of
𝜎𝜃(𝐵) for class ’+’

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Sentiment classification

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Named Entity Recognition
– Logic Rules

– Leverage the list structures within and across sentences
of the same documents.
• E.g.) “1. Juventus, 2. Barcelona, 3. ...”

– 𝑐(·) collapses the probability mass on the labels with
the same categories into a single probability
• yielding a vector with length equaling to the number of

categories

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Experiment results

– Sentiment classification

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Experiment results

– Sentiment classification

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Experiment results

– Sentiment classification

semi-supervised learning where the
remaining training data are used as
unlabeled examples

Harnessing deep neural networks

with logic rules [Hu et al ‘16]

• Experiment results

– NER

The Consciousness Prior [Bengio ’17]

• Kahneman’s system 2 cognitive abilities
[Kahneman, 2011]

• System 1 tasks
– Align well with the current successful applications

of deep learning
• E.g.)

– low-level perception (and to a lesser extent low-level action)

– intuitive knowledge (e.g. knowing that a particular Go move is
good or that a given picture contains the image of a dog), i.e.,
knowledge which is difficult to verbalize, and which can
typically be applied very quickly (in less than a second).

The Consciousness Prior [Bengio ’17]

• Kahneman’s system 2 cognitive abilities [Kahneman,
2011]

• System 2 cognitive abilities
– can be described verbally, and thus includes the part of

our cognitive abilities which we can communicate
explicitly to a computer (typically as a sequence of
computational steps)

– Include things like reasoning, planning and imagination.

– Typical system 2 tasks require a sequence of conscious
steps, also means that they tend to take more time than
system 1 tasks.

– Closely related to consciousness

The Consciousness Prior [Bengio ’17]

• Global Workspace Theory [Baars, 1988, 1997, 2002, Dehaene
and Naccache, 2001, Dehaene et al., 2017]
– Posits that we become aware of specific pieces of information

which will momentarily form the content of working memory.
– A conscious thought is thus a set of these elements of which we

have become aware, joined together and made globally available
to other computational processes taking place in the brain at an
unconscious level.

• Consciousness thus provides a form of bottleneck for
information which has a strong influence on
– Decision-making (voluntary action),
– Memory (we tend to very quickly forget what we have not been

consciously aware of), and
– Perception (we may be blind to elements of our sensory input

which may distract us from the current focus of conscious
attention)

The Consciousness Prior [Bengio ’17]
• System 2 Processing

– Global Workspace Theory of Consciousness

• Consciousness Prior Theory
– Extracting a Conscious State

• 𝑥𝑡: the observation at time t for a learning agent

• ℎ𝑡: the unconscious representation state.

• 𝐹: Representation RNN

– Define the conscious state 𝑐𝑡
• as a very low-dimensional set which is derived from ℎ𝑡 by a

form of attention mechanism applied on ℎ𝑡

• The function C: the consciousness process

𝑧𝑡: a random noise source
𝑚𝑡: the content of memory at time t.

The Consciousness Prior [Bengio ’17]

• Factor Graph

• Sparse Factor Graph
– the consciousness prior amounts to the assumption of

Sparse Factor Graph:
• the factor graph for the joint distribution between the

elements in the set ℎ𝑡 (or more generally for the set containing
all of the elements in mt and all those one could think of in the
future) is sparse

• The motivation comes from observing
– The structure of natural language (broken down into phrases,

statements or sentences, each of which involves very few words)

– The structure of formal knowledge representations such as the sets
of facts and rules studied in classical symbolic / logic AI or in
ontologies and knowledge graphs

The Consciousness Prior [Bengio ’17]

• Verifier network

– To capture the assumptiontion a conscious thought
can encapsulate a statement about the future

– match a current representation state ℎ𝑡 with a past
conscious state 𝑐𝑡−𝑘 stored in memory 𝑚𝑡−1

• indicates the consistency of 𝑐𝑡−𝑘 with ℎ𝑡, e.g., estimating
the probability of the correspo nding statement being
true, given ht

