
Course 440 : Introduction To Artificial Intelligence
Lecture 4

Solving Problems by Searching:
Beyond Classical Search

Abdeslam Boularias

Wednesday, October 5, 2016

1 / 34



Outline

We relax the simplifying assumptions of the previous lectures, and we get
closer to real-world applications

1 Local search

2 Continuous state spaces

3 Stochastic actions

4 Partial observations

2 / 34



Local search

So far, we have focused on searching for the best path (sequence of
state-actions) that leads to a goal.

In many problems, such as the 8-queens problem, we do not care
about the path to the goal. We only care about finding the goal.

If paths are not relevant, one can start with an initial state and move
only to neighbors of that state.

Local search is suitable for optimization problems, where we aim to find
the best state according to a given objective function.

3 / 34



Local search

So far, we have focused on searching for the best path (sequence of
state-actions) that leads to a goal.

In many problems, such as the 8-queens problem, we do not care
about the path to the goal. We only care about finding the goal.

If paths are not relevant, one can start with an initial state and move
only to neighbors of that state.

Local search is suitable for optimization problems, where we aim to find
the best state according to a given objective function.

Local search algorithms have two key advantages :

1 They use little memory as they usually do not need to remember
paths.

2 They can often find reasonable solutions in large (or infinite) state
spaces where systematic search is unsuitable.

4 / 34



Local search

global maximum

local maximum

states

Optimum =

{
Maximum if the function is an objective function (reward),
Minimum if the function is a cost function (penalty).

Every global optimum is a local optimum, the inverse is not always correct.
5 / 34



Hill-climbing search (a.k.a. greedy local search)

Continually move in the direction of increasing value (uphill).

122 Chapter 4. Beyond Classical Search

function HILL-CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL-STATE)
loop do

neighbor← a highest-valued successor of current
if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor; in this version, that
means the neighbor with the highest VALUE, but if a heuristic cost estimate h is used, we
would find the neighbor with the lowest h.

4.1.1 Hill-climbing search

The hill-climbing search algorithm (steepest-ascent version) is shown in Figure 4.2. It isHILL CLIMBING

STEEPEST ASCENT simply a loop that continually moves in the direction of increasing value—that is, uphill. It
terminates when it reaches a “peak” where no neighbor has a higher value. The algorithm
does not maintain a search tree, so the data structure for the current node need only record
the state and the value of the objective function. Hill climbing does not look ahead beyond
the immediate neighbors of the current state. This resembles trying to find the top of Mount
Everest in a thick fog while suffering from amnesia.

To illustrate hill climbing, we will use the 8-queens problem introduced on page 71.
Local search algorithms typically use a complete-state formulation, where each state has
8 queens on the board, one per column. The successors of a state are all possible states
generated by moving a single queen to another square in the same column (so each state has
8× 7= 56 successors). The heuristic cost function h is the number of pairs of queens that
are attacking each other, either directly or indirectly. The global minimum of this function
is zero, which occurs only at perfect solutions. Figure 4.3(a) shows a state with h=17. The
figure also shows the values of all its successors, with the best successors having h=12.
Hill-climbing algorithms typically choose randomly among the set of best successors if there
is more than one.

Hill climbing is sometimes called greedy local search because it grabs a good neighborGREEDY LOCAL
SEARCH

state without thinking ahead about where to go next. Although greed is considered one of the
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing
often makes rapid progress toward a solution because it is usually quite easy to improve a bad
state. For example, from the state in Figure 4.3(a), it takes just five steps to reach the state
in Figure 4.3(b), which has h=1 and is very nearly a solution. Unfortunately, hill climbing
often gets stuck for the following reasons:

• Local maxima: a local maximum is a peak that is higher than each of its neighboringLOCAL MAXIMUM

states but lower than the global maximum. Hill-climbing algorithms that reach the
vicinity of a local maximum will be drawn upward toward the peak but will then be
stuck with nowhere else to go. Figure 4.1 illustrates the problem schematically. More

global maximum

local maximum

6 / 34



An example of hill-climbing search

Cost function : number of pairs of attacking queens.

122 Chapter 4. Beyond Classical Search

function HILL-CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL-STATE)
loop do

neighbor← a highest-valued successor of current
if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor; in this version, that
means the neighbor with the highest VALUE, but if a heuristic cost estimate h is used, we
would find the neighbor with the lowest h.

4.1.1 Hill-climbing search

The hill-climbing search algorithm (steepest-ascent version) is shown in Figure 4.2. It isHILL CLIMBING

STEEPEST ASCENT simply a loop that continually moves in the direction of increasing value—that is, uphill. It
terminates when it reaches a “peak” where no neighbor has a higher value. The algorithm
does not maintain a search tree, so the data structure for the current node need only record
the state and the value of the objective function. Hill climbing does not look ahead beyond
the immediate neighbors of the current state. This resembles trying to find the top of Mount
Everest in a thick fog while suffering from amnesia.

To illustrate hill climbing, we will use the 8-queens problem introduced on page 71.
Local search algorithms typically use a complete-state formulation, where each state has
8 queens on the board, one per column. The successors of a state are all possible states
generated by moving a single queen to another square in the same column (so each state has
8× 7= 56 successors). The heuristic cost function h is the number of pairs of queens that
are attacking each other, either directly or indirectly. The global minimum of this function
is zero, which occurs only at perfect solutions. Figure 4.3(a) shows a state with h=17. The
figure also shows the values of all its successors, with the best successors having h=12.
Hill-climbing algorithms typically choose randomly among the set of best successors if there
is more than one.

Hill climbing is sometimes called greedy local search because it grabs a good neighborGREEDY LOCAL
SEARCH

state without thinking ahead about where to go next. Although greed is considered one of the
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing
often makes rapid progress toward a solution because it is usually quite easy to improve a bad
state. For example, from the state in Figure 4.3(a), it takes just five steps to reach the state
in Figure 4.3(b), which has h=1 and is very nearly a solution. Unfortunately, hill climbing
often gets stuck for the following reasons:

• Local maxima: a local maximum is a peak that is higher than each of its neighboringLOCAL MAXIMUM

states but lower than the global maximum. Hill-climbing algorithms that reach the
vicinity of a local maximum will be drawn upward toward the peak but will then be
stuck with nowhere else to go. Figure 4.1 illustrates the problem schematically. More

14

18

17

15

14

18

14

14

14

14

14

12

16

12

13

16

17

14

18

13

14

17

15

18

15

13

15

13

12

15

15

13

15

12

13

14

14

14

16

12

14

12

12

15

16

13

14

12

14

18

16

16

16

14

16

14

A state with cost function equal to 17. Numbers indicate the value of moving
each queen vertically. 7 / 34



An example of hill-climbing search

Cost function : number of pairs of attacking queens.

Local minimum with cost function equal to 1. It takes just five steps to reach this
state from the previous one. Not bad !

8 / 34



Hill-climbing : the trouble with plateaus

Plateau : a flat area of the state-space landscape.

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Hill-climbing gets stuck in plateaus.

9 / 34



Hill-climbing : the trouble with ridges

Ridges : a sequence of local maxima that is very difficult for greedy
algorithms to navigate.

Sequence of local maxima that are not directly connected to each other.

10 / 34



Hill-climbing : how to avoid shoulders ?

Starting from a random initial 8-queens state, hill-climbing gets stuck in a
local maximum 86% of the time (with an average of 3 steps) and finds the
global maximum only 14% (with an average of 4 steps).

Sideways moves

To avoid staying stuck in a shoulder plateau, we allow hill-climbing to
move to neighbor states that have the same value as the current one.

However, infinite loops may occur. We avoid infinite loops by limiting
the number of sideways moves.

By allowing up to 100 sideways moves in the 8-queens problem,

We increase the percentage of problem instances solved by hill
climbing from 14% to 94%.

However, each successful instance is solved in 21 steps (on average)
and failures (local maxima) are reached after 64 steps (on average).

11 / 34



Variants of hill-climbing

Stochastic hill-climbing

Chooses randomly among the uphill moves, with probabilities that
vary with the steepness of the moves.

Converges slowly, but explores better the state space, and may find
better solutions.

First-choice hill-climbing

Generates successors randomly until finding one that is better than
the current state.

Efficient in high dimensions.

12 / 34



Variants of hill-climbing

Random-restart hill-climbing

Repeats the hill-climbing from a randomly generated initial state,
until a solution is found.

Guaranteed to eventually find a solution if the state space is finite.

The expected number of restarts is 1
p if hill-climbing succeeds with

probability p at each iteration.

Example of random-restart hill-climbing in the 8-queens
problem

Without sideways moves : p = 0.14, we need about 7 iterations on
average to find a solution. The average number of steps is 22.

With sideways moves : p = 0.94, we need about 1.06 iterations on
average to find a solution. The average number of steps is .

13 / 34



Simulated annealing

Simulated annealing is a widely used technique for solving
combinatorial optimization problems (such as VLSI, factory
scheduling, and structural optimization).

Motivated by an analogy to annealing in solids :
1 Heat the metal to a high temperature to increase the size of its crystals

and reduce their defects
2 Cool it down slowly until the particles arrange themselves in the ground

state of the solid. Ground state is a minimum energy state of the solid.

14 / 34



Simulated annealing

image from cmbi.ru.nl

15 / 34



Simulated annealing

1 Step 1 : Initialize the search with a randomly chosen state, and set
the temperature T to a high value.

2 Step 2 : Move in a random direction for a fixed distance.

3 Step 3 : Calculate the value of the objective function in the new state
and compare it to the value in the old state.

4 Step 4 : If the value has increased, then stay in the new state. Else,
stay in the new state with a probability that is proportional to the
change in value, otherwise move back to the old state.

5 Step 5 : Decrease the temperature and go back to step 2.

16 / 34



Simulated annealing
126 Chapter 4. Beyond Classical Search

function SIMULATED-ANNEALING(problem , schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”

current←MAKE-NODE(problem .INITIAL-STATE)
for t = 1 to∞ do

T← schedule(t )
if T = 0 then return current
next← a randomly selected successor of current
ΔE←next .VALUE – current .VALUE

if ΔE > 0 then current←next
else current←next only with probability eΔE/T

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. Downhill moves are accepted readily early in the anneal-
ing schedule and then less often as time goes on. The schedule input determines the value of
the temperature T as a function of time.

just one. It begins with k randomly generated states. At each step, all the successors of all k
states are generated. If any one is a goal, the algorithm halts. Otherwise, it selects the k best
successors from the complete list and repeats.

At first sight, a local beam search with k states might seem to be nothing more than
running k random restarts in parallel instead of in sequence. In fact, the two algorithms
are quite different. In a random-restart search, each search process runs independently of
the others. In a local beam search, useful information is passed among the parallel search
threads. In effect, the states that generate the best successors say to the others, “Come over
here, the grass is greener!” The algorithm quickly abandons unfruitful searches and moves
its resources to where the most progress is being made.

In its simplest form, local beam search can suffer from a lack of diversity among the
k states—they can quickly become concentrated in a small region of the state space, making
the search little more than an expensive version of hill climbing. A variant called stochastic
beam search, analogous to stochastic hill climbing, helps alleviate this problem. InsteadSTOCHASTIC BEAM

SEARCH

of choosing the best k from the the pool of candidate successors, stochastic beam search
chooses k successors at random, with the probability of choosing a given successor being
an increasing function of its value. Stochastic beam search bears some resemblance to the
process of natural selection, whereby the “successors” (offspring) of a “state” (organism)
populate the next generation according to its “value” (fitness).

4.1.4 Genetic algorithms

A genetic algorithm (or GA) is a variant of stochastic beam search in which successor statesGENETIC
ALGORITHM

are generated by combining two parent states rather than by modifying a single state. The
analogy to natural selection is the same as in stochastic beam search, except that now we are
dealing with sexual rather than asexual reproduction.

17 / 34



Local beam search

Start with k randomly chosen initial states.

At each step, generate all the successors of the k states, and retain
the k best ones.

Stop when a goal state is reached or when no further local
improvement is possible.

Local beam search seems similar to running hill-climbing k times, but
it is different.

In a local beam search, the k search paths are not independent. The
successors of the k states are compared with each other.

States with many “good” successors dominate local beam searches.

18 / 34



Stochastic local beam search

Local beam search suffers from a lack of diversity among the k paths.
The search often ends up concentrated in a small region.

Stochastic local beam search overcomes this problem by randomly
generating the successors and keeping them with probabilities
proportional to their values.

19 / 34



Genetic Algorithms (GA)

Similar to local beam search, except that successors are generated by
combining two parent states.

Inspired from biological evolution by natural selection.

A population is a set of individuals, each individual is a state
represented as a string over a finite alphabet (DNA analogy).

A fitness function is used to select individuals that will reproduce.

Fitness function is a term used in GAs to describe objective functions.

Example : the 8-queens problem

1 State : the positions of 8 queens, each in a column of 8 squares. Each
state is described by a sequence of 8× log2 8 = 24 bits.

2 Fitness : number of pairs of queens that are not attacking each other
(maximum = 28).

20 / 34



Genetic Algorithms (GA)

A genetic algorithm consists in the following steps :

Start with a population of k individuals

1 Selection : randomly draw k individuals from the population with
probabilities proportional to their fitness. The same individual can be
selected several times.

2 Crossover : let (s1, s2) be a selected couple of individuals, and let n
be the size of the alphabet, and s[i] be the i-th letter in the code of
s.

I Uniformly sample a random number i ∈ [1, n].
I Create new individual s′1 that has the code

[s1[1], s1[2], . . . , s1[i], s2[i+ 1], s2[i+ 2], . . . , s2[n]]
I Create new individual s′2 that has the code

[s2[1], s2[2], . . . , s2[i], s1[i+ 1], s1[i+ 2], . . . , s1[n]]

3 Mutation : each letter in the codes of the new individuals is changed
to a random value with probability ε.

21 / 34



Genetic Algorithms (GA)

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

+ =

22 / 34



Optimization in continuous spaces

In most real-world applications, states are continuous variables.

Optimizing the locations of new airports

Suppose we want to construct three new airports in a given country.

Objective : minimize the distance from each city to its nearest airport.

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Airport 1

Airport 2

Airport 3

23 / 34



Optimization in continuous spaces

Optimizing the locations of new airports

Suppose we want to construct three new airports in a given country.

Objective : minimize the distance from each city to its nearest airport.

Let Ci denote the cities that have airport i as their nearest airport. Let
(xi, yi) be the coordinates of airport i and (xc, yc) be the coordinates of
city c. The objective is to minimize function f

f(x1, y1, x2, y2, x3, y3) =

3∑
i=1

∑
c∈Ci

(xi − xc)2 + (yi − yc)2.

24 / 34



Gradient descent

A common approach for solving optimization problems consists in
computing the gradient of the objective

∇f = (
∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3
),

and applying the update rule : x← x− α∇f .
In our example,

∂f

∂xi
= 2

∑
c∈Ci

(xi − xc).

How can we choose the step-size parameter α ?

25 / 34



Newton’s method

In 1669, Newton proposed a method for finding a zero of a given
function g that consists in iteratively applying the update rule

x← x− g(x)

g′(x)

In optimization, we search for a point where the derivative ∇f is
zero. Using Newton’s method, we can write the update rule as

x← x− f ′(x)

f ′′(x)
.

If f is multivariate, then we can use Hf , the Hessian matrix of second
derivatives

x← x−H−1f (x)∇f(x).

26 / 34



Searching with non-deterministic actions

So far, we have assumed that the actions are deterministic.

In the real-world, things do not always go as expected.

To account for different possible outcomes, we need to come up with
a contingency plan instead of a single path of actions.

27 / 34



Example : the erratic vacuum world

We reconsider the vacuum world but we assume that the Suck action
has a non-deterministic effect :

I When applied to a dirty square, it cleans the square, but sometimes it
cleans an adjacent square too.

I When applied to a clean square, it may deposit dirt on the square.

28 / 34



Contingency AND-OR plan

LeftSuck

RightSuck

RightSuck

6 

GOAL

8 

GOAL

7 

1 

2 5 

1 

LOOP

5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL

8 4 

We can use the usual tree search algorithms for finding contingency AND-OR plans.
29 / 34



Searching with partial observations

So far, we have assumed that the agent knows exactly the state of its
environment.

In reality, an agent receives partial, possibly noised, observations.
Therefore, the state can only be estimated.

In this case, the agent needs to remember all its history of actions
and observations in order to track the state.

The solution here is also a contingency AND-OR plan where state
nodes are replaced by observations.

30 / 34



Example of searching with partial observations

2 

4 

4 

1 

2 

4 

1 

3 

2 

1 

3 3 

(b)

(a)

4 

2 

1 

3 

Right

[A,Dirty]

[B,Dirty]

[B,Clean]

Right
[B,Dirty]

[B,Clean]

In (a), we assume that the robot can observe only its current square.

In (b), we also assume that the floor is slippery, and deplacement actions are

stochastic. 31 / 34



Partial observations

Where am I ?

Figure: Initial belief state.

32 / 34



Partial observations

Where am I ?

Figure: Belief state after moving left.

33 / 34



Partial observations

Where am I ?

Figure: Belief state after moving left twice.

34 / 34


