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Chapter Summary
 Propositional Logic

 The Language of Propositions
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 Logical Equivalences
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 Proofs
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Propositional Logic Summary
 The Language of Propositions
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 Truth Values
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 System Specifications
 Logic Puzzles
 Logic Circuits 

 Logical Equivalences
 Important Equivalences
 Showing Equivalence
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Section Summary
 Propositions

 Connectives

 Negation

 Conjunction

 Disjunction

 Implication; contrapositive, inverse, converse

 Biconditional

 Truth Tables



Propositions
 A proposition is a declarative sentence that is either true or false.

 Examples of propositions:
a) The Moon is made of green cheese.

b) Trenton is the capital of New Jersey.

c) Toronto is the capital of Canada.

d) 1 + 0 = 1

e) 0 + 0 = 2

 Examples that are not propositions.
a) Sit down!

b) What time is it?

c) x + 1 = 2

d) x + y = z



Propositional Logic
 Constructing Propositions

 Propositional Variables: p, q, r, s, …

 The proposition that is always true is denoted by T and 
the proposition that is always false is denoted by F.

 Compound Propositions; constructed from logical 
connectives and other propositions
 Negation ¬

 Conjunction ∧

 Disjunction ∨

 Implication →

 Biconditional ↔



Compound Propositions: Negation
 The negation of a proposition  p is  denoted by  ¬ p and 

has this truth table:

 Example: If p denotes “The earth is round.”, then ¬ p
denotes “It is not the case that the earth is round,” or 
more simply “The earth is not round.”  

p ¬ p

T F

F T



Conjunction
 The conjunction of propositions  p and  q is denoted 

by p ∧ q  and has this truth table:

 Example:  If p denotes “I am at home.” and q denotes 
“It is raining.” then p ∧q denotes “I am at home and it 
is raining.”

p q p ∧ q 

T T T

T F F

F T F

F F F



Disjunction
 The disjunction of propositions  p and q is denoted 

by  p ∨q and has this truth table:

 Example:  If p denotes “I am at home.” and q denotes 
“It is raining.” then p ∨q denotes “I am at home or it is 
raining.”

p q p ∨q

T T T

T F T

F T T

F F F



The Connective Or in English
 In English “or” has two distinct meanings.

 “Inclusive Or”  - In the sentence “Students who have taken CS202 or 
Math120 may take this class,” we assume that students need to have taken 
one of the prerequisites, but may have taken both. This is the meaning of 
disjunction. For p ∨q to be true, either one or both of p and q must be true.

 “Exclusive Or”  - When reading the sentence “Soup or salad comes with this 
entrée,” we do not expect to be able to get both soup and salad. This is the 
meaning of Exclusive Or (Xor). In p ⊕ q , one of p and q must be true, but 
not both.  The truth table for ⊕ is:

p q p ⊕q

T T F

T F T

F T T

F F F



Implication
 If p and q are propositions, then p →q is a conditional statement or 

implication which is read as “if p, then q ” and has this truth table:

 Example: If p denotes “I am at home.” and q denotes “It is 
raining.” then   p →q denotes “If I am at home then it is raining.” 

 In p →q , p is the hypothesis (antecedent or premise) and q is 
the conclusion (or consequence). 

p q p →q

T T T

T F F

F T T

F F T



Understanding Implication
 In p →q there does not need to be any connection 

between the antecedent or the consequent. The 
“meaning” of p →q depends only on the truth values of 
p and q. 

 These implications are perfectly fine, but would not be 
used in ordinary English.
 “If the moon is made of green cheese, then I have more 

money than Bill Gates. ”

 “If the moon is made of green cheese then I’m on 
welfare.”

 “If 1 + 1 = 3, then your grandma wears combat boots.”



Understanding Implication (cont)
 One way to view the logical conditional is to think of 

an obligation or contract.
 “If I am elected, then I will lower taxes.”

 “If you get 100% on the final, then you will get an A.”

 If the politician is elected and does not lower taxes, 
then the voters can say that he or she has broken the 
campaign pledge. Something similar holds for the 
professor. This corresponds to the case where p is true 
and q is false. 



Different Ways of Expressing p →q

if p, then q p implies q

if p, q p only if q

q unless ¬ p q when p

q if p                                     

q whenever p p is sufficient for q

q follows from p q is necessary for p

a necessary condition for p is q

a sufficient condition for q is p



Converse, Contrapositive, and Inverse
 From p →q we can form new conditional statements .

 q →p is the converse of p →q

 ¬ q → ¬ p is the contrapositive of p →q

 ¬  p → ¬ q is the inverse of p →q

Example: Find the converse, inverse, and contrapositive of 
“It raining is a sufficient condition for my not going to 
town.”

Solution:
converse: If I do not go to town, then it is  raining.

inverse:  If it is not raining, then I will go to town.

contrapositive: If I go to town, then it is not raining. 



Biconditional
 If p and q are propositions, then  we can form the biconditional

proposition p ↔q , read as “p if and only if q .” The  biconditional
p ↔q denotes the proposition with this truth table:

 If p denotes “I am at home.” and q denotes “It is raining.” then       
p ↔q denotes “I am at home if and only if it is raining.”

p q p ↔q

T T T

T F F

F T F

F F T



Expressing the Biconditional
 Some alternative ways “p if and only if q” is expressed 

in English:

 p is necessary and sufficient for q

 if p then q , and conversely

 p iff q



Truth Tables For Compound 
Propositions
 Construction of a truth table:

 Rows
 Need a row for every possible combination of values  for 

the  atomic propositions.

 Columns
 Need a column for the compound proposition (usually 

at far right)

 Need a column for the truth value of each expression 
that occurs in the compound proposition as it is built 
up.
 This includes the atomic propositions 



Example Truth Table
 Construct a truth table for  

p q r r p  q p  q → r

T T T F T F

T T F T T T

T F T F T F

T F F T T T

F T T F T F

F T F T T T

F F T F F T

F F F T F T



Equivalent Propositions
 Two propositions are equivalent if they always have the 

same truth value.

 Example: Show using a truth table that the 
conditional is equivalent to the contrapositive.

Solution:

p q ¬  p ¬  q p →q ¬ q → ¬ p

T T F F T T

T F F T F F

F T T F T T

F F T T T T



Using a Truth Table to Show  Non-
Equivalence

Example: Show using truth tables that neither  the 
converse nor inverse of an implication are not 
equivalent to the implication.

Solution:

p q ¬  p ¬  q p →q ¬  p →¬  q q → p

T T F F T T T

T F F T F T T

F T T F T F F

F F T T T T T



Problem
 How many rows are there in a truth table with n

propositional variables?

Solution:  2n  We will see how to do this in Chapter 6.

 Note that this means that with n propositional 
variables, we can construct 2n    distinct (i.e., not 
equivalent) propositions. 



Precedence of Logical Operators
Operator Precedence

 1





2
3





4
5

p  q  r   is equivalent to (p  q) r
If the intended meaning is p  (q  r )
then parentheses must be used.
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Applications of Propositional Logic: 
Summary
 Translating English to Propositional Logic

 System Specifications

 Boolean Searching

 Logic Puzzles

 Logic Circuits 

 AI Diagnosis Method (Optional)



Translating English Sentences
 Steps to convert an English sentence to a statement in 

propositional logic

 Identify atomic propositions and represent using 
propositional variables.

 Determine appropriate logical connectives

 “If I go to Harry’s or to the country, I will not go 
shopping.”

 p: I go to Harry’s

 q: I go to the country.

 r:  I will go shopping.

If p or q then not r.



Example
Problem: Translate the following sentence into 
propositional logic:

“You can access the Internet from campus only if you are 
a computer science major or you are not a freshman.”

One Solution: Let a, c, and f represent respectively 
“You can access the internet from campus,” “You are a 
computer science major,” and “You are a freshman.”

a→ (c ∨ ¬ f )



System Specifications
 System and Software engineers take requirements in 

English and express them in a precise specification 
language based on logic.

Example: Express in propositional logic:

“The automated reply cannot be sent when the file 
system is full”

Solution: One possible solution: Let p denote “The 
automated reply can be sent” and q denote “The file 
system is full.”

q→ ¬ p



Consistent System Specifications
Definition: A list of propositions is consistent if it is 
possible to assign truth values to the proposition variables 
so that each proposition is true.

Exercise: Are these specifications consistent?
 “The diagnostic message is  stored in the buffer or it is retransmitted.”

 “The diagnostic message is not stored in the buffer.”

 “If the diagnostic message is stored in the buffer, then it is retransmitted.”

Solution: Let p denote “The diagnostic message is stored in the buffer.” Let 
q denote “The diagnostic message is retransmitted” The specification can 
be written as: p ∨ q,  ¬ p, p → q.   When p is false and q is true all three 
statements are true. So the specification is consistent.
 What if “The diagnostic message is not retransmitted is added.” 

Solution: Now we are adding ¬ q and there is no satisfying    assignment. So 
the specification is not consistent. 



Logic Puzzles
 An island has two kinds of inhabitants, knights, who always tell the 

truth, and knaves, who always lie. 

 You go to the island and meet A and B. 

 A says “B is a knight.”

 B says “The two of us are of opposite types.”

Example: What are the types of A and B?

Solution: Let p and q be the statements that A is a knight and B is a 
knight, respectively. So, then p represents the proposition that A is a 
knave and q that B is a knave.
 If A is a knight, then p is  true. Since knights tell the truth, q must also be 

true. Then (p ∧  q)∨ ( p ∧ q) would have to be true, but it is not. So, A is 
not a knight and therefore p must be true.

 If A is a knave, then B must not be a knight since knaves always lie. So, then 
both p and q hold since both are knaves.

Raymond 
Smullyan
(Born 1919)



Logic Circuits 
(Studied in depth in Chapter 12)
 Electronic circuits; each input/output signal  can be viewed as a 0 or 1. 

 0    represents False

 1    represents True

 Complicated circuits are constructed from three basic circuits called gates.

 The inverter  (NOT gate)takes an input bit and produces the negation of that bit.

 The OR gate takes two input bits and produces the value equivalent to the disjunction of the two 
bits.

 The AND gate takes two input bits and produces the value equivalent to the conjunction of the 
two bits.

 More complicated digital circuits can be constructed by combining these basic circuits  to 
produce the desired output given the input signals by building a circuit for each piece of 
the output expression and then combining them. For example:



Diagnosis of Faults in an Electrical 
System (Optional)
 AI Example (from Artificial Intelligence: Foundations 

of Computational Agents by David Poole and Alan 
Mackworth, 2010)

 Need to represent in propositional logic the features of 
a piece of machinery or circuitry that are required for 
the operation to produce observable features. This is 
called the Knowledge Base (KB). 

 We also have observations representing the features 
that the system is exhibiting now. 



Electrical System Diagram (optional)

l1

l2

w0 w4

w3

cb1

Outside Power

s3s2

s1

w1

w2

Have lights (l1, l2), wires 
(w0, w1, w2, w3, w4), 
switches (s1, s2, s3), and 
circuit breakers (cb1)

The next page gives the 
knowledge base describing 
the circuit and the current 
observations. 



Representing the Electrical System 
in Propositional Logic
 We need to represent our common-sense 

understanding of how the electrical system works in 
propositional logic.

 For example: “If l1 is a light and if l1 is receiving 
current, then l1 is lit. 
 light_l1  live_l1  ok_l1 → lit_l1

 Also: “If w1 has current, and switch s2 is in the up 
position, and s2 is not broken, then w0 has current.”
 live_w1  up_s2  ok_s2 → live_w0

 This task of representing a piece of our common-sense 
world in logic is a common one in logic-based AI.



Knowledge Base (opt)
 live_outside
 light_l1
 light_l2
 live_w0 → live_l1
 live_w1  up_s2  ok_s2 → live_w0
 live_w2  down_s2  ok_s2 → live_w0
 live_w3  up_s1  ok_s1 → live_w1
 live_w3  down_s1  ok_s1 → live_w2
 live_w4 → live_l2
 live_w3  up_s3  ok_s3 → live_w4 
 live_outside  ok_cb1 → live_w3
 light_l1  live_l1  ok_l1 → lit_l1
 light_l2  live_l2  ok_l2 → lit_l2

We have outside power.

Both l1 and l2 are lights.

If s2 is ok and s2 is in a down 
position and w2 has current, 
then w0 has current.



Observations  (opt)
 Observations need to be added to the KB

 Both Switches up

 up_s1

 up_s2

 Both lights are dark

 lit_l1

  lit_l2



Diagnosis (opt)
 We assume that the components are working  ok,  unless we are 

forced to assume otherwise. These atoms are called assumables.
 The assumables (ok_cb1, ok_s1, ok_s2, ok_s3, ok_l1, ok_l2) 

represent the assumption that we assume that the switches, 
lights, and circuit breakers are ok.

 If the system is working correctly (all assumables are true), the 
observations and the knowledge base are consistent (i.e., 
satisfiable).

 The augmented knowledge base is clearly not consistent if the 
assumables are all true.  The switches are both up, but the lights 
are not lit. Some of the assumables must then be false. This is 
the basis for the method to diagnose possible faults in the 
system.

 A diagnosis is a minimal set of assumables which must be false to 
explain the observations of the system.



Diagnostic Results (opt)
 See Artificial Intelligence: Foundations of Computational Agents (by David 

Poole and Alan Mackworth, 2010) for details on this problem and how the  
method of consistency based diagnosis can determine possible diagnoses 
for the electrical system. 

 The approach yields 7 possible faults in the system. At least one of these 
must hold:

 Circuit Breaker 1 is not ok.

 Both Switch 1 and Switch 2 are not ok.

 Both Switch 1 and Light 2 are not ok.

 Both Switch 2 and Switch 3 are not ok.

 Both Switch 2 and Light 2 are not ok.

 Both Light 1 and Switch 3 are not ok.

 Both Light 1 and Light 2 are not ok.
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Section Summary
 Tautologies, Contradictions, and Contingencies. 

 Logical Equivalence

 Important Logical Equivalences

 Showing Logical Equivalence

 Normal Forms (optional, covered in exercises in text)

 Disjunctive Normal Form

 Conjunctive Normal Form

 Propositional Satisfiability

 Sudoku Example



Tautologies, Contradictions, and 
Contingencies
 A  tautology is a proposition which is always true.

 Example: p ∨¬p

 A  contradiction is a proposition which is always false.

 Example: p ∧¬p

 A  contingency is a proposition which is neither a 
tautology nor a contradiction, such as  p

P ¬ p p ∨¬p p ∧¬p

T F T F

F T T F



Logically Equivalent
 Two compound propositions p and q are logically equivalent if  p↔q

is a tautology.

 We write this as p⇔q or as p≡q where p and q are compound 
propositions.

 Two compound propositions p and q are equivalent if and only if the 
columns in a truth table giving their truth values agree.

 This truth table shows that ¬ p ∨ q  is equivalent to p → q.

p q ¬ p ¬ p ∨ q p→ q

T T F T T

T F F F F

F T T T T

F F T T T



De Morgan’s Laws

p q ¬ p ¬ q (p∨q) ¬ (p∨q) ¬ p∧¬q

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

This truth table shows that De Morgan’s Second Law holds.

Augustus De Morgan

1806-1871



Key Logical Equivalences
 Identity Laws:                                  ,

 Domination Laws:                           ,

 Idempotent laws:                              ,  

 Double Negation Law:

 Negation Laws:                                   ,



Key Logical Equivalences (cont)
 Commutative Laws:                              ,

 Associative Laws:

 Distributive Laws:

 Absorption Laws:



More Logical Equivalences



Constructing New Logical 
Equivalences
 We can show that two expressions are logically equivalent 

by developing a series of logically equivalent statements.

 To prove that                 we produce a series of equivalences 
beginning with A and ending with B.

 Keep in mind that whenever a proposition (represented by 
a propositional variable) occurs in the equivalences listed 
earlier, it may be replaced by an arbitrarily complex 
compound proposition.



Equivalence Proofs
Example: Show that                               

is logically equivalent to 

Solution:



Equivalence Proofs
Example: Show that                               

is a tautology. 

Solution:



Disjunctive Normal Form (optional)
 A propositional formula is in disjunctive normal form 

if it consists of a disjunction  of (1, … ,n) disjuncts
where each disjunct consists of a conjunction of (1, …, 
m) atomic formulas or the negation of an atomic 
formula.

 Yes

 No

 Disjunctive Normal Form is important for the circuit 
design methods discussed in Chapter 12.



Disjunctive Normal Form (optional)
Example: Show that every compound proposition can be 
put in disjunctive normal form. 

Solution: Construct the truth table for the proposition. 
Then an equivalent proposition is the disjunction with n
disjuncts (where n is the number of rows for which the 
formula evaluates to T). Each disjunct has m conjuncts 
where m is the number of distinct propositional variables. 
Each conjunct includes the positive form of the 
propositional variable if the variable is assigned T in that 
row and the negated form if the variable is assigned F in 
that row.  This proposition is in  disjunctive normal from.



Disjunctive Normal Form (optional)
Example: Find the Disjunctive Normal Form (DNF) of 

(p∨q)→¬r

Solution: This proposition is true when r is false or 
when both p and q are false.

(¬  p∧ ¬ q) ∨ ¬r



Conjunctive Normal Form 
(optional)
 A compound proposition is in Conjunctive Normal 

Form (CNF) if it is a conjunction of disjunctions.

 Every proposition can be put in an equivalent CNF.

 Conjunctive Normal Form (CNF) can be obtained by 
eliminating implications, moving negation inwards 
and using the distributive  and associative laws.

 Important in resolution theorem proving used in 
artificial Intelligence (AI).

 A  compound proposition can be put in conjunctive 
normal form through repeated application of the 
logical equivalences covered earlier.



Conjunctive Normal Form (optional)
Example:    Put the following into CNF: 

Solution:

1. Eliminate implication signs:

2. Move negation inwards; eliminate double negation:

3. Convert to CNF using associative/distributive laws



Propositional Satisfiability
 A compound proposition is satisfiable if there is an 

assignment of truth values to its variables that make it 
true. When no such assignments exist, the compound 
proposition is unsatisfiable.

 A compound proposition is unsatisfiable if and only if 
its negation is a tautology.



Questions on Propositional 
Satisfiability

Example: Determine the satisfiability of the following 
compound propositions:

Solution: Satisfiable. Assign T to p, q, and r.

Solution: Satisfiable. Assign T to p and F to q.

Solution:  Not satisfiable. Check each possible assignment 
of truth values to the propositional variables and none will 
make the proposition true.



Notation

Needed for the next example.



Sudoku
 A Sudoku puzzle is represented by a 99 grid made 

up of nine 33 subgrids, known as blocks. Some of the 
81 cells of the puzzle are assigned one of the numbers 
1,2, …, 9.

 The puzzle is solved by assigning numbers to each 
blank cell so that every row, column and block 
contains each of the nine possible numbers.

 Example



Encoding as a Satisfiability Problem
 Let p(i,j,n) denote the proposition that is true when 

the number n is in the cell in the ith row and the jth
column.

 There are 99  9 = 729 such propositions.

 In the sample puzzle p(5,1,6) is true, but p(5,j,6) is 
false for j = 2,3,…9



Encoding (cont)
 For each cell with a given value, assert p(i,j,n), when 

the cell in row i and column j has the given value.

 Assert that every row contains every number.

 Assert that every column contains every number.



Encoding (cont)
 Assert that each of the 3 x 3 blocks contain every 

number.

(this is tricky - ideas from chapter 4 help)

 Assert that no cell contains more than one  number. 
Take the conjunction over all values of n, n’, i, and j, 
where each variable ranges from 1 to 9 and             ,

of



Solving Satisfiability Problems
 To solve a  Sudoku puzzle, we need to find an assignment 

of truth values to the 729 variables of the form  p(i,j,n) that 
makes the conjunction of the assertions true. Those 
variables that are assigned T yield a solution to the puzzle.

 A truth table can always be used to determine the 
satisfiability of a compound proposition. But this is too 
complex even for modern computers for large problems. 

 There has been much work on developing efficient 
methods for solving satisfiability problems as many 
practical problems can be translated into satisfiability
problems. 


