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Today

Mixture of Gaussians

EM algorithm

Latent Variables
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A Generative View of Clustering

Last time: hard and soft k-means algorithm

Today: statistical formulation of clustering → principled, justification for
updates

We need a sensible measure of what it means to cluster the data well

I This makes it possible to judge different methods
I It may help us decide on the number of clusters

An obvious approach is to imagine that the data was produced by a
generative model

I Then we adjust the model parameters to maximize the probability that
it would produce exactly the data we observed
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Gaussian Mixture Model (GMM)

A Gaussian mixture model represents a distribution as

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

with πk the mixing coefficients, where:

K∑
k=1

πk = 1 and πk ≥ 0 ∀k

GMM is a density estimator

Where have we already used a density estimator?

We know that neural nets are universal approximators of functions

GMMs are universal approximators of densities (if you have enough
Gaussians). Even diagonal GMMs are universal approximators.
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Visualizing a Mixture of Gaussians – 1D Gaussians

In the beginning of class, we tried to fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians – 2D Gaussians
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Fitting GMMs: Maximum Likelihood

Maximum likelihood maximizes

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)

w.r.t Θ = {πk , µk ,Σk}

Problems:

I Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point

I Identifiability: Solution is up to permutations

How would you optimize this?

Can we have a closed form update?

Don’t forget to satisfy the constraints on πk
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Trick: Introduce a Latent Variable

Introduce a hidden variable such that its knowledge would simplify the
maximization

We could introduce a hidden (latent) variable z which would represent
which Gaussian generated our observation x, with some probability

Let z ∼ Categorical(π) (where πk ≥ 0,
∑

k πk = 1)

Then:

p(x) =
K∑

k=1

p(x, z = k)

=
K∑

k=1

p(z = k)︸ ︷︷ ︸
πk

p(x|z = k)︸ ︷︷ ︸
N (x|µk ,Σk )
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Latent Variable Models

Some model variables may be unobserved, either at training or at test time,
or both

If occasionally unobserved they are missing, e.g., undefined inputs, missing
class labels, erroneous targets

Variables which are always unobserved are called latent variables, or
sometimes hidden variables

We may want to intentionally introduce latent variables to model complex
dependencies between variables – this can actually simplify the model

Form of divide-and-conquer: use simple parts to build complex models

In a mixture model, the identity of the component that generated a given
datapoint is a latent variable
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Back to GMM

A Gaussian mixture distribution:

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

We had: z ∼ Categorical(π) (where πk ≥ 0,
∑

k πk = 1)

Joint distribution: p(x, z) = p(z)p(x|z)

Log-likelihood:

`(π, µ,Σ) = ln p(X|π, µ,Σ) =
N∑

n=1

ln p(x(n)|π, µ,Σ)

=
N∑

n=1

ln
K∑

z(n)=1

p(x(n)| z (n);µ,Σ)p(z (n)|π)

Note: We have a hidden variable z (n) for every observation

General problem: sum inside the log

How can we optimize this?
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Maximum Likelihood

If we knew z (n) for every x (n), the maximum likelihood problem is easy:

`(π, µ,Σ) =
N∑

n=1

ln p(x (n), z (n)|π, µ,Σ) =
N∑

n=1

ln p(x(n)| z (n);µ,Σ)+ln p(z (n)|π)

We have been optimizing something similar for Gaussian bayes classifiers

We would get this (check old slides):

µk =

∑N
n=1 1[z(n)=k] x

(n)∑N
n=1 1[z(n)=k]

Σk =

∑N
n=1 1[z(n)=k] (x(n) − µk)(x(n) − µk)T∑N

n=1 1[z(n)=k]

πk =
1

N

N∑
n=1

1[z(n)=k]
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Intuitively, How Can We Fit a Mixture of Gaussians?

Optimization uses the Expectation Maximization algorithm, which alternates
between two steps:

1. E-step: Compute the posterior probability that each Gaussian generates
each datapoint (as this is unknown to us)

2. M-step: Assuming that the data really was generated this way, change
the parameters of each Gaussian to maximize the probability that it
would generate the data it is currently responsible for.
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Expectation Maximization

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I At the optimum we shall satisfy

∂ ln p(X|π, µ,Σ)

∂Θ
= 0

I We can derive closed form updates for all parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 13 / 33



Expectation Maximization

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?

I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I At the optimum we shall satisfy

∂ ln p(X|π, µ,Σ)

∂Θ
= 0

I We can derive closed form updates for all parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 13 / 33



Expectation Maximization

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I At the optimum we shall satisfy

∂ ln p(X|π, µ,Σ)

∂Θ
= 0

I We can derive closed form updates for all parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 13 / 33



Expectation Maximization

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.

I At the optimum we shall satisfy

∂ ln p(X|π, µ,Σ)

∂Θ
= 0

I We can derive closed form updates for all parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 13 / 33



Expectation Maximization

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I At the optimum we shall satisfy

∂ ln p(X|π, µ,Σ)

∂Θ
= 0

I We can derive closed form updates for all parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 13 / 33



Expectation Maximization

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I At the optimum we shall satisfy

∂ ln p(X|π, µ,Σ)

∂Θ
= 0

I We can derive closed form updates for all parameters

Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 13 / 33



Visualizing a Mixture of Gaussians
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E-Step: Responsabilities

Conditional probability (using Bayes rule) of z given x

γk = p(z = k |x) =

p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

=
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

γk can be viewed as the responsibility
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M-Step: Estimate Parameters

Log-likelihood:

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)

Set derivatives to 0:

∂ ln p(X|π, µ,Σ)

∂µk
= 0 =

N∑
n=1

πkN (x(n)|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

Σk(x(n) − µk)

We used:

N (x|µ,Σ) =
1√

(2π)d |Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
and:

∂(xTAx)

∂x
= xT (A + AT )
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M-Step: Estimate Parameters

∂ ln p(X|π, µ,Σ)

∂µk
= 0 =

N∑
n=1

πkN (x(n)|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)︸ ︷︷ ︸

γ
(n)
k

Σk(x(n) − µk)

This gives

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

with Nk the effective number of points in cluster k

Nk =
N∑

n=1

γ
(n)
k

We just take the center-of gravity of the data that the Gaussian is responsible for

Just like in K-means, except the data is weighted by the posterior probability of
the Gaussian.

Guaranteed to lie in the convex hull of the data (Could be big initial jump)
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M-Step (variance, mixing coefficients)

We can get similarly expression for the variance

Σk =
1

Nk

N∑
n=1

γ
(n)
k (x(n) − µk)(x(n) − µk)T

We can also minimize w.r.t the mixing coefficients

πk =
Nk

N
, with Nk =

N∑
n=1

γ
(n)
k

The optimal mixing proportion to use (given these posterior probabilities) is
just the fraction of the data that the Gaussian gets responsibility for.

Note that this is not a closed form solution of the parameters, as they

depend on the responsibilities γ
(n)
k , which are complex functions of the

parameters

But we have a simple iterative scheme to optimize
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EM Algorithm for GMM

Initialize the means µk , covariances Σk and mixing coefficients πk

Iterate until convergence:
I E-step: Evaluate the responsibilities given current parameters

γ
(n)
k = p(z (n)|x) =

πkN (x(n)|µk ,Σk)∑K
j=1 πjN (x(n)|µj ,Σj)

I M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k (x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑
n=1

γ
(n)
k

I Evaluate log likelihood and check for convergence

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)
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Mixture of Gaussians vs. K-means

EM for mixtures of Gaussians is just like a soft version of K-means, with
fixed priors and covariance

Instead of hard assignments in the E-step, we do soft assignments based on
the softmax of the squared Mahalanobis distance from each point to each
cluster.

Each center moved by weighted means of the data, with weights given by
soft assignments

In K-means, weights are 0 or 1
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An Alternative View of EM

Hard to maximize (log-)likelihood of data directly

General problem: sum inside the log

ln p(x|Θ) = ln
∑
z

p(x, z|Θ)

Complete data {x, z}, and x is the incomplete data

If we knew z , then easy to maximize (replace sum over k with just the k
where z = k)

Unfortunately we are not given the complete data, but only the incomplete.

Our knowledge about the latent variables is p(Z|X,Θold)

In the E-step we compute p(Z|X,Θold)

In the M-step we maximize w.r.t Θ

Q(Θ,Θold) =
∑
z

p(Z|X,Θold) ln p(X,Z|Θ)
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General EM Algorithm

1. Initialize Θold

2. E-step: Evaluate p(Z|X,Θold)

3. M-step:
Θnew = arg max

Θ
Q(Θ,Θold)

where
Q(Θ,Θold) =

∑
z

p(Z|X,Θold) ln p(X,Z|Θ)

4. Evaluate log likelihood and check for convergence (or the parameters). If
not converged, Θold = Θ, Go to step 2
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Beyond this slide, read if you are interested in more details
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How do we know that the updates improve things?

Updating each Gaussian definitely improves the probability of generating the
data if we generate it from the same Gaussians after the parameter updates.

I But we know that the posterior will change after updating the
parameters.

A good way to show that this is OK is to show that there is a single function
that is improved by both the E-step and the M-step.

I The function we need is called Free Energy.
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Why EM converges

Free energy F is a cost function that is reduced by both the E-step and the
M-step.

F = expected energy− entropy

The expected energy term measures how difficult it is to generate each
datapoint from the Gaussians it is assigned to. It would be happiest
assigning each datapoint to the Gaussian that generates it most easily (as in
K-means).

The entropy term encourages ”soft” assignments. It would be happiest
spreading the assignment probabilities for each datapoint equally between all
the Gaussians.
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Free Energy

Our goal is to maximize

p(X|Θ) =
∑
z

p(X, z|Θ)

Typically optimizing p(X|Θ) is difficult, but p(X,Z|Θ) is easy

Let q(Z) be a distribution over the latent variables. For any distribution
q(Z) we have

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

where

L(q,Θ) =
∑
Z

q(Z) ln

{
p(X,Z|Θ)

q(Z)

}
KL(q||p) = −

∑
Z

q(Z) ln

{
p(Z|X,Θ)

q(Z)

}
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More on Free Energy

Since the KL-divergence is always positive and have value 0 only if
q(Z ) = p(Z|X,Θ)

Thus L(q,Θ) is a lower bound on the likelihood

L(q,Θ) ≤ ln p(X|Θ)

Zemel, Urtasun, Fidler (UofT) CSC 411: 13-MoG 28 / 33



E-step and M-step

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

In the E-step we maximize w.r.t q(Z) the lower bound L(q,Θ)

Since ln p(X|θ) does not depend on q(Z), the maximum L is obtained when
the KL is 0

This is achieved when q(Z) = p(Z|X,Θ)

The lower bound L is then

L(q,Θ) =
∑
Z

p(Z|X,Θold) ln p(X,Z|Θ)−
∑
Z

p(Z|X,Θold) ln p(Z|X,Θold)

= Q(Θ,Θold) + const

with the content the entropy of the q distribution, which is independent of Θ

In the M-step the quantity to be maximized is the expectation of the
complete data log-likelihood

Note that Θ is only inside the logarithm and optimizing the complete data
likelihood is easier
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Visualization of E-step

The q distribution equal to the posterior distribution for the current
parameter values Θold , causing the lower bound to move up to the same
value as the log likelihood function, with the KL divergence vanishing.
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Visualization of M-step

The distribution q(Z) is held fixed and the lower bound L(q,Θ) is
maximized with respect to the parameter vector Θ to give a revised value
Θnew . Because the KL divergence is nonnegative, this causes the log
likelihood ln p(X|Θ) to increase by at least as much as the lower bound does.
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Visualization of the EM Algorithm

The EM algorithm involves alternately computing a lower bound on the log
likelihood for the current parameter values and then maximizing this bound
to obtain the new parameter values. See the text for a full discussion.
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Summary: EM is coordinate descent in Free Energy

L(q,Θ) =
∑
Z

p(Z|X,Θold) ln p(X,Z|Θ)−
∑
Z

p(Z|X,Θold) ln p(Z|X,Θold)

= Q(Θ,Θold) + const

= expected energy− entropy

The E-step minimizes F by finding the best distribution over hidden
configurations for each data point.

The M-step holds the distribution fixed and minimizes F by changing the
parameters that determine the energy of a configuration.
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