기계학습 (Machine Learning)
- 강의실: 공학 7관 xxx호
- Textbooks
- Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2007 [link] [pdf][korean]
- Textbooks (additional)
- Kevin Patrick Murphy, Machine Learning: a Probabilistic Perspective, MIT Press, 2012 [link]
- Kevin Patrick Murphy, Probabilistic Machine Learning: An instruction, MIT Press, 2022 [link]
- Kevin Patrick Murphy, Probabilistic Machine Learning: An advanced topic, MIT Press, 2023 [link]
- I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016 [book]
- Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998 [link] [2nd_edition]
- D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009 [book]
- References
- Matrix cookbook pdf
- Matrix differential calculus with applications in statistics and econometrics pdf
- Matrix differentiation pdf
- The Matrix Calculus You Need For Deep Learning pdf
- Old and New Matrix Algebra Useful for Statistics pdf
- Python notebooks for PRML text book [link]
- ML Lecture at MIT [link]
- ML Lecture at NYU [link]
- ML and Data Mining Lecture at U. Toronto [link]
- ML Lecture at U. Toronto [link]
Chapter 1: Introduction [pdf][pdf] [pdf]
- Chapter 2: kNN [pdf]
- Chapter 3: Decision trees [pdf]
- Chapter 4: Ensembles [pdf][pdf]
- Chapter 5-0: Probability distributions [pdf]
- Chapter 5: Linear models for regression [pdf]
- Chapter 6: Linear models for classification [pdf][pdf][pdf][pdf][pdf]
- Tutorial: Naive Bayes and Gaussian Bayes Classier [pdf]
- Chapter 7: Neural networks [pdf][pdf]
- Chapter 8: Kernel methods
- Chapter 9: Sparse kernel machines [pdf][pdf]
- Chapter 10: Mixture models and EM [pdf][pdf]
- Chapter 11: PCA [pdf]
- Chapter 12: Matrix factorization [pdf]
- Chapter 13: Approximate inference [pdf]
- Chapter 14: Sampling methods [pdf]
- Chapter 15: Continuous latent variables
- Chapter 16: Sequential data
- Chapter 17: Combining models