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Examples of Problems

What digit is this?
How can I predict this? What are my input features?

Is this a dog?
How can I predict this? What are my input features?

What about this one?
Am I going to pass the exam?

How can I predict this? What are my input

features?
Do I have diabetes?

How can I predict this? What are my input features?
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Regression

What do all these problems have in common?

Categorical outputs, called labels

(eg, yes/no, dog/cat/person/other)

Assigning each input vector to one of a finite number of labels is called

classification

Binary classification: two possible labels (eg, yes/no, 0/1, cat/dog)

Multi-class classification: multiple possible labels

We will first look at binary problems, and discuss multi-class problems later

in class
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Today

Linear Classification (binary)

Key Concepts:

I Classification as regression
I Decision boundary
I Loss functions
I Metrics to evaluate classification
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Classification vs Regression

We are interested in mapping the input x ∈ X to a label t ∈ Y
In regression typically Y = <
Now Y is categorical
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Classification as Regression

Can we do this task using what we have learned in previous lectures?

Simple hack: Ignore that the output is categorical!

Suppose we have a binary problem, t ∈ {−1, 1}
Assuming the standard model used for (linear) regression

y(x) = f (x,w) = wTx

How can we obtain w?

Use least squares, w = (XTX)−1XT t. How is X computed? and t?

Which loss are we minimizing? Does it make sense?

`square(w, t) =
1

N

N∑
n=1

(t(n) −wTx(n))2

How do I compute a label for a new example? Let’s see an example
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Classification as Regression

One dimensional example (input x is 1-dim)

Classification

Classification as regression: example

A 1D example:

x

y

+1

-1

w0 +wTx

ŷ = −1ŷ = +1

Greg Shakhnarovich (TTIC) Lecture 5: Regularization, intro to classification October 15, 2013 11 / 15

The colors indicate labels (a blue plus denotes that t(i) is from the first
class, red circle that t(i) is from the second class)
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Decision Rules

Our classifier has the form

f (x,w) = wo + wTx

A reasonable decision rule is

y =

{
1 if f (x,w) ≥ 0

−1 otherwise

How can I mathematically write this rule?

y(x) = sign(w0 + wTx)

What does this function look like?
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Decision Rules

Classification

Classification as regression: example

A 1D example:

x

y

+1

-1

w0 +wTx

ŷ = −1ŷ = +1

Greg Shakhnarovich (TTIC) Lecture 5: Regularization, intro to classification October 15, 2013 11 / 15

How can I mathematically write this rule?

y(x) = sign(w0 + wTx)

This specifies a linear classifier: it has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”
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Example in 1D

The linear classifier has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”

In 1D this is simply a threshold
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Example in 2D

The linear classifier has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”

In 2D this is a line
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Example in 3D

The linear classifier has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”

In 3D this is a plane

What about higher-dimensional spaces?
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Geometry

wTx = 0 a line passing though the origin and orthogonal to w
wTx + w0 = 0 shifts it by w0

Figure from G. Shakhnarovich
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Learning Linear Classifiers

Learning consists in estimating a “good” decision boundary

We need to find w (direction) and w0 (location) of the boundary

What does “good” mean?

Is this boundary good?

We need a criteria that tell us how to select the parameters

Do you know any?
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Loss functions

Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(w0 + wTx)

What is the cost of being wrong?

Loss function: L(y , t) is the loss incurred for predicting y when correct
answer is t

For medical diagnosis: For a diabetes screening test is it better to have false
positives or false negatives?

For movie ratings: The ”truth” is that Alice thinks E.T. is worthy of a 4.
How bad is it to predict a 5? How about a 2?
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Loss functions

A possible loss to minimize is the zero/one loss

L(y(x), t) =

{
0 if y(x) = t

1 if y(x) 6= t

Is this minimization easy to do? Why?
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Other Loss functions

Zero/one loss for a classifier

L0−1(y(x), t) =

{
0 if y(x) = t

1 if y(x) 6= t

Asymmetric Binary Loss

LABL(y(x), t) =


α if y(x) = 1 ∧ t = 0

β if y(x) = 0 ∧ t = 1

0 if y(x) = t

Squared (quadratic) loss

Lsquared(y(x), t) = (t − y(x))2

Absolute Error
Labsolute(y(x), t) = |t − y(x)|
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More Complex Loss Functions

What if the movie predictions are used for rankings? Now the predicted
ratings don’t matter, just the order that they imply.

In what order does Alice prefer E.T., Amelie and Titanic?

Possibilities:

I 0-1 loss on the winner
I Permutation distance
I Accuracy of top K movies.
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Can we always separate the classes?

If we can separate the classes, the problem is linearly separable
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Can we always separate the classes?

Causes of non perfect separation:

Model is too simple

Noise in the inputs (i.e., data attributes)

Simple features that do not account for all variations

Errors in data targets (mis-labelings)

Should we make the model complex enough to have perfect separation in the

training data?
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Metrics

How to evaluate how good my classifier is? How is it doing on dog vs no-dog?
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Metrics

How to evaluate how good my classifier is?

Recall: is the fraction of relevant instances that are retrieved

R =
TP

TP + FN
=

TP

all groundtruth instances

Precision: is the fraction of retrieved instances that are relevant

P =
TP

TP + FP
=

TP

all predicted

F1 score: harmonic mean of precision and recall

F1 = 2
P · R
P + R
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More on Metrics

How to evaluate how good my classifier is?

Precision: is the fraction of retrieved instances that are relevant

Recall: is the fraction of relevant instances that are retrieved

Precision Recall Curve

Average Precision (AP): mean under the curve
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Metrics vs Loss

Metrics on a dataset is what we care about (performance)

We typically cannot directly optimize for the metrics

Our loss function should reflect the problem we are solving. We then hope it
will yield models that will do well on our dataset
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