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Propositional Logic Not Enough
 If we have: 

“All men are mortal.”

“Socrates is a man.”

 Does it follow that “Socrates is mortal?”

 Can’t  be represented in propositional logic. Need a 
language that talks about objects, their properties, and 
their relations. 

 Later we’ll see how to draw inferences. 



Introducing Predicate Logic
 Predicate logic uses the following new features:

 Variables:   x, y, z

 Predicates: P(x), M(x)

 Quantifiers (to be covered in a few slides):

 Propositional functions are a generalization of 
propositions. 

 They contain variables and a predicate, e.g., P(x)

 Variables can be replaced by elements from their 
domain.



Propositional Functions
 Propositional functions become propositions (and have 

truth values) when their variables are each replaced by a 
value from the domain (or  bound by a quantifier, as we will 
see later).

 The statement P(x) is said to be the value of the 
propositional function P at x. 

 For example, let P(x) denote  “x > 0” and the domain be the 
integers. Then:
P(-3)   is false.
P(0)   is false.
P(3)  is true. 

 Often the domain is denoted by U. So in this example U is 
the integers.



Examples of Propositional 
Functions
 Let “x + y = z” be denoted by  R(x, y, z) and U (for all three variables) be 

the integers. Find these truth values:
R(2,-1,5)

Solution:  F

R(3,4,7)
Solution: T

R(x, 3, z)
Solution: Not a Proposition

 Now let  “x - y = z” be denoted by Q(x, y, z), with U as the integers.
Find these truth values:
Q(2,-1,3)

Solution:  T

Q(3,4,7)
Solution: F

Q(x, 3, z)
Solution:  Not a Proposition



Compound Expressions
 Connectives from propositional logic carry over to predicate 

logic. 
 If P(x) denotes  “x > 0,” find these truth values:

P(3) ∨ P(-1)      Solution: T
P(3) ∧ P(-1)      Solution: F
P(3) → P(-1)     Solution: F
P(3) → ¬P(-1)     Solution: T

 Expressions with variables are not propositions and therefore do 
not have truth values.  For example,
P(3) ∧ P(y)      
P(x) → P(y)     

 When used with quantifiers (to be introduced next), these 
expressions (propositional functions) become propositions.



Quantifiers
 We need quantifiers to express the meaning of English 

words including all and some:
 “All men are Mortal.”
 “Some cats do not have fur.”

 The two most important quantifiers are:

 Universal Quantifier, “For all,”   symbol: 

 Existential Quantifier, “There exists,”  symbol: 
 We write  as in x P(x) and x P(x).
 x P(x) asserts P(x) is true for every x in the domain.
 x P(x) asserts P(x) is true for some x in the domain.
 The quantifiers are said to bind the variable x in these 

expressions. 

Charles Peirce (1839-1914)



Universal Quantifier
 x P(x) is read as “For all x, P(x)” or “For every x, P(x)”

Examples:

1) If P(x) denotes  “x > 0” and U is the integers, then x P(x) is 
false.

2) If P(x) denotes  “x > 0” and U is the positive integers, then     
x P(x) is true.

3) If P(x) denotes  “x is even” and U is the integers,  then  x 
P(x) is false.



Existential Quantifier
 x P(x) is read as “For some x, P(x)”,  or as “There is an 

x such that P(x),”  or “For at least one x, P(x).” 

Examples:

1. If P(x) denotes  “x > 0” and U is the integers, then x P(x) is 
true. It is also true if U is the positive integers.

2. If P(x) denotes  “x < 0” and U is the positive integers,  then     
x P(x) is false.

3. If P(x) denotes  “x is even” and U is the integers,  then     x 
P(x) is true.



Uniqueness Quantifier (optional)
 !x P(x) means that P(x) is true for one and only one x in the 

universe of discourse.

 This is commonly expressed in English in the following 
equivalent ways:
 “There is a unique x such that P(x).” 

 “There is one and only one x such that P(x)”

 Examples:
1. If P(x) denotes  “x + 1 = 0”  and U is the integers, then !x P(x) is 

true. 

2. But if P(x) denotes  “x > 0,”  then !x P(x) is false.

 The uniqueness quantifier is not really needed as the restriction 
that there is a unique x such that P(x) can be expressed as:  

x (P(x) ∧y (P(y) → y =x))



Thinking about Quantifiers
 When the  domain of discourse is finite, we can think of 

quantification as looping through the elements of the domain.
 To evaluate x P(x) loop through all x in the domain. 

 If at every step P(x) is true, then x P(x) is true. 
 If at a step P(x) is false, then x P(x) is false and the loop 

terminates. 

 To evaluate x P(x) loop through all x in the domain. 
 If  at some step, P(x) is true, then x P(x) is true and the loop 

terminates. 
 If the loop ends without finding an x for which P(x) is true, then x 

P(x) is false.

 Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate in some 
cases.



Properties of Quantifiers
 The truth value of x P(x) and  x P(x)  depend on both 

the propositional function P(x) and on  the domain U. 

 Examples:

1. If U is the  positive integers and P(x) is the statement           
“x < 2”, then x P(x) is true, but  x P(x)  is false. 

2. If U is the negative integers and P(x) is the statement           
“x < 2”, then both x P(x) and   x P(x)  are true. 

3. If U consists of 3, 4, and 5,  and P(x) is the statement           
“x > 2”, then  both x P(x) and  x P(x)  are true. But if 
P(x) is the statement “x < 2”, then  both x P(x) and             
 x P(x)  are false. 



Precedence of Quantifiers
 The quantifiers  and   have higher precedence than 

all the logical operators.

 For example, x P(x) ∨ Q(x)  means (x P(x))∨ Q(x)

 x (P(x) ∨ Q(x)) means something different.

 Unfortunately, often people write x P(x) ∨ Q(x)  when 
they mean  x (P(x) ∨ Q(x)). 



Translating from English to Logic
Example 1:  Translate the following sentence into predicate 

logic: “Every student in this class has taken a course in 
Java.”

Solution:

First decide on the domain U. 
Solution 1: If U is all students in this class, define a 

propositional function J(x) denoting “x has taken a course in 
Java” and translate as x J(x). 

Solution 2: But if U is all people, also define a propositional  
function S(x) denoting “x is a student in this class” and 
translate as     x (S(x)→ J(x)).

x (S(x) ∧ J(x)) is not correct.  What does it mean?



Translating from English to Logic
Example 2: Translate the following sentence into 

predicate logic: “Some student in this class has taken a 
course in Java.” 

Solution:

First decide on the domain U. 

Solution 1: If U is all students in this class, translate as 

x J(x)

Solution 2: But if U is all people, then translate as                 
x (S(x) ∧ J(x)) 

x (S(x)→ J(x)) is not correct. What does it mean?



Returning to the Socrates Example 
 Introduce the  propositional functions Man(x) 

denoting “x is a man” and  Mortal(x) denoting “x is 
mortal.”  Specify the  domain as all people.

 The two premises are:

 The conclusion is:

 Later we will show how to prove that the conclusion 
follows from the premises.



Equivalences in Predicate Logic
 Statements involving predicates and quantifiers are 

logically equivalent if and only if they have the same 
truth value 

 for every predicate substituted into these statements 
and 

 for every domain of discourse used for the variables in 
the expressions. 

 The notation S ≡T indicates that S and T are logically 
equivalent. 

 Example:  x ¬ ¬ S(x) ≡ x S(x)



Thinking about Quantifiers as 
Conjunctions and Disjunctions
 If the domain is finite, a universally quantified proposition is 

equivalent to a conjunction of propositions without quantifiers 
and an existentially quantified proposition is equivalent to  a 
disjunction of propositions without quantifiers. 

 If U consists of the integers 1,2, and 3:

 Even if the domains are infinite, you can still think of the 
quantifiers in this fashion, but the equivalent expressions 
without quantifiers will be infinitely long.



Negating Quantified Expressions
 Consider x J(x)

“Every student in your class has taken a course in Java.”

Here J(x) is “x has taken a course in Java” and 

the domain is students in your class. 

 Negating the original statement gives “It is not the case 
that every student in your class has taken Java.” This 
implies that “There is a student in your class who has 
not taken Java.”

Symbolically ¬ x J(x)  and x ¬ J(x) are equivalent



Negating Quantified Expressions 
(continued)
 Now Consider  x J(x)

“There is a student in this class who has taken a course in 
Java.”

Where J(x) is “x has taken a course in Java.”

 Negating the original statement gives “It is not the case 
that there is a student in this class who has taken Java.” 
This implies that “Every student in this class has not 
taken Java”

Symbolically ¬  x J(x)  and  x ¬ J(x) are equivalent



De Morgan’s Laws for Quantifiers
 The rules for negating quantifiers are:

 The reasoning in the table shows that:

 These are important. You will use these. 



Translation from English to Logic
Examples:

1. “Some student in this class has visited Mexico.”

Solution: Let M(x) denote “x has visited Mexico” and 
S(x) denote “x is a student in this class,”  and U  be all 
people.

x  (S(x) ∧ M(x))

2. “Every student in this class has visited Canada or 
Mexico.”

Solution: Add C(x) denoting “x has visited Canada.”

x (S(x)→ (M(x)∨C(x)))



Some Fun with Translating from 
English into Logical Expressions
 U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

Translate “Everything is a fleegle”

Solution: x F(x)



Translation (cont)
 U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

“Nothing is a snurd.”

Solution: ¬ x S(x)   What is this equivalent to?

Solution:   x ¬  S(x) 



Translation (cont)
 U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

“All fleegles are snurds.”

Solution: x (F(x)→ S(x))



Translation (cont)
 U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

“Some fleegles are thingamabobs.”

Solution: x (F(x) ∧ T(x))



Translation (cont)
 U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

“No snurd is a thingamabob.”

Solution: ¬ x (S(x) ∧ T(x))  What is this equivalent 
to?

Solution: x (¬ S(x) ∨ ¬ T(x))



Translation (cont)
 U = {fleegles, snurds, thingamabobs}

F(x): x is a fleegle

S(x): x is a snurd

T(x): x is a thingamabob

“If any fleegle is a snurd then it is also a thingamabob.”

Solution: x ((F(x) ∧ S(x))→ T(x))



System Specification Example
 Predicate logic is used for specifying properties that systems must 

satisfy.

 For example, translate into predicate logic:

 “Every mail message larger than one megabyte will be compressed.”

 “If a user is active, at least one network link will be available.”

 Decide on predicates and domains (left implicit here) for the variables:
 Let L(m, y) be “Mail message m is larger than y megabytes.”

 Let C(m) denote “Mail message m will be compressed.”

 Let A(u) represent “User u is active.”

 Let S(n, x) represent “Network link n is state x.

 Now we have:



Lewis Carroll Example
 The first two are called premises and the third is called the 

conclusion. 
1. “All lions are fierce.”

2. “Some lions do not drink coffee.”

3. “Some fierce creatures do not drink coffee.” 

 Here is one way to translate these statements to predicate logic. 
Let P(x), Q(x), and R(x) be the propositional functions “x is a 
lion,” “x is fierce,” and “x drinks coffee,” respectively.

1. x (P(x)→ Q(x))

2. x (P(x) ∧ ¬R(x))
3. x (Q(x) ∧ ¬R(x))

 Later we will see how to prove that the conclusion follows from 
the premises.

Charles Lutwidge Dodgson
(AKA Lewis Caroll)

(1832-1898)



Some Predicate Calculus 
Definitions (optional)
 An assertion involving predicates and quantifiers is valid if 

it is true 
 for all domains 
 every propositional function  substituted for the predicates in the 

assertion.

Example:  

 An assertion involving predicates is satisfiable if it is true 
 for some domains 
 some propositional functions that can be substituted for  the 

predicates in the assertion. 

Otherwise it is unsatisfiable.
Example: not valid but satisfiable
Example:                                        unsatisfiable



MorePredicate Calculus Definitions 
(optional)
 The scope of a quantifier is the part of an assertion in 

which variables are bound by the quantifier.

Example:                                      x has wide scope

Example:                                      x has narrow scope



Logic Programming (optional)
 Prolog (from Programming in Logic) is a programming 

language developed in the 1970s by researchers in artificial 
intelligence (AI).

 Prolog programs include Prolog facts and Prolog rules.
 As an example of a set of Prolog facts consider the 

following:
instructor(chan, math273).

instructor(patel, ee222).

instructor(grossman, cs301).

enrolled(kevin, math273).

enrolled(juana, ee222).

enrolled(juana, cs301).

enrolled(kiko, math273).

enrolled(kiko, cs301).

 Here the predicates instructor(p,c) and enrolled(s,c)
represent that professor p is the instructor of course c and 
that student s is enrolled in course c. 



Logic Programming (cont)
 In Prolog, names beginning with an uppercase letter 

are variables. 

 If we have apredicate teaches(p,s) representing 
“professor p teaches student s,” we can write the rule:

teaches(P,S) :- instructor(P,C), enrolled(S,C).

 This Prolog rule can be viewed as equivalent to the 
following statement in logic (using our conventions for 
logical statements).

p c s(I(p,c) ∧ E(s,c)) → T(p,s))



Logic Programming (cont)
 Prolog programs are loaded into a Prolog interpreter. The 

interpreter receives queries and returns answers using the 
Prolog program. 

 For example, using our program, the following query may 
be given:

?enrolled(kevin,math273).

 Prolog produces the response:

yes

 Note that the ? is the prompt given by the Prolog 
interpreter indicating that it is ready to receive a query.



Logic Programming (cont)
 The query:

?enrolled(X,math273).

produces the response:

X = kevin;

X = kiko;

no

 The query:
?teaches(X,juana).

produces the response:

X = patel;

X = grossman;

no

The Prolog interpreter tries to 
find an instantiation for X. It does 
so and returns X = kevin. 

Then the user types the ; 
indicating a request for another 
answer. When Prolog is unable to 
find another answer it returns no.



Logic Programming (cont)

 The query:
?teaches(chan,X).

produces the response:

X = kevin;

X = kiko;

no

 A number of very good Prolog texts are available.  Learn 
Prolog Now! is one such text with a free online version at  
http://www.learnprolognow.org/

 There is much more to Prolog and to the entire field of 
logic programming.

http://www.learnprolognow.org/
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Nested Quantifiers
 Nested quantifiers are often necessary to express the 

meaning of sentences in English as well as important 
concepts in computer science and mathematics. 

Example: “Every real number has an inverse” is   

x y(x + y = 0) 

where the domains of x and y are the real numbers.

 We can also think of nested propositional functions:

x y(x + y = 0) can be viewed as x Q(x) where Q(x) is           
y P(x, y) where P(x, y) is (x + y = 0) 



Thinking of Nested Quantification
 Nested Loops

 To see if xyP (x,y) is true, loop through the values of x :
 At each step, loop through the values for y. 
 If for some pair of x andy, P(x,y) is false, then x yP(x,y) is false and both the 

outer and inner loop terminate.

x y P(x,y) is true if the outer loop ends after stepping through each x.  
 To see if x yP(x,y) is true, loop through the values of x:

 At each step, loop through the values for y.
 The inner loop ends when a pair x and y is found such that P(x, y) is true.
 If no y is found such that P(x, y) is true the outer loop terminates as x yP(x,y)

has been shown to be false. 

x y P(x,y)  is true if the outer loop ends after stepping through each x. 

 If the domains of the variables are infinite, then this process can not 
actually be carried out.



Order of Quantifiers
Examples:

1. Let P(x,y) be the statement “x + y = y + x.” Assume 
that U is the real numbers. Then x yP(x,y)  and     
y xP(x,y) have the same truth value.

2. Let Q(x,y) be the statement “x + y = 0.” Assume that 
U is the real numbers. Then x yQ(x,y)  is true, but
y xQ(x,y) is false.



Questions on Order of Quantifiers 
Example 1: Let U be the real numbers,

Define P(x,y) : x ∙ y = 0

What is the truth value of the following:
1. xyP(x,y)

Answer: False

2. xyP(x,y)
Answer: True

3. xy P(x,y)
Answer: True

4. x  y P(x,y)
Answer: True



Questions on Order of Quantifiers
Example 2: Let U be the real numbers,

Define P(x,y) : x / y = 1

What is the truth value of the following:
1. xyP(x,y)

Answer: False

2. xyP(x,y)
Answer: False

3. xy P(x,y)
Answer: False

4. x  y P(x,y)
Answer: True



Quantifications of Two Variables

Statement When True? When False

P(x,y) is true for every 
pair x,y.

There is a pair x, y for
which P(x,y) is false.

For every x there is a y for 
which P(x,y) is true.

There is an x such that 
P(x,y) is false for every y.

There is an x for which 
P(x,y) is true for every y.

For every x there is a y for 
which P(x,y) is false.

There is a pair x, y for 
which P(x,y) is true.

P(x,y) is false for every 
pair x,y



Translating Nested Quantifiers into 
English
Example 1: Translate the statement 

x  (C(x )∨ y (C(y ) ∧ F(x, y)))
where C(x) is “x has a computer,” and F(x,y) is “x and y are 

friends,” and the domain for both x and y consists of all 
students in your school. 

Solution: Every student in your school has a computer or 
has a friend who has a computer. 

Example 2:  Translate the statement

xy z ((F(x, y)∧ F(x,z) ∧ (y ≠z))→¬F(y,z))

Solution: There is a student none of whose friends are 
also friends with each other.



Translating Mathematical 
Statements into Predicate Logic 

Example : Translate “The sum of two positive integers is 
always positive” into a logical expression.

Solution:
1. Rewrite the statement to make the implied quantifiers and 

domains explicit:
“For every two integers, if these integers are both positive, then the 

sum of these integers is positive.”

2. Introduce the variables x and y, and specify the domain, to 
obtain:

“For all positive integers x and y, x + y is positive.”

3. The result is:
x y ((x > 0)∧ (y > 0)→ (x + y > 0))

where the domain of both variables consists of all integers



Translating English into Logical 
Expressions Example
Example: Use quantifiers to express the statement 

“There is a woman who has taken a flight on every 
airline in the world.”

Solution:

1. Let P(w,f) be “w has taken f  ” and Q(f,a) be “f is a 
flight on a .” 

2. The domain of w is all women, the domain of f is all 
flights, and the domain of a is all airlines.

3. Then the statement can be expressed as:

w a f (P(w,f ) ∧ Q(f,a))



Calculus in Logic (optional)
Example: Use quantifiers to express the definition of the limit of a

real-valued function f(x) of a real variable x at a point a in its 
domain.

Solution: Recall the definition of the statement

is “For every real number ε > 0, there exists a real number   δ > 0 
such that |f(x) – L| < ε whenever   0 < |x –a| < δ.”
Using quantifiers:

Where the domain for the variables ε and δ consists of all 
positive real numbers and the domain for x consists of all real 
numbers. 



Questions on Translation from 
English

Choose the obvious predicates and express in predicate logic.
Example 1: “Brothers are siblings.”

Solution: x y (B(x,y) → S(x,y))
Example 2: “Siblinghood is symmetric.”

Solution: x y (S(x,y) → S(y,x))
Example 3: “Everybody loves somebody.”

Solution: x y L(x,y)
Example 4: “There is someone who is loved by everyone.”

Solution: y x L(x,y)
Example 5: “There is someone who loves someone.”

Solution: x y L(x,y)
Example 6: “Everyone loves himself”

Solution: x L(x,x)



Negating Nested Quantifiers
Example 1: Recall the logical expression developed three slides back:

w a f (P(w,f ) ∧ Q(f,a))
Part 1: Use quantifiers to express the statement that “There does not exist a woman who 

has taken a flight on every airline in the world.”
Solution: ¬ w a f (P(w,f ) ∧ Q(f,a)) 

Part 2: Now use De Morgan’s Laws to move the negation as far inwards as possible.
Solution:

1. ¬ w a f (P(w,f ) ∧ Q(f,a)) 
2. w ¬ a f (P(w,f ) ∧ Q(f,a))  by De Morgan’s for 
3. w  a ¬ f (P(w,f ) ∧ Q(f,a))  by De Morgan’s for 
4. w  a f ¬ (P(w,f ) ∧ Q(f,a))   by De Morgan’s for 
5. w  a f (¬  P(w,f ) ∨ ¬  Q(f,a))  by De Morgan’s for ∧.
Part 3: Can you translate the result back into English?

Solution:
“For every woman there is an airline such that for all flights, this woman has not taken 

that flight or that flight is not on this airline”



Return to Calculus  and Logic (Opt)
Example : Recall the logical expression developed in the calculus example three slides back.
Use quantifiers and predicates to express that                               does not exist.

1. We need to say that for all real numbers L,  

2. The result from the previous example can be negated to yield:

3. Now we can repeatedly apply the rules for negating quantified expressions:

The last step uses the equivalence ¬ (p→q) ≡ p∧¬q



Calculus in Predicate Logic   
(optional)
4. Therefore, to say that                  does not exist means 

that for all real numbers L,                           can be 
expressed as:

Remember that ε and δ range over all positive real 
numbers and x over all real numbers.

5. Translating back into English we have, for every real 
number L, there is a real number  ε > 0, such that for 
every  real number  δ > 0, there exists a real number 
x such that 0 < | x – a | < δ and |f(x) – L | ≥ ε .



Some Questions about Quantifiers 
(optional)
 Can you switch the order of quantifiers? 

 Is this a valid equivalence?
Solution: Yes! The left and the right side will always have the same truth 

value. The order in which x and y are picked does not matter.
 Is this a valid equivalence?

Solution: No! The left and the right side may have different truth values for 
some propositional functions for P. Try “x + y = 0” for P(x,y) with U being the 
integers. The order in which the values of x and y are picked does matter.

 Can you distribute quantifiers over logical connectives? 
 Is this a valid equivalence?

Solution: Yes! The left and the right side will always have the same truth 
value no matter what propositional functions are denoted by P(x) and Q(x).

 Is this a valid equivalence?
Solution: No! The left and the right side may have different truth values. 

Pick “x is a fish” for P(x) and “x has scales” for Q(x) with the domain of 
discourse being all animals. Then the left side is false, because there are some 
fish that do not have scales.  But the right side is true since not all animals are 
fish.


