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Bayes Rules:

Naive Bayes Assumption:

D
p(x|t) = [ ple)
j=1
Likelihood function:

L(8) = p(x, t6) = p(x|t,0)p(t]0)
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Example: Spam Classification

@ Each vocabulary is one feature dimension.
@ We encode each email as a feature vector x € {0,1}!

e x; = 1 iff the vocabulary x; appears in the email.
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Example: Spam Classification

Each vocabulary is one feature dimension.

We encode each email as a feature vector x € {0, 1}V

xj = 1 iff the vocabulary x; appears in the email.

@ We want to model the probability of any word x; appearing in an
email given the email is spam or not.

o Example: $10,000, Toronto, Piazza, etc.
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Example: Spam Classification

Each vocabulary is one feature dimension.

We encode each email as a feature vector x € {0, 1}V

xj = 1 iff the vocabulary x; appears in the email.

@ We want to model the probability of any word x; appearing in an
email given the email is spam or not.

o Example: $10,000, Toronto, Piazza, etc.

Idea: Use Bernoulli distribution to model p(x;|t)
Example: p(“$10,000" |spam) = 0.3
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Bernoulli Naive Bayes

Assuming all data points x(!) are i.i.d. samples, and p(x;|t) follows a
Bernoulli distribution with parameter 1

Ny
P(X |t ))—H t()( = Hjeh )1 i)
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Bernoulli Naive Bayes

Assuming all data points x(!) are i.i.d. samples, and p(x;|t) follows a
Bernoulli distribution with parameter 1

Ny
P(X |t ))—H t()( = Hjeh )1 i)

N o N 0 .
p(tlx) o [T p(tD)p(xD 1Dy = TT p(tO) [T 10 (1 — ) )

i—1 i=1 j=1
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Bernoulli Naive Bayes

Assuming all data points x(!) are i.i.d. samples, and p(x;|t) follows a
Bernoulli distribution with parameter 1

Ny
P(X |t ))—H t()( = Hjeh )1 i)

N D
, . . x )
p(t]x) o Hp(t(’))p(x(’)]t(’)) H t( ) H“ (1— 1) )(1 )

i=1 i=1 j=1

where p(t) = m;. Parameters ¢, pjr can be learnt using maximum
likelihood.
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Derivation of maximum likelihood estimator (MLE)

0 = [u, 7]

log L(6) = log p(x, t|@)
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Derivation of maximum likelihood estimator (MLE)

0 = [u, 7]

log L(6) = log p(x, t|@)

D
=" [ logmn + D x 7 log rjpr + (1 — x7) log(1 — 1)

i=1 Jj=1

[ Want: arg maxg log L(6) subject to Y, my =1
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t.

8IogL6)_0:>Z ( ) ﬁ_l_xjm

Otk tik 1=
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t.

) 1,0
8I<()9g'uJLk9)_0:>Z ( ) ij_l . —0
31 (K9 = k) [0 ) - (1) ] =0

i=1
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t.
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t.

() ()
Jlog L(0) () X; 1—x
Ot Z ( ) Hik 1 — pjk

ﬁ: 1 (60 = k) [0 = )~ (1= x) ] = 0

N N

2.1 (t(i) = k) pie=> 1 (t(’) = k) X!

i=1 i=1

iy 1(t9) = k) Xj(i)
ST

Wik =
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Derivation of maximum likelihood estimator (MLE)

Use Lagrange multiplier to derive 7

oLO) | O, T NS () )
G AT =0 A= Zl(t _k))—
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Derivation of maximum likelihood estimator (MLE)

Use Lagrange multiplier to derive 7

oLO) | O, T NS () )
G AT =0 A= Zl(t _k))—

ZI{VZ]. 1 (t(i) = k))
A

Tk = —
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Derivation of maximum likelihood estimator (MLE)

Use Lagrange multiplier to derive 7

aL(h)
aﬂ'k 87Tk

ZI{VZ]. 1 (t(i) = k))
A
Apply constraint: >, 1k =1= A= —-N

Tk = —

Yiey 1 (19 = k)
N

Tk —
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S 2D = k) £
SR 1(t0) = k)

Mjk =

Which means each word affects the probability of some class proportionally
to the number of times the class and it co-occurred, over the number of
times the class appeared.

le'vzl 1 (t(i) = k))
N

Tk =

Which means the prior probability of a class is the amount of times it
appeared over the total number of class appearances.
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@ Remember that these symbols are supposed to mean something,
when you're doing a derivation, focus on keeping the context of all
the symbols you introduce. It will help you realize when your results
are nonsense.

@ It's important to think about how this model will behave in the real
world, for example the NBC output is based on a product numbers
x < 1. What does this say about the behaviour of the output over
large sequences?

@ We encode our word vector with binary occurence statements, not the
number of times they appear. Why does this make sense to do?
What are the implications of this approach?
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Spam Classification Demo
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Gaussian Bayes Classifier

Instead of assuming conditional independence of x;, we model p(x|t) as a
Gaussian distribution and the dependence relation of x; is encoded in the
covariance matrix.
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Gaussian Bayes Classifier

Instead of assuming conditional independence of x;, we model p(x|t) as a
Gaussian distribution and the dependence relation of x; is encoded in the
covariance matrix.

Multivariate Gaussian distribution:

S SN (5 WS
A = =g @0 (30— W)TE =)

p: mean, ¥: covariance matrix, D: dim(x)
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Derivation of maximum likelihood estimator (MLE)

0= [, X, 7], Z = \/(27)P det(X)

plle) = oo (50— )T x )
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Derivation of maximum likelihood estimator (MLE)

0 = 1,5, 7], Z = 1/ (2m)P det(%)
1 1 Ts-1
plle) = oo (50— )T x )

log L(0) = log p(x, t|6) = log p(t[f)) + log p(x|t,0)
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Derivation of maximum likelihood estimator (MLE)

0 = 1,5, 7], Z = 1/ (2m)P det(%)
1 1 Ts-1
plle) = oo (50— )T x )

log L(0) = log p(x, t|6) = log p(t[f)) + log p(x|t,0)

N 1/ .. T .
= logm —log Z — 5 (X(') - Mt(o) 0 (X(') - th)
i=1

Want: argmaxg log L() subject to ), my =1
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t.

OloglL _ —zN:l (t(i) _ k) T — ) =
Ok i=0
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t.

OloglL _ —zN:l (t(i) _ k) T — ) =
Ok i=0

ZI{V:]. 1 (t(i) = k) x{0)
S 10— 4

Mk =
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t. =1 (not X)
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t. =1 (not X)

Note: 0 det(A)
et T
L =det(A)A!
5A det(A)
det(A) " = det (A1)
OxTAx T
0A
yT =%
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Derivation of maximum likelihood estimator (MLE)

Take derivative w.r.t. =1 (not X)

Note:
0 det(A)

IA
det(A) " = det (A1)
OxT Ax T

DA
¥ =%

= det(A)A™

OloglL _ M _ )| _9logZk 1, ) _ i) \T| _
o1 Zl(t >[ or 1 2(X ) (x pk)' | =0
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Derivation of maximum likelihood estimator (MLE)

Zi = \/(27)P det(X)

-1
g O det (Zk )
oxrt

N[

a|Ong 1 OZk _D _1
— e (2m) 8 det(Th) (2
ox,  Zoom, o) etz en
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Derivation of maximum likelihood estimator (MLE)

Zi = \/(27)P det(X)

-1
g O det (Zk )
oxrt

N[

a|Ong 1 OZk _D _1
— e (2m) 8 det(Th) (2
ox,  Zoom, o) etz en

= det(T; 1) (—i) det (1) 7 det (5;1) 5] = —%zk
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Derivation of maximum likelihood estimator (MLE)

Zi = \/(27)P det (%)

-1
g O det (Zk )
oxrt

NI

a|Ong 1 OZk D 1
= 2l — (2m) % det(Tk)2(2
o1 Zeow1 @) T et en)

= det(X;1)2 <_;> det (x;1)”

3
2

det (1)) = —%zk

N

dlog L i 1 L G i
82%1 =1 (=) [2zk—2(x()—uk)(x()—ﬂk)T =0
k i=0
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Derivation of maximum likelihood estimator (MLE)

Zi = 1/ (27)P det(Zy)

-1
gOdet(r, ) *
oxrt

NI

a|Ong 1 azk D 1
= = Tk (2n)7 2 det(Xx) 2 (2
or1  Zeom o o)t et i)

= det(T; 1) (—i) det (1) 7 det (5;1) 5] = —%zk

N

Odlog L ) 1 1 .
8;%1 = _Z 1 <t(’) = k) |:2zk — 5(X(/) _ ,U/k)(X(I) _ /J,k)T -0
k i=0
g - S (0 = k) () — ) (D gu) "
SN L1t = k)
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Derivation of maximum likelihood estimator (MLE)

>, 1 (t9 = k)
N

(Same as Bernoulli)

Tk =
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Gaussian Bayes Classifier Demo
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Gaussian Bayes Classifier

If we constrain X to be diagonal, then we can rewrite p(x;|t) as a product
of p(xj[t)

1 _
p(x|t) = xj = pie) T (ke — w))

1
(2m)Ddet(zs) 7 <_2(
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Gaussian Bayes Classifier

If we constrain X to be diagonal, then we can rewrite p(x;|t) as a product
of p(xj[t)

p(x|t) =

1 1 P
@)D det(re) <_2(Xj o) B G kt))

D

D
H exp< ,||x,-—u,-tu§) “ Tt
\/ ztdj Jj=1

[ Diagonal covariance matrix satisfies the naive Bayes assumption.
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Gaussian Bayes Classifier

Case 1: The covariance matrix is shared among classes
p(x]t) = N (xljie, T)
Case 2: Each class has its own covariance

p(x[t) = N(x|pe, T)
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Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is shared between classes,

p(x|t = 1) = p(x|t = 0)
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Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is shared between classes,

p(x|t = 1) = p(x|t = 0)

1 B 1 B
logmy — 5(x — )T (x — ) = log o — S (x — 10) "X (x — pao)
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Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is shared between classes,
p(x|t =1) = p(x|t = 0)
1 _ 1 _
logmy — 5(x — )T (x — ) = log o — S (x — 10) "X (x — pao)

CH+xTx x— 2,uszflx + MITZ&/“ =xT¥ Ix— 2,uOTZ*1x + /LOTZ*luo

[Q(Mo — )" E 7 x = (o — pa) TE (o — ) = C
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Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is shared between classes,
p(x|t =1) = p(x|t = 0)
1 _ 1 _
logmy — 5(x — )T (x — ) = log o — S (x — 10) "X (x — pao)

CH+xTx x— 2,uszflx + MITZ&/“ =xT¥ Ix— 2,uOTZ*1x + /LOTZ*luo

[Q(Mo — )" E 7 x = (o — pa) TE (o — ) = C

=alx—b=0

The decision boundary is a linear function (a hyperplane in general).
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Relation to Logistic Regression

We can write the posterior distribution p(t = 0|x) as

p(x,t =0) moN (x| o, )

p(x,t =0)+p(x,t =1)  mN(x|po, X) + mN (x|p1, T)
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Relation to Logistic Regression

We can write the posterior distribution p(t = 0|x) as

p(x,t =0) moN (x| o, )

p(x,t =0)+p(x,t =1)  mN(x|po, X) + mN (x|p1, T)

- {1 " %eXp [_;(X —m) TN (x — ) + %(X — o) E T (x — Mo)] }_1
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Relation to Logistic Regression

We can write the posterior distribution p(t = 0|x) as

p(x,t =0) moN (x| o, )

p(x,t =0)+p(x,t =1)  mN(x|po, X) + mN (x|p1, T)

{1 + % exp [—;(x — ) TE (x — ) + %(X R MO)] }_1

-1
T _ 1 _ _
{l—l—exp [Iogml)—i—(ul_uo)Tz 1x—|—§(,u1TZ Y —pd X 1#0)]}
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Relation to Logistic Regression

We can write the posterior distribution p(t = 0|x) as

p(x,t =0) moN (x| o, )

p(x,t =0)+p(x,t =1)  mN(x|po, X) + mN (x|p1, T)

{1 + % exp [—;(x — ) TE (x — ) + %(X R MO)] }_1

-1
T _ 1 _ _
{l—l—exp [Iogml)—i—(ul_uo)Tz 1x—|—§(,u1TZ Y —pd X 1#0)]}

1
~ 1+exp(—wTx —b)
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Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is not shared between classes,

p(x|t = 1) = p(x|t = 0)

Elias Tragas Naive Bayes and Gaussian Bayes Classifier October 3, 2016 22 /23



Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is not shared between classes,

p(x|t = 1) = p(x|t = 0)

1 _ 1 _
log m — 5 (x = p1) T E7M(x — pa) = log mo — Sx— 10) "ot (x — o)
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Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is not shared between classes,

p(x|t = 1) = p(x|t = 0)

1 _ 1 _
log m — 5 (x = p1) T E7M(x — pa) = log mo — Sx— 10) "ot (x — o)

xT(Eh =55t x =2 (uszfl - uoTZal) X+ (uoTZouo - ulTZlm) —C
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Gaussian Bayes Binary Classifier Decision Boundary

If the covariance is not shared between classes,
p(x|t = 1) = p(x|t = 0)
1 _ 1 _
log m — 5 (x = p1) T E7M(x — pa) = log mo — Sx— 10) "ot (x — o)
xT(Eh =55t x =2 (uszfl —ugTgt) x+ (uoTZouo —plTam) = €

=x"Qx—2b"x+c=0

The decision boundary is a quadratic function. In 2-d case, it looks
like an ellipse, or a parabola, or a hyperbola.

Elias Tragas Naive Bayes and Gaussian Bayes Classifier October 3, 2016 22 /23



Thanks!
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