Course 440 : Introduction To Artificial Intelligence
Lecture 4

Solving Problems by Searching:
Beyond Classical Search

Abdeslam Boularias

Wednesday, October 5, 2016

RUTGERS

THE STATE UNIVERSITY
OF NEW JERSEY

Outline

We relax the simplifying assumptions of the previous lectures, and we get
closer to real-world applications

@ Local search

@ Continuous state spaces
© Stochastic actions

@ Partial observations

34

Local search

@ So far, we have focused on searching for the best path (sequence of
state-actions) that leads to a goal.

@ In many problems, such as the 8-queens problem, we do not care
about the path to the goal. We only care about finding the goal.

o If paths are not relevant, one can start with an initial state and move
only to neighbors of that state.

Local search is suitable for optimization problems, where we aim to find
the best state according to a given objective function.

Peaks

AN
"‘:‘:‘:“0‘0‘:““‘
S

Local search

@ So far, we have focused on searching for the best path (sequence of
state-actions) that leads to a goal.

@ In many problems, such as the 8-queens problem, we do not care
about the path to the goal. We only care about finding the goal.

o If paths are not relevant, one can start with an initial state and move
only to neighbors of that state.

Local search is suitable for optimization problems, where we aim to find
the best state according to a given objective function.
Local search algorithms have two key advantages :

@ They use little memory as they usually do not need to remember
paths.

@ They can often find reasonable solutions in large (or infinite) state
spaces where systematic search is unsuitable.

Local search

global maximum

states

Maximum if the function is an objective function (reward),
Minimum if the function is a cost function (penalty).

Optimum = {

Every global optimum is a local optimum, the inverse is not always correct.
5/34

Hill-climbing search (a.k.a. greedy local search)

Continually move in the direction of increasing value (uphill). J

function HILL-CLIMBING(problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current <— neighbor

global maximum

An example of hill-climbing search

Cost function : number of pairs of attacking queens.)

function HILL-CLIMBING(problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current <— neighbor

A state with cost function equal to 17. Numbers indicate the value of moving
each queen vertically. 7/34

An example of hill-climbing search

Cost function : number of pairs of attacking queens. J

Local minimum with cost function equal to 1. It takes just five steps to reach this
state from the previous one. Not bad!

8/34

Hill-climbing : the trouble with plateaus

Plateau : a flat area of the state-space landscape.

objective function .
_— global maximum

shoulder

local maximum

“flat” local maximum

> state space
current
state

Hill-climbing gets stuck in plateaus.

34

Hill-climbing : the trouble with ridges

Ridges : a sequence of local maxima that is very difficult for greedy
algorithms to navigate.

Sequence of local maxima that are not directly connected to each other

10/34

Hill-climbing : how to avoid shoulders?

Starting from a random initial 8-queens state, hill-climbing gets stuck in a
local maximum 86% of the time (with an average of 3 steps) and finds the
global maximum only 14% (with an average of 4 steps).

v

Sideways moves
@ To avoid staying stuck in a shoulder plateau, we allow hill-climbing to
move to neighbor states that have the same value as the current one.

@ However, infinite loops may occur. We avoid infinite loops by limiting
the number of sideways moves.

By allowing up to 100 sideways moves in the 8-queens problem,

@ We increase the percentage of problem instances solved by hill
climbing from 14% to 94%.

@ However, each successful instance is solved in 21 steps (on average)
and failures (local maxima) are reached after 64 steps (on average).

11 /34

Variants of hill-climbing

Stochastic hill-climbing
@ Chooses randomly among the uphill moves, with probabilities that
vary with the steepness of the moves.

@ Converges slowly, but explores better the state space, and may find
better solutions.

First-choice hill-climbing
@ Generates successors randomly until finding one that is better than
the current state.

o Efficient in high dimensions.

12 /34

Variants of hill-climbing

Random-restart hill-climbing
@ Repeats the hill-climbing from a randomly generated initial state,
until a solution is found.
o Guaranteed to eventually find a solution if the state space is finite.
@ The expected number of restarts is % if hill-climbing succeeds with
probability p at each iteration.

Example of random-restart hill-climbing in the 8-queens
problem
o Without sideways moves : p = 0.14, we need about 7 iterations on
average to find a solution. The average number of steps is 22.
o With sideways moves : p = 0.94, we need about 1.06 iterations on
average to find a solution. The average number of steps is .

13 /34

Simulated annealing

@ Simulated annealing is a widely used technique for solving
combinatorial optimization problems (such as VLSI, factory
scheduling, and structural optimization).

@ Motivated by an analogy to annealing in solids :

@ Heat the metal to a high temperature to increase the size of its crystals

and reduce their defects

@ Cool it down slowly until the particles arrange themselves in the ground
state of the solid. Ground state is a minimum energy state of the solid.

v

14 /34

Simulated annealing

° ——\ /—A o(x)

X0 = S
,\V e(x)

X0 e 5
c(x)

X0 e g

image from cmbi.ru.nl

15 /34

Simulated annealing

@ Step 1 : Initialize the search with a randomly chosen state, and set
the temperature T' to a high value.

@ Step 2 : Move in a random direction for a fixed distance.

© Step 3 : Calculate the value of the objective function in the new state
and compare it to the value in the old state.

@ Step 4 : If the value has increased, then stay in the new state. Else,
stay in the new state with a probability that is proportional to the
change in value, otherwise move back to the old state.

@ Step 5 : Decrease the temperature and go back to step 2.

16 /34

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem.INITIAL-STATE)
for t = 1to oo do
T < schedule(t)
if T =0 then return current
next <— a randomly selected successor of current
AF < next.VALUE — current.VALUE
if AE > 0 then current < next

else current < next only with probability e2#/T

17 /34

Local beam search

Start with k& randomly chosen initial states.

@ At each step, generate all the successors of the k states, and retain
the k best ones.

@ Stop when a goal state is reached or when no further local
improvement is possible.

@ Local beam search seems similar to running hill-climbing k times, but
it is different.

@ In a local beam search, the k search paths are not independent. The
successors of the k states are compared with each other.

@ States with many “good” successors dominate local beam searches.

18 /34

Stochastic local beam search

@ Local beam search suffers from a lack of diversity among the k paths.
The search often ends up concentrated in a small region.

@ Stochastic local beam search overcomes this problem by randomly
generating the successors and keeping them with probabilities
proportional to their values.

19/34

Genetic Algorithms (GA)

@ Similar to local beam search, except that successors are generated by
combining two parent states.

@ Inspired from biological evolution by natural selection.

@ A population is a set of individuals, each individual is a state
represented as a string over a finite alphabet (DNA analogy).

@ A fitness function is used to select individuals that will reproduce.

o Fitness function is a term used in GAs to describe objective functions.

Example : the 8-queens problem

@ State : the positions of 8 queens, each in a column of 8 squares. Each
state is described by a sequence of 8 x log, 8 = 24 bits.

@ Fitness : number of pairs of queens that are not attacking each other
(maximum = 28).

20 /34

Genetic Algorithms (GA)

A genetic algorithm consists in the following steps :
Start with a population of & individuals

@ Selection : randomly draw k individuals from the population with
probabilities proportional to their fitness. The same individual can be
selected several times.

@ Crossover : let (s1, s2) be a selected couple of individuals, and let n
be the size of the alphabet, and s[i| be the i-th letter in the code of
S.

Uniformly sample a random number i € [1,n].
Create new individual s} that has the code

[s1[1],s1[2],- .., s1[i], s2[t + 1], sa[i + 2], . . ., s2[n]]
Create new individual s, that has the code
[s2[1], s2[2], .- ., s2[i], s1[¢ + 1], s1[i + 2], . . ., s1[n]]

© Mutation : each letter in the codes of the new individuals is changed
to a random value with probability €.

21/34

Genetic Algorithms (GA)

24 31% .| 32752411 32748552 || 3274412 |
23 200 | 24748552 [24752411 }—~{ 24752411 |
20 26% | 32752411 32752124 || 3252124 |

11 1% | 24415124 [24415411 —~] 2441541[]|

(a) (b) ©) (d) (©)

Initial Population Fitness Function Selection Crossover Mutation

22/34

Optimization in continuous spaces
In most real-world applications, states are continuous variables.

Optimizing the locations of new airports

@ Suppose we want to construct three new airports in a given country.

@ Objective : minimize the distance from each city to its nearest airport.

75

Arad []

18 L Vaslui

Airport 3

[Timisbara

LJ Hirsova
[] Mehadia

Craiova [] Giurgiu Eforie

23/34

Optimization in continuous spaces

Optimizing the locations of new airports
@ Suppose we want to construct three new airports in a given country.

@ Objective : minimize the distance from each city to its nearest airport.

Let C; denote the cities that have airport ¢ as their nearest airport. Let
(x4, i) be the coordinates of airport i and (z.,y.) be the coordinates of
city c. The objective is to minimize function f

f(@1, 91,2, 92, 3, Y3) Z Z i —)’ + (vi —yc)Q-

i=1 ceC;

24 /34

Gradient descent

A common approach for solving optimization problems consists in
computing the gradient of the objective

vr— (0L 0f of o of of
8x1’8y1’8a@2’8y2’8$3’6y3’

and applying the update rule : x < z — aVf.

In our example,
0
L 23 (- z)
ceC;

How can we choose the step-size parameter o7

25 /34

Newton's method

@ In 1669, Newton proposed a method for finding a zero of a given
function g that consists in iteratively applying the update rule

g9()
g (z)

< T—

@ In optimization, we search for a point where the derivative Vf is
zero. Using Newton's method, we can write the update rule as

!/
x
T 4= x— f(z) .
f"(x)
o If f is multivariate, then we can use Hy, the Hessian matrix of second

derivatives
T4 x— H;l(:z)Vf(:L').

26 /34

Searching with non-deterministic actions

@ So far, we have assumed that the actions are deterministic.
@ In the real-world, things do not always go as expected.

@ To account for different possible outcomes, we need to come up with
a contingency plan instead of a single path of actions.

27 /34

Example : the erratic vacuum world

@ We reconsider the vacuum world but we assume that the Suck action
has a non-deterministic effect :

» When applied to a dirty square, it cleans the square, but sometimes it
cleans an adjacent square too.

» When applied to a clean square, it may deposit dirt on the square.

28 /34

Contingency AND-OR plan

Suck

=] =)
o@g§| 8| ‘ 4| g

LoopP GOAL

L[L]

GOAL LooP

We can use the usual tree search algorithms for finding contingency AND-OR plans.

29 /34

Searching with partial observations

@ So far, we have assumed that the agent knows exactly the state of its

environment.

@ In reality, an agent receives partial, possibly noised, observations.
Therefore, the state can only be estimated.

@ In this case, the agent needs to remember all its history of actions
and observations in order to track the state.

@ The solution here is also a contingency AND-OR plan where state
nodes are replaced by observations.

30

34

Example of searching with partial observations

(@)

[B,Dirty]

[4,Dirty]
(b)

[B,Clean]

In (a), we assume that the robot can observe only its current square.
In (b), we also assume that the floor is slippery, and deplacement actions are
stochastic.

31/34

Partial observations

FIGURE: Initial belief state.

32/34

Partial observations

-

FIGURE: Belief state after moving left.

% %

33/34

Partial observations

F1GURE: Belief state after moving left twice.

34/34

