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Introduction

Model-Free Reinforcement Learning

Last lecture:

Planning by dynamic programming
Solve a known MDP

This lecture:

Model-free prediction
Estimate the value function of an unknown MDP

Next lecture:

Model-free control
Optimise the value function of an unknown MDP
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Monte-Carlo Learning

Monte-Carlo Reinforcement Learning

MC methods learn directly from episodes of experience

MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes: no bootstrapping

MC uses the simplest possible idea: value = mean return

Caveat: can only apply MC to episodic MDPs

All episodes must terminate
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Monte-Carlo Learning

Monte-Carlo Policy Evaluation

Goal: learn vπ from episodes of experience under policy π

S1,A1,R2, ...,Sk ∼ π

Recall that the return is the total discounted reward:

Gt = Rt+1 + γRt+2 + ...+ γT−1RT

Recall that the value function is the expected return:

vπ(s) = Eπ [Gt | St = s]

Monte-Carlo policy evaluation uses empirical mean return
instead of expected return
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Monte-Carlo Learning

First-Visit Monte-Carlo Policy Evaluation

To evaluate state s

The first time-step t that state s is visited in an episode,

Increment counter N(s)← N(s) + 1

Increment total return S(s)← S(s) + Gt

Value is estimated by mean return V (s) = S(s)/N(s)

By law of large numbers, V (s)→ vπ(s) as N(s)→∞
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Monte-Carlo Learning

Every-Visit Monte-Carlo Policy Evaluation

To evaluate state s

Every time-step t that state s is visited in an episode,

Increment counter N(s)← N(s) + 1

Increment total return S(s)← S(s) + Gt

Value is estimated by mean return V (s) = S(s)/N(s)

Again, V (s)→ vπ(s) as N(s)→∞
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Monte-Carlo Learning

Blackjack Example

Blackjack Example

States (200 of them):

Current sum (12-21)
Dealer’s showing card (ace-10)
Do I have a “useable” ace? (yes-no)

Action stick: Stop receiving cards (and terminate)
Action twist: Take another card (no replacement)

Reward for stick:

+1 if sum of cards > sum of dealer cards
0 if sum of cards = sum of dealer cards
-1 if sum of cards < sum of dealer cards

Reward for twist:

-1 if sum of cards > 21 (and terminate)
0 otherwise

Transitions: automatically twist if sum of cards < 12
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Monte-Carlo Learning

Blackjack Example

Blackjack Value Function after Monte-Carlo Learning

Policy: stick if sum of cards ≥ 20, otherwise twist
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Monte-Carlo Learning

Incremental Monte-Carlo

Incremental Mean

The mean µ1, µ2, ... of a sequence x1, x2, ... can be computed
incrementally,

µk =
1

k

k∑
j=1

xj

=
1

k

xk +
k−1∑
j=1

xj


=

1

k
(xk + (k − 1)µk−1)

= µk−1 +
1

k
(xk − µk−1)
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Monte-Carlo Learning

Incremental Monte-Carlo

Incremental Monte-Carlo Updates

Update V (s) incrementally after episode S1,A1,R2, ...,ST

For each state St with return Gt

N(St)← N(St) + 1

V (St)← V (St) +
1

N(St)
(Gt − V (St))

In non-stationary problems, it can be useful to track a running
mean, i.e. forget old episodes.

V (St)← V (St) + α (Gt − V (St))
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Temporal-Difference Learning

Temporal-Difference Learning

TD methods learn directly from episodes of experience

TD is model-free: no knowledge of MDP transitions / rewards

TD learns from incomplete episodes, by bootstrapping

TD updates a guess towards a guess



Lecture 4: Model-Free Prediction

Temporal-Difference Learning

MC and TD

Goal: learn vπ online from experience under policy π

Incremental every-visit Monte-Carlo

Update value V (St) toward actual return Gt

V (St)← V (St) + α (Gt − V (St))

Simplest temporal-difference learning algorithm: TD(0)

Update value V (St) toward estimated return Rt+1 + γV (St+1)

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))

Rt+1 + γV (St+1) is called the TD target
δt = Rt+1 + γV (St+1)− V (St) is called the TD error
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Temporal-Difference Learning

Driving Home Example

Driving Home Example

State Elapsed Time
(minutes)

Predicted
Time to Go

Predicted
Total Time

leaving office 0 30 30

reach car, raining 5 35 40

exit highway 20 15 35

behind truck 30 10 40

home street 40 3 43

arrive home 43 0 43
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Temporal-Difference Learning

Driving Home Example

Driving Home Example: MC vs. TD

Changes recommended by 
Monte Carlo methods (!=1)!

Changes recommended!
by TD methods (!=1)!
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Temporal-Difference Learning

Driving Home Example

Advantages and Disadvantages of MC vs. TD

TD can learn before knowing the final outcome

TD can learn online after every step
MC must wait until end of episode before return is known

TD can learn without the final outcome

TD can learn from incomplete sequences
MC can only learn from complete sequences
TD works in continuing (non-terminating) environments
MC only works for episodic (terminating) environments
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Temporal-Difference Learning

Driving Home Example

Bias/Variance Trade-Off

Return Gt = Rt+1 + γRt+2 + ...+ γT−1RT is unbiased
estimate of vπ(St)

True TD target Rt+1 + γvπ(St+1) is unbiased estimate of
vπ(St)

TD target Rt+1 + γV (St+1) is biased estimate of vπ(St)

TD target is much lower variance than the return:

Return depends on many random actions, transitions, rewards
TD target depends on one random action, transition, reward
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Temporal-Difference Learning

Driving Home Example

Advantages and Disadvantages of MC vs. TD (2)

MC has high variance, zero bias

Good convergence properties
(even with function approximation)
Not very sensitive to initial value
Very simple to understand and use

TD has low variance, some bias

Usually more efficient than MC
TD(0) converges to vπ(s)
(but not always with function approximation)
More sensitive to initial value
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Temporal-Difference Learning

Random Walk Example

Random Walk Example
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Temporal-Difference Learning

Random Walk Example

Random Walk: MC vs. TD
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Temporal-Difference Learning

Batch MC and TD

Batch MC and TD

MC and TD converge: V (s)→ vπ(s) as experience →∞
But what about batch solution for finite experience?

s1
1 , a

1
1, r

1
2 , ..., s

1
T1

...

sK1 , a
K
1 , r

K
2 , ..., s

K
TK

e.g. Repeatedly sample episode k ∈ [1,K ]
Apply MC or TD(0) to episode k
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Temporal-Difference Learning

Batch MC and TD

AB Example

Two states A,B; no discounting; 8 episodes of experience

A, 0, B, 0!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 0!

What is V (A),V (B)?
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Temporal-Difference Learning

Batch MC and TD

AB Example

Two states A,B; no discounting; 8 episodes of experience

A, 0, B, 0!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 1!
B, 0!

What is V (A),V (B)?
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Temporal-Difference Learning

Batch MC and TD

Certainty Equivalence

MC converges to solution with minimum mean-squared error
Best fit to the observed returns

K∑
k=1

Tk∑
t=1

(
G k
t − V (skt )

)2

In the AB example, V (A) = 0

TD(0) converges to solution of max likelihood Markov model

Solution to the MDP 〈S,A, P̂, R̂, γ〉 that best fits the data

P̂a
s,s′ =

1

N(s, a)

K∑
k=1

Tk∑
t=1

1(skt , a
k
t , s

k
t+1 = s, a, s ′)

R̂a
s =

1

N(s, a)

K∑
k=1

Tk∑
t=1

1(skt , a
k
t = s, a)rkt

In the AB example, V (A) = 0.75
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Temporal-Difference Learning

Batch MC and TD

Advantages and Disadvantages of MC vs. TD (3)

TD exploits Markov property

Usually more efficient in Markov environments

MC does not exploit Markov property

Usually more effective in non-Markov environments
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Temporal-Difference Learning

Unified View

Monte-Carlo Backup

V (St)← V (St) + α (Gt − V (St))

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!
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Temporal-Difference Learning

Unified View

Temporal-Difference Backup

V (St)← V (St) + α (Rt+1 + γV (St+1)− V (St))

T! T! T! T!T!

T! T! T! T! T!

st+1
rt+1

st

T!T!T!T!T!

T! T! T! T! T!
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Temporal-Difference Learning

Unified View

Dynamic Programming Backup

V (St)← Eπ [Rt+1 + γV (St+1)]

T!

T! T! T!

st

rt+1
st+1

T!

T!T!

T!

T!T!

T!

T!

T!
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Temporal-Difference Learning

Unified View

Bootstrapping and Sampling

Bootstrapping: update involves an estimate

MC does not bootstrap
DP bootstraps
TD bootstraps

Sampling: update samples an expectation

MC samples
DP does not sample
TD samples
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Temporal-Difference Learning

Unified View

Unified View of Reinforcement Learning
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TD(λ)

n-Step TD

n-Step Prediction

Let TD target look n steps into the future
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TD(λ)

n-Step TD

n-Step Return

Consider the following n-step returns for n = 1, 2,∞:

n = 1 (TD) G
(1)
t = Rt+1 + γV (St+1)

n = 2 G
(2)
t = Rt+1 + γRt+2 + γ2V (St+2)

...
...

n =∞ (MC ) G
(∞)
t = Rt+1 + γRt+2 + ...+ γT−1RT

Define the n-step return

G
(n)
t = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnV (St+n)

n-step temporal-difference learning

V (St)← V (St) + α
(
G

(n)
t − V (St)

)
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TD(λ)

n-Step TD

Large Random Walk Example
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TD(λ)

n-Step TD

Averaging n-Step Returns

We can average n-step returns over different n

e.g. average the 2-step and 4-step returns

1

2
G (2) +

1

2
G (4)

Combines information from two different
time-steps

Can we efficiently combine information from all
time-steps?

One backup 
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TD(λ)

Forward View of TD(λ)

λ-return

The λ-return Gλ
t combines

all n-step returns G
(n)
t

Using weight (1− λ)λn−1

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t

Forward-view TD(λ)

V (St)← V (St) + α
(
Gλ
t − V (St)

)
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TD(λ)

Forward View of TD(λ)

TD(λ) Weighting Function

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t



Lecture 4: Model-Free Prediction

TD(λ)

Forward View of TD(λ)

Forward-view TD(λ)

Update value function towards the λ-return

Forward-view looks into the future to compute Gλ
t

Like MC, can only be computed from complete episodes
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TD(λ)

Forward View of TD(λ)

Forward-View TD(λ) on Large Random Walk
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TD(λ)

Backward View of TD(λ)

Backward View TD(λ)

Forward view provides theory

Backward view provides mechanism

Update online, every step, from incomplete sequences
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TD(λ)

Backward View of TD(λ)

Eligibility Traces

Credit assignment problem: did bell or light cause shock?

Frequency heuristic: assign credit to most frequent states

Recency heuristic: assign credit to most recent states

Eligibility traces combine both heuristics

E0(s) = 0

Et(s) = γλEt−1(s) + 1(St = s)
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TD(λ)

Backward View of TD(λ)

Backward View TD(λ)

Keep an eligibility trace for every state s

Update value V (s) for every state s

In proportion to TD-error δt and eligibility trace Et(s)

δt = Rt+1 + γV (St+1)− V (St)

V (s)← V (s) + αδtEt(s)
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TD(λ)

Relationship Between Forward and Backward TD

TD(λ) and TD(0)

When λ = 0, only current state is updated

Et(s) = 1(St = s)

V (s)← V (s) + αδtEt(s)

This is exactly equivalent to TD(0) update

V (St)← V (St) + αδt
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TD(λ)

Relationship Between Forward and Backward TD

TD(λ) and MC

When λ = 1, credit is deferred until end of episode

Consider episodic environments with offline updates

Over the course of an episode, total update for TD(1) is the
same as total update for MC

Theorem

The sum of offline updates is identical for forward-view and
backward-view TD(λ)

T∑
t=1

αδtEt(s) =
T∑
t=1

α
(
Gλ
t − V (St)

)
1(St = s)
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TD(λ)

Forward and Backward Equivalence

MC and TD(1)

Consider an episode where s is visited once at time-step k ,

TD(1) eligibility trace discounts time since visit,

Et(s) = γEt−1(s) + 1(St = s)

=

{
0 if t < k
γt−k if t ≥ k

TD(1) updates accumulate error online

T−1∑
t=1

αδtEt(s) = α

T−1∑
t=k

γt−kδt = α (Gk − V (Sk))

By end of episode it accumulates total error

δk + γδk+1 + γ2δk+2 + ...+ γT−1−kδT−1
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TD(λ)

Forward and Backward Equivalence

Telescoping in TD(1)

When λ = 1, sum of TD errors telescopes into MC error,

δt + γδt+1 + γ2δt+2 + ...+ γT−1−tδT−1

= Rt+1 + γV (St+1)− V (St)

+ γRt+2 + γ2V (St+2)− γV (St+1)

+ γ2Rt+3 + γ3V (St+3)− γ2V (St+2)

...

+ γT−1−tRT + γT−tV (ST )− γT−1−tV (ST−1)

= Rt+1 + γRt+2 + γ2Rt+3...+ γT−1−tRT − V (St)

= Gt − V (St)
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TD(λ)

Forward and Backward Equivalence

TD(λ) and TD(1)

TD(1) is roughly equivalent to every-visit Monte-Carlo

Error is accumulated online, step-by-step

If value function is only updated offline at end of episode

Then total update is exactly the same as MC
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TD(λ)

Forward and Backward Equivalence

Telescoping in TD(λ)

For general λ, TD errors also telescope to λ-error, Gλ
t − V (St)

Gλt − V (St) = −V (St) + (1− λ)λ0 (Rt+1 + γV (St+1))
+ (1− λ)λ1

(
Rt+1 + γRt+2 + γ2V (St+2)

)
+ (1− λ)λ2

(
Rt+1 + γRt+2 + γ2Rt+3 + γ3V (St+3)

)
+ ...

= −V (St) + (γλ)0 (Rt+1 + γV (St+1)− γλV (St+1))
+ (γλ)1 (Rt+2 + γV (St+2)− γλV (St+2))
+ (γλ)2 (Rt+3 + γV (St+3)− γλV (St+3))
+ ...

= (γλ)0 (Rt+1 + γV (St+1)− V (St))
+ (γλ)1 (Rt+2 + γV (St+2)− V (St+1))
+ (γλ)2 (Rt+3 + γV (St+3)− V (St+2))
+ ...

= δt + γλδt+1 + (γλ)2δt+2 + ...
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TD(λ)

Forward and Backward Equivalence

Forwards and Backwards TD(λ)

Consider an episode where s is visited once at time-step k ,

TD(λ) eligibility trace discounts time since visit,

Et(s) = γλEt−1(s) + 1(St = s)

=

{
0 if t < k
(γλ)t−k if t ≥ k

Backward TD(λ) updates accumulate error online

T∑
t=1

αδtEt(s) = α

T∑
t=k

(γλ)t−kδt = α
(
Gλ
k − V (Sk)

)
By end of episode it accumulates total error for λ-return

For multiple visits to s, Et(s) accumulates many errors
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TD(λ)

Forward and Backward Equivalence

Offline Equivalence of Forward and Backward TD

Offline updates

Updates are accumulated within episode

but applied in batch at the end of episode
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TD(λ)

Forward and Backward Equivalence

Onine Equivalence of Forward and Backward TD

Online updates

TD(λ) updates are applied online at each step within episode

Forward and backward-view TD(λ) are slightly different

NEW: Exact online TD(λ) achieves perfect equivalence

By using a slightly different form of eligibility trace

Sutton and von Seijen, ICML 2014



Lecture 4: Model-Free Prediction

TD(λ)

Forward and Backward Equivalence

Summary of Forward and Backward TD(λ)

Offline updates λ = 0 λ ∈ (0, 1) λ = 1

Backward view TD(0) TD(λ) TD(1)

= = =

Forward view TD(0) Forward TD(λ) MC

Online updates λ = 0 λ ∈ (0, 1) λ = 1

Backward view TD(0) TD(λ) TD(1)

= 6= 6=

Forward view TD(0) Forward TD(λ) MC

= = =

Exact Online TD(0) Exact Online TD(λ) Exact Online TD(1)

= here indicates equivalence in total update at end of episode.


