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Today

Classification – Multi-dimensional (Gaussian) Bayes classifier

Estimate probability densities from data

Naive Bayes classifier
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Generative vs Discriminative

Two approaches to classification:

Discriminative classifiers estimate parameters of decision boundary/class
separator directly from labeled examples

I learn p(y |x) directly (logistic regression models)
I learn mappings from inputs to classes (least-squares, neural nets)

Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier)

I Build a model of p(x|y)
I Apply Bayes Rule
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Bayes Classifier

Aim to diagnose whether patient has diabetes: classify into one of two
classes (yes C=1; no C=0)

Run battery of tests

Given patient’s results: x = [x1, x2, · · · , xd ]T we want to update class
probabilities using Bayes Rule:

p(C |x) =
p(x|C )p(C )

p(x)

More formally

posterior =
Class likelihood× prior

Evidence

How can we compute p(x) for the two class case?

p(x) = p(x|C = 0)p(C = 0) + p(x|C = 1)p(C = 1)
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Classification: Diabetes Example

Last class we had a single observation per patient: white blood cell count

p(C = 1|x = 48) =
p(x = 48|C = 1)p(C = 1)

p(x = 48)

Add second observation: Plasma glucose value

Now our input x is 2-dimensional
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate normal (Gaussian) distribution

Multivariate Gaussian distribution:

p(x|t = k) =
1

(2π)d/2|Σk |1/2
exp

[
−(x− µk)TΣ−1

k (x− µk)
]

where |Σk | denotes the determinant of the matrix, and d is dimension of x

Each class k has associated mean vector µk and covariance matrix Σk

Typically the classes share a single covariance matrix Σ (“share” means that
they have the same parameters; the covariance matrix in this case):
Σ = Σ1 = · · · = Σk
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Multivariate Data

Multiple measurements (sensors)

d inputs/features/attributes

N instances/observations/examples

X =


x
(1)
1 x

(1)
2 · · · x

(1)
d

x
(2)
1 x

(2)
2 · · · x

(2)
d

...
...

. . .
...

x
(N)
1 x

(N)
2 · · · x

(N)
d


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Multivariate Parameters

Mean
E[x] = [µ1, · · · , µd ]T

Covariance

Σ = Cov(x) = E[(x− µ)T (x− µ)] =


σ2
1 σ12 · · · σ1d

σ12 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d



Correlation = Corr(x) is the covariance divided by the product of standard
deviation

ρij =
σij
σiσj

Zemel, Urtasun, Fidler (UofT) CSC 411: 09-Naive Bayes October 12, 2016 8 / 28



Multivariate Parameters

Mean
E[x] = [µ1, · · · , µd ]T

Covariance

Σ = Cov(x) = E[(x− µ)T (x− µ)] =


σ2
1 σ12 · · · σ1d

σ12 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d



Correlation = Corr(x) is the covariance divided by the product of standard
deviation

ρij =
σij
σiσj

Zemel, Urtasun, Fidler (UofT) CSC 411: 09-Naive Bayes October 12, 2016 8 / 28



Multivariate Parameters

Mean
E[x] = [µ1, · · · , µd ]T

Covariance

Σ = Cov(x) = E[(x− µ)T (x− µ)] =


σ2
1 σ12 · · · σ1d

σ12 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d



Correlation = Corr(x) is the covariance divided by the product of standard
deviation

ρij =
σij
σiσj

Zemel, Urtasun, Fidler (UofT) CSC 411: 09-Naive Bayes October 12, 2016 8 / 28



Multivariate Gaussian Distribution

x ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−(x− µ)TΣ−1(x− µ)

]

Mahalanobis distance (x− µk)TΣ−1(x− µk) measures the distance from x
to µ in terms of Σ

It normalizes for difference in variances and correlations
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ = 0.5

(
1 0
0 1

)
Σ = 2

(
1 0
0 1

)

Figure : Probability density function

Figure : Contour plot of the pdf
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Bivariate Normal

var(x1) = var(x2) var(x1) > var(x2) var(x1) < var(x2)

Figure : Probability density function

Figure : Contour plot of the pdf
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Bivariate Normal

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
1 0.8

0.8 1

)

Figure : Probability density function

Figure : Contour plot of the pdf
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Bivariate Normal

Cov(x1, x2) = 0 Cov(x1, x2) > 0 Cov(x1, x2) < 0

Figure : Probability density function

Figure : Contour plot of the pdf
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

GDA (GBC) decision boundary is based on class posterior:

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −d

2
log(2π)− 1

2
log |Σ−1

k | −
1

2
(x− µk)TΣ−1

k (x− µk) +

+ log p(tk)− log p(x)

Decision: take the class with the highest posterior probability
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Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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Decision Boundary when Shared Covariance Matrix
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Learning

Learn the parameters using maximum likelihood

`(φ, µ0, µ1,Σ) = − log
N∏

n=1

p(x(n), t(n)|φ, µ0, µ1,Σ)

= − log
N∏

n=1

p(x(n)|t(n), µ0, µ1,Σ)p(t(n)|φ)

What have we assumed?
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More on MLE

Assume the prior is Bernoulli (we have two classes)

p(t|φ) = φt(1− φ)1−t

You can compute the ML estimate in closed form

φ =
1

N

N∑
n=1

1[t(n) = 1]

µ0 =

∑N
n=1 1[t(n) = 0] · x(n)∑N

n=1 1[t(n) = 0]

µ1 =

∑N
n=1 1[t(n) = 1] · x(n)∑N

n=1 1[t(n) = 1]

Σ =
1

N

N∑
n=1

(x(n) − µt(n))(x(n) − µt(n))
T
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Gaussian Discriminative Analysis vs Logistic Regression

If you examine p(t = 1|x) under GDA, you will find that it looks like this:

p(t|x, φ, µ0, µ1,Σ) =
1

1 + exp(−wTx)

where w is an appropriate function of (φ, µ0, µ1,Σ)

So the decision boundary has the same form as logistic regression!

When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

GDA makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

If this is true, GDA is asymptotically efficient (best model in limit of large N)

But LR is more robust, less sensitive to incorrect modeling assumptions

Many class-conditional distributions lead to logistic classifier

When these distributions are non-Gaussian, in limit of large N, LR beats
GDA
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Simplifying the Model

What if x is high-dimensional?

For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

Save some parameters by using a shared covariance for the classes

Any other idea you can think of?
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Naive Bayes

Naive Bayes is an alternative generative model: Assumes features
independent given the class

p(x|t = k) =
d∏

i=1

p(xi |t = k)

Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

Important note: Naive Bayes does not assume a particular distribution
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Naive Bayes Classifier

Given

prior p(t = k)

assuming features are conditionally independent given the class

likelihood p(xi |t = k) for each xi

The decision rule

y = arg max
k

p(t = k)
d∏

i=1

p(xi |t = k)

If the assumption of conditional independence holds, NB is the optimal
classifier

If not, a heavily regularized version of generative classifier

What’s the regularization?

Note: NB’s assumptions (cond. independence) typically do not hold in
practice. However, the resulting algorithm still works well on many problems,
and it typically serves as a decent baseline for more sophisticated models
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Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

p(xi |t = k) =
1√

2πσik
exp

[
−(xi − µik)2

2σ2
ik

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

Maximum likelihood estimate of parameters

µik =

∑N
n=1 1[t(n) = k] · x (n)i∑N

n=1 1[t(n) = k]

σ2
ik =

∑N
n=1 1[t(n) = k] · (x (n)i − µik)2∑N

n=1 1[t(n) = k]

Zemel, Urtasun, Fidler (UofT) CSC 411: 09-Naive Bayes October 12, 2016 24 / 28



Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

p(xi |t = k) =
1√

2πσik
exp

[
−(xi − µik)2

2σ2
ik

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

Maximum likelihood estimate of parameters

µik =

∑N
n=1 1[t(n) = k] · x (n)i∑N

n=1 1[t(n) = k]

σ2
ik =

∑N
n=1 1[t(n) = k] · (x (n)i − µik)2∑N

n=1 1[t(n) = k]

Zemel, Urtasun, Fidler (UofT) CSC 411: 09-Naive Bayes October 12, 2016 24 / 28



Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

p(xi |t = k) =
1√

2πσik
exp

[
−(xi − µik)2

2σ2
ik

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

Maximum likelihood estimate of parameters

µik =

∑N
n=1 1[t(n) = k] · x (n)i∑N

n=1 1[t(n) = k]

σ2
ik =

∑N
n=1 1[t(n) = k] · (x (n)i − µik)2∑N

n=1 1[t(n) = k]

Zemel, Urtasun, Fidler (UofT) CSC 411: 09-Naive Bayes October 12, 2016 24 / 28



Decision Boundary: Shared Variances (between Classes)

variances may be 
different 
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Decision Boundary: isotropic

* ? 

Same variance across all classes and input dimensions, all class priors equal

Classification only depends on distance to the mean. Why?
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Decision Boundary: isotropic

In this case: σi,k = σ (just one parameter), class priors equal (e.g.,
p(tk) = 0.5 for 2-class case)

Going back to class posterior for GDA:

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −d

2
log(2π)− 1

2
log |Σ−1

k | −
1

2
(x− µk)TΣ−1

k (x− µk) +

+ log p(tk)− log p(x)

where we take Σk = σ2I and ignore terms that don’t depend on k (don’t
matter when we take max over classes):

log p(tk |x) = − 1

2σ2
(x− µk)T (x− µk)
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Decision Boundary: isotropic

In this case: σi,k = σ (just one parameter), class priors equal (e.g.,
p(tk) = 0.5 for 2-class case)

Going back to class posterior for GDA:
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Spam Classification

You have examples of emails that are spam and non-spam

How would you classify spam vs non-spam?

Think about it at home, solution in the next tutorial
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