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L Introduction

Policy-Based Reinforcement Learning

m In the last lecture we approximated the value or action-value
function using parameters 6,

Viy(s) =~ V7 (s)
Qo(s,a) ~ Q" (s, a)

m A policy was generated directly from the value function
m e.g. using e-greedy

m In this lecture we will directly parametrise the policy
W@(Sa a) = ]P)[a ’ 5, 0]

m We will focus again on model-free reinforcement learning
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L Introduction

Value-Based and Policy-Based RL

m Value Based
m Learnt Value Function
m Implicit policy
(e.g. e-greedy)
m Policy Based
m No Value Function Value-Based
m Learnt Policy
m Actor-Critic

m Learnt Value Function
m Learnt Policy

Value Fung¢tion Policy

Actor
Critic

Policy-Based
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L Introduction

Advantages of Policy-Based RL

Advantages:
m Better convergence properties
m Effective in high-dimensional or continuous action spaces
m Can learn stochastic policies
Disadvantages:
m Typically converge to a local rather than global optimum

m Evaluating a policy is typically inefficient and high variance
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L Rock-Paper-Scissors Example

Example: Rock-Paper-Scissors

m Two-player game of rock-paper-scissors
m Scissors beats paper
m Rock beats scissors
m Paper beats rock
m Consider policies for iterated rock-paper-scissors
m A deterministic policy is easily exploited
m A uniform random policy is optimal (i.e. Nash equilibrium)
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L Introduction
L Aliased Gridworld Example

Example: Aliased Gridworld (1)

&

The agent cannot differentiate the grey states
Consider features of the following form (for all N, E, S, W)

¢(s,a) = 1(wall to N, a = move E)

m Compare value-based RL, using an approximate value function
QQ(Sv 3) = f(¢(5, a)a 0)
To policy-based RL, using a parametrised policy

779(5a a) = g(¢(57 a)a 9)
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L introduction
L Aliased Gridworld Exa mple

Example: Aliased Gridworld (2)

&

m Under aliasing, an optimal deterministic policy will either

m move W in both grey states (shown by red arrows)
m move E in both grey states

m Either way, it can get stuck and never reach the money
m Value-based RL learns a near-deterministic policy
m e.g. greedy or e-greedy

m So it will traverse the corridor for a long time
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L introduction
L Aliased Gridworld Exa mple

Example: Aliased Gridworld (3)

)

m An optimal stochastic policy will randomly move E or W in
grey states

mp(wall to N and S, move E) = 0.5
mp(wall to N and S, move W) = 0.5

m It will reach the goal state in a few steps with high probability

m Policy-based RL can learn the optimal stochastic policy
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Policy Objective Functions

Goal: given policy my(s, a) with parameters 6, find best 0

But how do we measure the quality of a policy my?

In episodic environments we can use the start value
h(0) = V™(s1) = Er, [vi]
m In continuing environments we can use the average value
Jav(0) =D d™(s)V™(s)
S
m Or the average reward per time-step

Jar(0) = d™(s) ) m(s, a)R2

S

m where d™(s) is stationary distribution of Markov chain for 7y
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Policy Optimisation

m Policy based reinforcement learning is an optimisation problem
m Find 6 that maximises J(6)
m Some approaches do not use gradient
m Hill climbing
m Simplex / amoeba / Nelder Mead
m Genetic algorithms
m Greater efficiency often possible using gradient
m Gradient descent
m Conjugate gradient
m Quasi-newton
m We focus on gradient descent, many extensions possible

m And on methods that exploit sequential structure
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L Finite Difference Policy Gradient

Policy Gradient

m Let J(0) be any policy objective function

m Policy gradient algorithms search for a
local maximum in J(6) by ascending the
gradient of the policy, w.r.t. parameters

AO = aVJ(0)

m Where VyJ(0) is the policy gradient

8J(0)
90,

VeJ(0) = |
8J(6)
90,

m and « is a step-size parameter
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L Finite Difference Policy Gradient

Computing Gradients By Finite Differences

To evaluate policy gradient of my(s, a)

For each dimension k € [1, n]
m Estimate kth partial derivative of objective function w.r.t.

m By perturbing 6 by small amount € in kth dimension
0J(0) _ J(O + euy) — J(0)
89k - €

where uy is unit vector with 1 in kth component, 0 elsewhere

m Uses n evaluations to compute policy gradient in n dimensions

Simple, noisy, inefficient - but sometimes effective

Works for arbitrary policies, even if policy is not differentiable
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Training AIBO to Walk by Finite Difference Policy Gradient

m Goal: learn a fast AIBO walk (useful for Robocup)
m AIBO walk policy is controlled by 12 numbers (elliptical loci)
m Adapt these parameters by finite difference policy gradient

m Evaluate performance of policy by field traversal time
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L aiBO example

AIBO Walk Policies

m Before training
m During training

m After training
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Score Function

We now compute the policy gradient analytically

[
m Assume policy 7y is differentiable whenever it is non-zero
m and we know the gradient Vymy(s, a)

[

Likelihood ratios exploit the following identity

Vomo(s, a)
7T9(5, a)
= mp(s,a)Vglogmy(s, a)

Vorg(s,a) = ma(s, a)

m The score function is Vg log my(s, a)
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Softmax Policy

m We will use a softmax policy as a running example
m Weight actions using linear combination of features ¢(s,a)' 6

m Probability of action is proportional to exponentiated weight
mo(s,a) e¥(s:a) 70
m The score function is

Vo logmy(s,a) = ¢(s,a) — Er, [¢(s,-)]
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Gaussian Policy

In continuous action spaces, a Gaussian policy is natural
Mean is a linear combination of state features y(s) = ¢(s)' 6

[
n
m Variance may be fixed o2, or can also parametrised
m Policy is Gaussian, a ~ N(u(s),0?)

n

The score function is

(a — pu(s))¢(s)

Vg log 71—9(57 a) = o2
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One-Step MDPs

m Consider a simple class of one-step MDPs

m Starting in state s ~ d(s)
m Terminating after one time-step with reward r = R, ,

m Use likelihood ratios to compute the policy gradient
J(0) = Ex, [r]

=> d(s) > m(s, a)Rs.

seS acA
Vod(0) = d(s) > ma(s,a)Velogme(s, a)Rs.
seS acA

=E,, [Vologmy(s, a)r]
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Policy Gradient Theorem

m The policy gradient theorem generalises the likelihood ratio
approach to multi-step MDPs

m Replaces instantaneous reward r with long-term value Q™ (s, a)

m Policy gradient theorem applies to start state objective,
average reward and average value objective

Theorem

For any differentiable policy my(s, a),
for any of the policy objective functions J = J1, J,yr, or ﬁJavv,
the policy gradient is

VoJ(0) = Er, [Volog mp(s,a) Q™ (s, a)]
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Monte-Carlo Policy Gradient (REINFORCE)

m Update parameters by stochastic gradient ascent
m Using policy gradient theorem
m Using return v; as an unbiased sample of Q™ (s, a;)

Aat = aVe IOg 7T9(St, at)Vt

function REINFORCE
Initialise @ arbitrarily
for each episode {s1, a1, r,...,ST_1,a7-1,r7} ~ T dO
fort=1to T —1do
0 « 6 + aVglog my(st, ar)ve
end for
end for
return 6
end function
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Puck World Example

target O -15 ’l 1

Average Reward
w
o

50 Loatl

0 3e+07 6e+07 9e+07 1.2e+08 1.5e+08
Iterations

&

m Continuous actions exert small force on puck
m Puck is rewarded for getting close to target

m Target location is reset every 30 seconds
|

Policy is trained using variant of Monte-Carlo policy gradient
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L Actor-Critic Policy Gradient

Reducing Variance Using a Critic

m Monte-Carlo policy gradient still has high variance
m We use a critic to estimate the action-value function,

Qu(s,a) =~ Q™(s,a)

m Actor-critic algorithms maintain two sets of parameters

Critic Updates action-value function parameters w
Actor Updates policy parameters 6, in direction
suggested by critic

m Actor-critic algorithms follow an approximate policy gradient

VoJ(0) = E;, [Vologmy(s,a) Qu(s,a)]
A0 = aVyglogmy(s,a) Qu(s,a)
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L Actor-Critic Policy Gradient

Estimating the Action-Value Function

m The critic is solving a familiar problem: policy evaluation
m How good is policy mg for current parameters 07
m This problem was explored in previous two lectures, e.g.

m Monte-Carlo policy evaluation
m Temporal-Difference learning
m TD())

m Could also use e.g. least-squares policy evaluation
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L Actor-Critic Policy Gradient

Action-Value Actor-Critic

m Simple actor-critic algorithm based on action-value critic
m Using linear value fn approx. Qu(s,a) = ¢(s,a)’
Critic Updates w by linear TD(0)

Actor Updates 6 by policy gradient

function QAC
Initialise s, 0
Sample a ~ my
for each step do
Sample reward r = RZ; sample transition s’ ~ P2
Sample action a’ ~ my(s’, a’)
6 =r+7Qu(s,a") — Qu(s,a)
0 =0+ aVyglogmy(s,a)Qu(s,a)
w4 w+ B¢(s, a)
a+a,s« s
end for
end function

w
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Bias in Actor-Critic Algorithms

Approximating the policy gradient introduces bias

A biased policy gradient may not find the right solution

m eg. if Qu(s,a) uses aliased features, can we solve gridworld
example?

Luckily, if we choose value function approximation carefully

Then we can avoid introducing any bias

m i.e. We can still follow the exact policy gradient
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Compatible Function Approximation

Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

Value function approximator is compatible to the policy
VwQuw(s,a) = Vglogmy(s, a)
Value function parameters w minimise the mean-squared error
e =Eg, [(Q’TG (s,a) — Qu(s, a))z]
Then the policy gradient is exact,

VoJ(0) = Er, [Vologmy(s, a) Qu(s, a)]
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Proof of Compatible Function Approximation Theorem

If w is chosen to minimise mean-squared error, gradient of € w.r.t.
w must be zero,

e=0
Er, [(Q%(s,2) — Qu(s,a))VwQu(s,a)] =0
Er, [(Qe(sv a) - QW(S’ a))V9 log 770(57 a)] =0
)=

So Qu (s, a) can be substituted directly into the policy gradient,

VoJ(0) = Er, [Vologma(s, a)Qu(s, a)]
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Reducing Variance Using a Baseline

m We subtract a baseline function B(s) from the policy gradient
m This can reduce variance, without changing expectation

Er, [Vologm(s,a)B(s)] = > d™(s) Y Vem(s,a)B(s)

seS

= d™B(s)Vy Y (s, a)
seS acA

=0

m A good baseline is the state value function B(s) = V™ (s)
m So we can rewrite the policy gradient using the advantage
function A™(s, a)

A" (s,a) = Q™ (s,a) — V™(s)
VoJ(8) = Er, [Vologms(s,a) A" (s, a)]
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Estimating the Advantage Function (1)

m The advantage function can significantly reduce variance of
policy gradient

So the critic should really estimate the advantage function
For example, by estimating both V™ (s) and Q™ (s, a)

Using two function approximators and two parameter vectors,

V,(s) = V™(s)
QW(57 a) ~ QM (5’ a)
A(s,a) = Qu(s,a) — Vi(s)

m And updating both value functions by e.g. TD learning
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Estimating the Advantage Function (2)

m For the true value function V™ (s), the TD error §™

0™ = r +yVT(s") — V™ (s)

is an unbiased estimate of the advantage function
Er, [67]s,a] = Eg, [r+yV™(s')|s,a] — V™(s)
= Q™ (s,a) — V7(s)
= A"(s, a)
m So we can use the TD error to compute the policy gradient

Vod(0) = Er, [Vologmy(s,a) 6™

In practice we can use an approximate TD error
oy =r —i—’va(s/) — Vi(s)

This approach only requires one set of critic parameters v
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Critics at Different Time-Scales

m Critic can estimate value function Vj(s) from many targets at
different time-scales From last lecture...
m For MC, the target is the return v,

A = a(ve — Vu(s))d(s)
m For TD(0), the target is the TD target r + yV/(s')
Af = a(r +7V(s") = Vi(s))e(s)
m For forward-view TD()), the target is the A-return v
AG = (v, — Vo(s))é(s)
m For backward-view TD(\), we use eligibility traces
Ot = reg1 + YV (se41) — V(st)

e = yAer—1 + ¢(5t)
Af = Oé(stet
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Actors at Different Time-Scales

m The policy gradient can also be estimated at many time-scales
VoJ(0) = Er, [Vologma(s,a) A" (s, a)]
m Monte-Carlo policy gradient uses error from complete return
AO = a(ve — V(st)) Ve log mg(st, at)
m Actor-critic policy gradient uses the one-step TD error

AO = a(r +yVy(ser1) — Vi(st)) Ve log mg(st, at)



Lecture 7: Policy Gradient
L Actor-Critic Policy Gradient
L Eligibility Traces

Policy Gradient with Eligibility Traces

m Just like forward-view TD()), we can mix over time-scales
NG = av) — Vi, (s:)) Vg log mo(st, at)

m where v} — V,(s;) is a biased estimate of advantage fn
m Like backward-view TD(A), we can also use eligibility traces
m By equivalence with TD()\), substituting ¢(s) = Vg log my(s, a)

6 = rep1 +YVo(se+1) — Vo(st)
err1 = Aer + Vg log my(s, a)
Al = ade;

m This update can be applied online, to incomplete sequences
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Alternative Policy Gradient Directions

Gradient ascent algorithms can follow any ascent direction

A good ascent direction can significantly speed convergence

Also, a policy can often be reparametrised without changing
action probabilities

For example, increasing score of all actions in a softmax policy

m The vanilla gradient is sensitive to these reparametrisations
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L Actor-Critic Policy Gradient

L Natural Policy Gradient

Natural Policy Gradient

(a)*Vanilla’ policy gradients  (b) Natural policy gradients

Controller gain 6,=k ’ Controller gain 6,=k

m The natural policy gradient is parametrisation independent
m It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

Vitny(s,a) = G, 'Vome(s, a)
m where Gy is the Fisher information matrix

Go = Ex, [Vologmo(s, a)Volog mo(s,a) |
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Natural Actor-Critic

m Using compatible function approximation,
VwAw(s,a) = Vglog my(s, a)
m So the natural policy gradient simplifies,
VoJ(0) = Er, [Vologms(s,a)A™ (s, a)]
=E., |Vglogmy(s,a)Vylogms(s, a)TW

= Gypw
Vet J(0)= w

m i.e. update actor parameters in direction of critic parameters
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Natural Actor Critic in Snake Domain
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Natural Actor Critic in Snake Domain (2)
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(a) Before learning (b) After learning
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Natural Actor Critic in Snake Domain (3)
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Summary of Policy Gradient Algorithms

m The policy gradient has many equivalent forms

VoJ(0) = Er, [Vologmo(s,a) v REINFORCE
=Er, [Vglogmy(s,a) Q“(s,a)] Q Actor-Critic
=E,, [Vglogms(s,a) A¥(s,a)] Advantage Actor-Critic
=Er, [Vologmy(s, a) ] TD Actor-Critic
= Er, [Vologmy(s,a) de] TD(A) Actor-Critic

Gy 'VoJ(0) = w Natural Actor-Critic

m Each leads a stochastic gradient ascent algorithm

m Critic uses policy evaluation (e.g. MC or TD learning)
to estimate Q™ (s, a), A™(s,a) or V™(s)



