CSC 411: Lecture 09: Naive Bayes

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

October 12, 2016

Today

- Classification Multi-dimensional (Gaussian) Bayes classifier
- Estimate probability densities from data
- Naive Bayes classifier

Generative vs Discriminative

Two approaches to classification:

- Discriminative classifiers estimate parameters of decision boundary/class separator directly from labeled examples
 - learn $p(y|\mathbf{x})$ directly (logistic regression models)
 - learn mappings from inputs to classes (least-squares, neural nets)
- Generative approach: model the distribution of inputs characteristic of the class (Bayes classifier)
 - ▶ Build a model of $p(\mathbf{x}|y)$
 - Apply Bayes Rule

Bayes Classifier

- Aim to diagnose whether patient has diabetes: classify into one of two classes (yes C=1; no C=0)
- Run battery of tests
- Given patient's results: $\mathbf{x} = [x_1, x_2, \cdots, x_d]^T$ we want to update class probabilities using Bayes Rule:

$$p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C)p(C)}{p(\mathbf{x})}$$

More formally

$$posterior = \frac{Class\ likelihood \times prior}{Evidence}$$

• How can we compute $p(\mathbf{x})$ for the two class case?

$$p(\mathbf{x}) = p(\mathbf{x}|C = 0)p(C = 0) + p(\mathbf{x}|C = 1)p(C = 1)$$

Classification: Diabetes Example

• Last class we had a single observation per patient: white blood cell count

$$p(C = 1|x = 48) = \frac{p(x = 48|C = 1)p(C = 1)}{p(x = 48)}$$

Classification: Diabetes Example

• Last class we had a single observation per patient: white blood cell count

$$p(C = 1|x = 48) = \frac{p(x = 48|C = 1)p(C = 1)}{p(x = 48)}$$

- Add second observation: Plasma glucose value
- Now our input x is 2-dimensional

- Gaussian Discriminant Analysis in its general form assumes that $p(\mathbf{x}|t)$ is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \exp\left[-(\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix, and d is dimension of ${f x}$

- Gaussian Discriminant Analysis in its general form assumes that $p(\mathbf{x}|t)$ is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \exp\left[-(\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix, and d is dimension of ${f x}$

ullet Each class k has associated mean vector $oldsymbol{\mu}_k$ and covariance matrix Σ_k

- Gaussian Discriminant Analysis in its general form assumes that $p(\mathbf{x}|t)$ is distributed according to a multivariate normal (Gaussian) distribution
- Multivariate Gaussian distribution:

$$p(\mathbf{x}|t=k) = \frac{1}{(2\pi)^{d/2}|\Sigma_k|^{1/2}} \exp\left[-(\mathbf{x} - \boldsymbol{\mu}_k)^T \Sigma_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right]$$

where $|\Sigma_k|$ denotes the determinant of the matrix, and d is dimension of x

- ullet Each class k has associated mean vector $oldsymbol{\mu}_k$ and covariance matrix Σ_k
- Typically the classes share a single covariance matrix Σ ("share" means that they have the same parameters; the covariance matrix in this case): $\Sigma = \Sigma_1 = \cdots = \Sigma_k$

Multivariate Data

- Multiple measurements (sensors)
- d inputs/features/attributes
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \cdots & x_d^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(N)} & x_2^{(N)} & \cdots & x_d^{(N)} \end{bmatrix}$$

Multivariate Parameters

Mean

$$\mathbb{E}[\mathbf{x}] = [\mu_1, \cdots, \mu_d]^T$$

Multivariate Parameters

Mean

$$\mathbb{E}[\mathbf{x}] = [\mu_1, \cdots, \mu_d]^T$$

Covariance

$$\Sigma = Cov(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \mu)^T (\mathbf{x} - \mu)] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_{d}^2 \end{bmatrix}$$

Multivariate Parameters

Mean

$$\mathbb{E}[\mathbf{x}] = [\mu_1, \cdots, \mu_d]^T$$

Covariance

$$\Sigma = Cov(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \mu)^T (\mathbf{x} - \mu)] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_{dd}^2 \end{bmatrix}$$

 Correlation = Corr(x) is the covariance divided by the product of standard deviation

$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_i}$$

Multivariate Gaussian Distribution

• $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$, a Gaussian (or normal) distribution defined as

$$\rho(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)\right]$$

Multivariate Gaussian Distribution

• $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$, a Gaussian (or normal) distribution defined as

$$ho(\mathbf{x}) = rac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-(\mathbf{x}-\mu)^T \Sigma^{-1} (\mathbf{x}-\mu)
ight]$$

• Mahalanobis distance $(\mathbf{x} - \mu_k)^T \Sigma^{-1} (\mathbf{x} - \mu_k)$ measures the distance from \mathbf{x} to μ in terms of Σ

Multivariate Gaussian Distribution

• $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma)$, a Gaussian (or normal) distribution defined as

$$ho(\mathbf{x}) = rac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)
ight]$$

- Mahalanobis distance $(\mathbf{x} \mu_k)^T \Sigma^{-1} (\mathbf{x} \mu_k)$ measures the distance from \mathbf{x} to μ in terms of Σ
- It normalizes for difference in variances and correlations

Figure: Probability density function

Figure: Contour plot of the pdf

Figure: Probability density function

Figure: Contour plot of the pdf

Figure: Probability density function

Figure: Contour plot of the pdf

Figure: Probability density function

Figure: Contour plot of the pdf

• GDA (GBC) decision boundary is based on class posterior:

$$\log p(t_k|\mathbf{x}) = \log p(\mathbf{x}|t_k) + \log p(t_k) - \log p(\mathbf{x})$$

$$= -\frac{d}{2}\log(2\pi) - \frac{1}{2}\log|\Sigma_k^{-1}| - \frac{1}{2}(\mathbf{x} - \mu_k)^T \Sigma_k^{-1}(\mathbf{x} - \mu_k) + \log p(t_k) - \log p(\mathbf{x})$$

Decision: take the class with the highest posterior probability

Decision Boundary

Decision Boundary when Shared Covariance Matrix

Learning

• Learn the parameters using maximum likelihood

$$\ell(\phi, \mu_0, \mu_1, \Sigma) = -\log \prod_{n=1}^{N} p(\mathbf{x}^{(n)}, t^{(n)} | \phi, \mu_0, \mu_1, \Sigma)$$
$$= -\log \prod_{n=1}^{N} p(\mathbf{x}^{(n)} | t^{(n)}, \mu_0, \mu_1, \Sigma) p(t^{(n)} | \phi)$$

• What have we assumed?

More on MLE

Assume the prior is Bernoulli (we have two classes)

$$p(t|\phi) = \phi^t (1 - \phi)^{1-t}$$

You can compute the ML estimate in closed form

$$\phi = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 1]$$

$$\mu_0 = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 0] \cdot \mathbf{x}^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 0]}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 1] \cdot \mathbf{x}^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = 1]}$$

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \mu_{t^{(n)}}) (\mathbf{x}^{(n)} - \mu_{t^{(n)}})^{T}$$

• If you examine $p(t = 1|\mathbf{x})$ under GDA, you will find that it looks like this:

$$p(t|\mathbf{x}, \phi, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

where **w** is an appropriate function of $(\phi, \mu_0, \mu_1, \Sigma)$

• If you examine $p(t = 1|\mathbf{x})$ under GDA, you will find that it looks like this:

$$p(t|\mathbf{x}, \phi, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

where **w** is an appropriate function of $(\phi, \mu_0, \mu_1, \Sigma)$

• So the decision boundary has the same form as logistic regression!

• If you examine $p(t = 1|\mathbf{x})$ under GDA, you will find that it looks like this:

$$p(t|\mathbf{x}, \phi, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

where **w** is an appropriate function of $(\phi, \mu_0, \mu_1, \Sigma)$

- So the decision boundary has the same form as logistic regression!
- When should we prefer GDA to LR, and vice versa?

• GDA makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian

- GDA makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GDA is asymptotically efficient (best model in limit of large N)

- GDA makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GDA is asymptotically efficient (best model in limit of large N)
- But LR is more robust, less sensitive to incorrect modeling assumptions

- GDA makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GDA is asymptotically efficient (best model in limit of large N)
- But LR is more robust, less sensitive to incorrect modeling assumptions
- Many class-conditional distributions lead to logistic classifier

- GDA makes stronger modeling assumption: assumes class-conditional data is multivariate Gaussian
- If this is true, GDA is asymptotically efficient (best model in limit of large N)
- But LR is more robust, less sensitive to incorrect modeling assumptions
- Many class-conditional distributions lead to logistic classifier
- When these distributions are non-Gaussian, in limit of large N, LR beats GDA

Simplifying the Model

What if x is high-dimensional?

 For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance matrix has many parameters

Simplifying the Model

What if x is high-dimensional?

- For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance matrix has many parameters
- Save some parameters by using a shared covariance for the classes

Simplifying the Model

What if x is high-dimensional?

- For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance matrix has many parameters
- Save some parameters by using a shared covariance for the classes
- Any other idea you can think of?

Naive Bayes

 Naive Bayes is an alternative generative model: Assumes features independent given the class

$$p(\mathbf{x}|t=k) = \prod_{i=1}^{d} p(x_i|t=k)$$

Naive Bayes

• Naive Bayes is an alternative generative model: Assumes features independent given the class

$$p(\mathbf{x}|t=k) = \prod_{i=1}^d p(x_i|t=k)$$

 Assuming likelihoods are Gaussian, how many parameters required for Naive Bayes classifier?

Naive Bayes

• Naive Bayes is an alternative generative model: Assumes features independent given the class

$$p(\mathbf{x}|t=k) = \prod_{i=1}^d p(x_i|t=k)$$

- Assuming likelihoods are Gaussian, how many parameters required for Naive Bayes classifier?
- Important note: Naive Bayes does not assume a particular distribution

Given

- prior p(t = k)
- assuming features are conditionally independent given the class
- likelihood $p(x_i|t=k)$ for each x_i

Given

- prior p(t = k)
- assuming features are conditionally independent given the class
- likelihood $p(x_i|t=k)$ for each x_i

$$y = arg \max_{k} p(t = k) \prod_{i=1}^{d} p(x_i|t = k)$$

Given

- prior p(t = k)
- assuming features are conditionally independent given the class
- likelihood $p(x_i|t=k)$ for each x_i

The decision rule

$$y = arg \max_{k} p(t = k) \prod_{i=1}^{d} p(x_i|t = k)$$

 If the assumption of conditional independence holds, NB is the optimal classifier

Given

- prior p(t = k)
- assuming features are conditionally independent given the class
- likelihood $p(x_i|t=k)$ for each x_i

$$y = arg \max_{k} p(t = k) \prod_{i=1}^{d} p(x_i|t = k)$$

- If the assumption of conditional independence holds, NB is the optimal classifier
- If not, a heavily regularized version of generative classifier

Given

- prior p(t = k)
- assuming features are conditionally independent given the class
- likelihood $p(x_i|t=k)$ for each x_i

$$y = arg \max_{k} p(t = k) \prod_{i=1}^{d} p(x_i|t = k)$$

- If the assumption of conditional independence holds, NB is the optimal classifier
- If not, a heavily regularized version of generative classifier
- What's the regularization?

Given

- prior p(t = k)
- assuming features are conditionally independent given the class
- likelihood $p(x_i|t=k)$ for each x_i

$$y = arg \max_{k} p(t = k) \prod_{i=1}^{d} p(x_i|t = k)$$

- If the assumption of conditional independence holds, NB is the optimal classifier
- If not, a heavily regularized version of generative classifier
- What's the regularization?
- Note: NB's assumptions (cond. independence) typically do not hold in practice. However, the resulting algorithm still works well on many problems, and it typically serves as a decent baseline for more sophisticated models

Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

$$p(x_i|t=k) = \frac{1}{\sqrt{2\pi}\sigma_{ik}} \exp\left[\frac{-(x_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right]$$

(this is just a 1-dim Gaussian, one for each input dimension)

Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

$$p(x_i|t=k) = \frac{1}{\sqrt{2\pi}\sigma_{ik}} \exp\left[\frac{-(x_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right]$$

(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as Gaussian Discriminative Analysis with diagonal covariance matrix

Gaussian Naive Bayes

Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

$$p(x_i|t=k) = \frac{1}{\sqrt{2\pi}\sigma_{ik}} \exp\left[\frac{-(x_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right]$$

(this is just a 1-dim Gaussian, one for each input dimension)

- Model the same as Gaussian Discriminative Analysis with diagonal covariance matrix
- Maximum likelihood estimate of parameters

$$\mu_{ik} = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k] \cdot x_i^{(n)}}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k]}$$

$$\sigma_{ik}^2 = \frac{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k] \cdot (x_i^{(n)} - \mu_{ik})^2}{\sum_{n=1}^{N} \mathbb{1}[t^{(n)} = k]}$$

Decision Boundary: Shared Variances (between Classes)

Decision Boundary: isotropic

- Same variance across all classes and input dimensions, all class priors equal
- Classification only depends on distance to the mean. Why?

Decision Boundary: isotropic

- In this case: $\sigma_{i,k} = \sigma$ (just one parameter), class priors equal (e.g., $p(t_k) = 0.5$ for 2-class case)
- Going back to class posterior for GDA:

$$\log p(t_k|\mathbf{x}) = \log p(\mathbf{x}|t_k) + \log p(t_k) - \log p(\mathbf{x})$$

$$= -\frac{d}{2}\log(2\pi) - \frac{1}{2}\log|\Sigma_k^{-1}| - \frac{1}{2}(\mathbf{x} - \mu_k)^T \Sigma_k^{-1}(\mathbf{x} - \mu_k) + \log p(t_k) - \log p(\mathbf{x})$$

Decision Boundary: isotropic

- In this case: $\sigma_{i,k} = \sigma$ (just one parameter), class priors equal (e.g., $p(t_k) = 0.5$ for 2-class case)
- Going back to class posterior for GDA:

$$\log p(t_k|\mathbf{x}) = \log p(\mathbf{x}|t_k) + \log p(t_k) - \log p(\mathbf{x})$$

$$= -\frac{d}{2}\log(2\pi) - \frac{1}{2}\log|\Sigma_k^{-1}| - \frac{1}{2}(\mathbf{x} - \mu_k)^T \Sigma_k^{-1}(\mathbf{x} - \mu_k) + \log p(t_k) - \log p(\mathbf{x})$$

where we take $\Sigma_k = \sigma^2 I$ and ignore terms that don't depend on k (don't matter when we take max over classes):

$$\log p(t_k|\mathbf{x}) = -\frac{1}{2\sigma^2}(\mathbf{x} - \mu_k)^T(\mathbf{x} - \mu_k)$$

Spam Classification

- You have examples of emails that are spam and non-spam
- How would you classify spam vs non-spam?

Spam Classification

- You have examples of emails that are spam and non-spam
- How would you classify spam vs non-spam?
- Think about it at home, solution in the next tutorial