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2.1  Introduction to Data Abstraction

In section 1.1.8, we noted that a procedure used as an element in creating a
more complex procedure could be regarded not only as a collection of particular
operations but also as a procedural abstraction. That is, the details of how the
procedure was implemented could be suppressed, and the particular procedure
itself could be replaced by any other procedure with the same overall behavior. In
other words, we could make an abstraction that would separate the way the
procedure would be used from the details of how the procedure would be
implemented in terms of more primitive procedures. The analogous notion for
compound data is called data abstraction. Data abstraction is a methodology that
enables us to isolate how a compound data object is used from the details of
how it is constructed from more primitive data objects.

The basic idea of data abstraction is to structure the programs that are to use
compound data objects so that they operate on ``abstract data.'' That is, our
programs should use data in such a way as to make no assumptions about the
data that are not strictly necessary for performing the task at hand. At the same
time, a ``concrete'' data representation is defined independent of the programs
that use the data. The interface between these two parts of our system will be a
set of procedures, called selectors and constructors, that implement the abstract
data in terms of the concrete representation. To illustrate this technique, we will
consider how to design a set of procedures for manipulating rational numbers.

2.1.1  Example: Arithmetic Operations for Rational Numbers

Suppose we want to do arithmetic with rational numbers. We want to be able to
add, subtract, multiply, and divide them and to test whether two rational numbers
are equal.

Let us begin by assuming that we already have a way of constructing a rational
number from a numerator and a denominator. We also assume that, given a
rational number, we have a way of extracting (or selecting) its numerator and its
denominator. Let us further assume that the constructor and selectors are
available as procedures:

(make-rat <n> <d>) returns the rational number whose numerator is the integer
<n> and whose denominator is the integer <d>.

(numer <x>) returns the numerator of the rational number <x>.

(denom <x>) returns the denominator of the rational number <x>.

We are using here a powerful strategy of synthesis: wishful thinking. We haven't
yet said how a rational number is represented, or how the procedures numer, denom,
and make-rat should be implemented. Even so, if we did have these three
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procedures, we could then add, subtract, multiply, divide, and test equality by
using the following relations:

We can express these rules as procedures:

(define (add-rat x y)
  (make-rat (+ (* (numer x) (denom y))
               (* (numer y) (denom x)))
            (* (denom x) (denom y))))
(define (sub-rat x y)
  (make-rat (- (* (numer x) (denom y))
               (* (numer y) (denom x)))
            (* (denom x) (denom y))))
(define (mul-rat x y)
  (make-rat (* (numer x) (numer y))
            (* (denom x) (denom y))))
(define (div-rat x y)
  (make-rat (* (numer x) (denom y))
            (* (denom x) (numer y))))
(define (equal-rat? x y)
  (= (* (numer x) (denom y))
     (* (numer y) (denom x))))

Now we have the operations on rational numbers defined in terms of the selector
and constructor procedures numer, denom, and make-rat. But we haven't yet defined
these. What we need is some way to glue together a numerator and a
denominator to form a rational number.

Pairs

To enable us to implement the concrete level of our data abstraction, our
language provides a compound structure called a pair, which can be constructed
with the primitive procedure cons. This procedure takes two arguments and
returns a compound data object that contains the two arguments as parts. Given
a pair, we can extract the parts using the primitive procedures car and cdr.2 Thus,
we can use cons, car, and cdr as follows:

(define x (cons 1 2))

(car x)
1

(cdr x)
2
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Notice that a pair is a data object that can be given a name and manipulated,
just like a primitive data object. Moreover, cons can be used to form pairs whose
elements are pairs, and so on:

(define x (cons 1 2))

(define y (cons 3 4))

(define z (cons x y))

(car (car z))
1

(car (cdr z))
3

In section 2.2 we will see how this ability to combine pairs means that pairs can
be used as general-purpose building blocks to create all sorts of complex data
structures. The single compound-data primitive pair, implemented by the
procedures cons, car, and cdr, is the only glue we need. Data objects constructed
from pairs are called list-structured data.

Representing rational numbers

Pairs offer a natural way to complete the rational-number system. Simply
represent a rational number as a pair of two integers: a numerator and a
denominator. Then make-rat, numer, and denom are readily implemented as follows:3

(define (make-rat n d) (cons n d))

(define (numer x) (car x))

(define (denom x) (cdr x))

Also, in order to display the results of our computations, we can print rational
numbers by printing the numerator, a slash, and the denominator:4

(define (print-rat x)
  (newline)
  (display (numer x))
  (display "/")
  (display (denom x)))

Now we can try our rational-number procedures:

(define one-half (make-rat 1 2))

(print-rat one-half)
1/2

(define one-third (make-rat 1 3))
(print-rat (add-rat one-half one-third))
5/6

(print-rat (mul-rat one-half one-third))
1/6

(print-rat (add-rat one-third one-third))
6/9
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As the final example shows, our rational-number implementation does not reduce
rational numbers to lowest terms. We can remedy this by changing make-rat. If we
have a gcd procedure like the one in section 1.2.5 that produces the greatest
common divisor of two integers, we can use gcd to reduce the numerator and the
denominator to lowest terms before constructing the pair:

(define (make-rat n d)
  (let ((g (gcd n d)))
    (cons (/ n g) (/ d g))))

Now we have

(print-rat (add-rat one-third one-third))
2/3

as desired. This modification was accomplished by changing the constructor make-
rat without changing any of the procedures (such as add-rat and mul-rat) that
implement the actual operations.

Exercise 2.1.  Define a better version of make-rat that handles both positive and
negative arguments. Make-rat should normalize the sign so that if the rational
number is positive, both the numerator and denominator are positive, and if the
rational number is negative, only the numerator is negative.

2.1.2  Abstraction Barriers

Before continuing with more examples of compound data and data abstraction,
let us consider some of the issues raised by the rational-number example. We
defined the rational-number operations in terms of a constructor make-rat and
selectors numer and denom. In general, the underlying idea of data abstraction is to
identify for each type of data object a basic set of operations in terms of which
all manipulations of data objects of that type will be expressed, and then to use
only those operations in manipulating the data.

We can envision the structure of the rational-number system as shown in
figure 2.1. The horizontal lines represent abstraction barriers that isolate different
``levels'' of the system. At each level, the barrier separates the programs (above)
that use the data abstraction from the programs (below) that implement the data
abstraction. Programs that use rational numbers manipulate them solely in terms
of the procedures supplied ``for public use'' by the rational-number package: add-
rat, sub-rat, mul-rat, div-rat, and equal-rat?. These, in turn, are implemented solely in
terms of the constructor and selectors make-rat, numer, and denom, which themselves
are implemented in terms of pairs. The details of how pairs are implemented are
irrelevant to the rest of the rational-number package so long as pairs can be
manipulated by the use of cons, car, and cdr. In effect, procedures at each level are
the interfaces that define the abstraction barriers and connect the different levels.
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Figure 2.1:  Data-abstraction barriers in the rational-number package.

This simple idea has many advantages. One advantage is that it makes programs
much easier to maintain and to modify. Any complex data structure can be
represented in a variety of ways with the primitive data structures provided by a
programming language. Of course, the choice of representation influences the
programs that operate on it; thus, if the representation were to be changed at
some later time, all such programs might have to be modified accordingly. This
task could be time-consuming and expensive in the case of large programs
unless the dependence on the representation were to be confined by design to a
very few program modules.

For example, an alternate way to address the problem of reducing rational
numbers to lowest terms is to perform the reduction whenever we access the
parts of a rational number, rather than when we construct it. This leads to
different constructor and selector procedures:

(define (make-rat n d)
  (cons n d))
(define (numer x)
  (let ((g (gcd (car x) (cdr x))))
    (/ (car x) g)))
(define (denom x)
  (let ((g (gcd (car x) (cdr x))))
    (/ (cdr x) g)))

The difference between this implementation and the previous one lies in when we
compute the gcd. If in our typical use of rational numbers we access the
numerators and denominators of the same rational numbers many times, it would
be preferable to compute the gcd when the rational numbers are constructed. If
not, we may be better off waiting until access time to compute the gcd. In any
case, when we change from one representation to the other, the procedures add-
rat, sub-rat, and so on do not have to be modified at all.

Constraining the dependence on the representation to a few interface procedures
helps us design programs as well as modify them, because it allows us to
maintain the flexibility to consider alternate implementations. To continue with
our simple example, suppose we are designing a rational-number package and
we can't decide initially whether to perform the gcd at construction time or at
selection time. The data-abstraction methodology gives us a way to defer that
decision without losing the ability to make progress on the rest of the system.
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Exercise 2.2.  Consider the problem of representing line segments in a plane.
Each segment is represented as a pair of points: a starting point and an ending
point. Define a constructor make-segment and selectors start-segment and end-segment
that define the representation of segments in terms of points. Furthermore, a
point can be represented as a pair of numbers: the x coordinate and the y
coordinate. Accordingly, specify a constructor make-point and selectors x-point and
y-point that define this representation. Finally, using your selectors and
constructors, define a procedure midpoint-segment that takes a line segment as
argument and returns its midpoint (the point whose coordinates are the average
of the coordinates of the endpoints). To try your procedures, you'll need a way to
print points:

(define (print-point p)
  (newline)
  (display "(")
  (display (x-point p))
  (display ",")
  (display (y-point p))
  (display ")"))

Exercise 2.3.  Implement a representation for rectangles in a plane. (Hint: You
may want to make use of exercise 2.2.) In terms of your constructors and
selectors, create procedures that compute the perimeter and the area of a given
rectangle. Now implement a different representation for rectangles. Can you
design your system with suitable abstraction barriers, so that the same perimeter
and area procedures will work using either representation?

2.1.3  What Is Meant by Data?

We began the rational-number implementation in section 2.1.1 by implementing
the rational-number operations add-rat, sub-rat, and so on in terms of three
unspecified procedures: make-rat, numer, and denom. At that point, we could think of
the operations as being defined in terms of data objects -- numerators,
denominators, and rational numbers -- whose behavior was specified by the latter
three procedures.

But exactly what is meant by data? It is not enough to say ``whatever is
implemented by the given selectors and constructors.'' Clearly, not every arbitrary
set of three procedures can serve as an appropriate basis for the rational-number
implementation. We need to guarantee that, if we construct a rational number x
from a pair of integers n and d, then extracting the numer and the denom of x and
dividing them should yield the same result as dividing n by d. In other words, make-
rat, numer, and denom must satisfy the condition that, for any integer n and any non-
zero integer d, if x is (make-rat n d), then

In fact, this is the only condition make-rat, numer, and denom must fulfill in order to
form a suitable basis for a rational-number representation. In general, we can
think of data as defined by some collection of selectors and constructors,
together with specified conditions that these procedures must fulfill in order to
be a valid representation.5
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This point of view can serve to define not only ``high-level'' data objects, such as
rational numbers, but lower-level objects as well. Consider the notion of a pair,
which we used in order to define our rational numbers. We never actually said
what a pair was, only that the language supplied procedures cons, car, and cdr for
operating on pairs. But the only thing we need to know about these three
operations is that if we glue two objects together using cons we can retrieve the
objects using car and cdr. That is, the operations satisfy the condition that, for any
objects x and y, if z is (cons x y) then (car z) is x and (cdr z) is y. Indeed, we
mentioned that these three procedures are included as primitives in our
language. However, any triple of procedures that satisfies the above condition can
be used as the basis for implementing pairs. This point is illustrated strikingly by
the fact that we could implement cons, car, and cdr without using any data
structures at all but only using procedures. Here are the definitions:

(define (cons x y)
  (define (dispatch m)
    (cond ((= m 0) x)
          ((= m 1) y)
          (else (error "Argument not 0 or 1 -- CONS" m))))
  dispatch)

(define (car z) (z 0))

(define (cdr z) (z 1))

This use of procedures corresponds to nothing like our intuitive notion of what
data should be. Nevertheless, all we need to do to show that this is a valid way
to represent pairs is to verify that these procedures satisfy the condition given
above.

The subtle point to notice is that the value returned by (cons x y) is a procedure -
- namely the internally defined procedure dispatch, which takes one argument and
returns either x or y depending on whether the argument is 0 or 1.
Correspondingly, (car z) is defined to apply z to 0. Hence, if z is the procedure
formed by (cons x y), then z applied to 0 will yield x. Thus, we have shown that
(car (cons x y)) yields x, as desired. Similarly, (cdr (cons x y)) applies the procedure
returned by (cons x y) to 1, which returns y. Therefore, this procedural
implementation of pairs is a valid implementation, and if we access pairs using
only cons, car, and cdr we cannot distinguish this implementation from one that
uses ``real'' data structures.

The point of exhibiting the procedural representation of pairs is not that our
language works this way (Scheme, and Lisp systems in general, implement pairs
directly, for efficiency reasons) but that it could work this way. The procedural
representation, although obscure, is a perfectly adequate way to represent pairs,
since it fulfills the only conditions that pairs need to fulfill. This example also
demonstrates that the ability to manipulate procedures as objects automatically
provides the ability to represent compound data. This may seem a curiosity now,
but procedural representations of data will play a central role in our
programming repertoire. This style of programming is often called message
passing, and we will be using it as a basic tool in chapter 3 when we address the
issues of modeling and simulation.
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Exercise 2.4.  Here is an alternative procedural representation of pairs. For this
representation, verify that (car (cons x y)) yields x for any objects x and y.

(define (cons x y)
  (lambda (m) (m x y)))

(define (car z)
  (z (lambda (p q) p)))

What is the corresponding definition of cdr? (Hint: To verify that this works, make
use of the substitution model of section 1.1.5.)

Exercise 2.5.  Show that we can represent pairs of nonnegative integers using
only numbers and arithmetic operations if we represent the pair a and b as the

integer that is the product 2a 3b. Give the corresponding definitions of the
procedures cons, car, and cdr.

Exercise 2.6.  In case representing pairs as procedures wasn't mind-boggling
enough, consider that, in a language that can manipulate procedures, we can get
by without numbers (at least insofar as nonnegative integers are concerned) by
implementing 0 and the operation of adding 1 as

(define zero (lambda (f) (lambda (x) x)))

(define (add-1 n)
  (lambda (f) (lambda (x) (f ((n f) x)))))

This representation is known as Church numerals, after its inventor, Alonzo
Church, the logician who invented the  calculus.

Define one and two directly (not in terms of zero and add-1). (Hint: Use substitution
to evaluate (add-1 zero)). Give a direct definition of the addition procedure + (not
in terms of repeated application of add-1).

2.1.4  Extended Exercise: Interval Arithmetic

Alyssa P. Hacker is designing a system to help people solve engineering
problems. One feature she wants to provide in her system is the ability to
manipulate inexact quantities (such as measured parameters of physical devices)
with known precision, so that when computations are done with such
approximate quantities the results will be numbers of known precision.

Electrical engineers will be using Alyssa's system to compute electrical quantities.
It is sometimes necessary for them to compute the value of a parallel equivalent
resistance Rp of two resistors R1 and R2 using the formula

Resistance values are usually known only up to some tolerance guaranteed by the
manufacturer of the resistor. For example, if you buy a resistor labeled ``6.8 ohms
with 10% tolerance'' you can only be sure that the resistor has a resistance
between 6.8 - 0.68 = 6.12 and 6.8 + 0.68 = 7.48 ohms. Thus, if you have a 6.8-
ohm 10% resistor in parallel with a 4.7-ohm 5% resistor, the resistance of the
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combination can range from about 2.58 ohms (if the two resistors are at the
lower bounds) to about 2.97 ohms (if the two resistors are at the upper bounds).

Alyssa's idea is to implement ``interval arithmetic'' as a set of arithmetic
operations for combining ``intervals'' (objects that represent the range of possible
values of an inexact quantity). The result of adding, subtracting, multiplying, or
dividing two intervals is itself an interval, representing the range of the result.

Alyssa postulates the existence of an abstract object called an ``interval'' that has
two endpoints: a lower bound and an upper bound. She also presumes that,
given the endpoints of an interval, she can construct the interval using the data
constructor make-interval. Alyssa first writes a procedure for adding two intervals.
She reasons that the minimum value the sum could be is the sum of the two
lower bounds and the maximum value it could be is the sum of the two upper
bounds:

(define (add-interval x y)
  (make-interval (+ (lower-bound x) (lower-bound y))
                 (+ (upper-bound x) (upper-bound y))))

Alyssa also works out the product of two intervals by finding the minimum and
the maximum of the products of the bounds and using them as the bounds of
the resulting interval. (Min and max are primitives that find the minimum or
maximum of any number of arguments.)

(define (mul-interval x y)
  (let ((p1 (* (lower-bound x) (lower-bound y)))
        (p2 (* (lower-bound x) (upper-bound y)))
        (p3 (* (upper-bound x) (lower-bound y)))
        (p4 (* (upper-bound x) (upper-bound y))))
    (make-interval (min p1 p2 p3 p4)
                   (max p1 p2 p3 p4))))

To divide two intervals, Alyssa multiplies the first by the reciprocal of the second.
Note that the bounds of the reciprocal interval are the reciprocal of the upper
bound and the reciprocal of the lower bound, in that order.

(define (div-interval x y)
  (mul-interval x 
                (make-interval (/ 1.0 (upper-bound y))
                               (/ 1.0 (lower-bound y)))))

Exercise 2.7.  Alyssa's program is incomplete because she has not specified the
implementation of the interval abstraction. Here is a definition of the interval
constructor:

(define (make-interval a b) (cons a b))

Define selectors upper-bound and lower-bound to complete the implementation.

Exercise 2.8.  Using reasoning analogous to Alyssa's, describe how the difference
of two intervals may be computed. Define a corresponding subtraction procedure,
called sub-interval.

Exercise 2.9.  The width of an interval is half of the difference between its upper
and lower bounds. The width is a measure of the uncertainty of the number
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specified by the interval. For some arithmetic operations the width of the result of
combining two intervals is a function only of the widths of the argument intervals,
whereas for others the width of the combination is not a function of the widths
of the argument intervals. Show that the width of the sum (or difference) of two
intervals is a function only of the widths of the intervals being added (or
subtracted). Give examples to show that this is not true for multiplication or
division.

Exercise 2.10.  Ben Bitdiddle, an expert systems programmer, looks over Alyssa's
shoulder and comments that it is not clear what it means to divide by an interval
that spans zero. Modify Alyssa's code to check for this condition and to signal an
error if it occurs.

Exercise 2.11.  In passing, Ben also cryptically comments: ``By testing the signs of
the endpoints of the intervals, it is possible to break mul-interval into nine cases,
only one of which requires more than two multiplications.'' Rewrite this procedure
using Ben's suggestion.

After debugging her program, Alyssa shows it to a potential user, who complains
that her program solves the wrong problem. He wants a program that can deal
with numbers represented as a center value and an additive tolerance; for
example, he wants to work with intervals such as 3.5± 0.15 rather than [3.35,
3.65]. Alyssa returns to her desk and fixes this problem by supplying an alternate
constructor and alternate selectors:

(define (make-center-width c w)
  (make-interval (- c w) (+ c w)))
(define (center i)
  (/ (+ (lower-bound i) (upper-bound i)) 2))
(define (width i)
  (/ (- (upper-bound i) (lower-bound i)) 2))

Unfortunately, most of Alyssa's users are engineers. Real engineering situations
usually involve measurements with only a small uncertainty, measured as the ratio
of the width of the interval to the midpoint of the interval. Engineers usually
specify percentage tolerances on the parameters of devices, as in the resistor
specifications given earlier.

Exercise 2.12.  Define a constructor make-center-percent that takes a center and a
percentage tolerance and produces the desired interval. You must also define a
selector percent that produces the percentage tolerance for a given interval. The
center selector is the same as the one shown above.

Exercise 2.13.  Show that under the assumption of small percentage tolerances
there is a simple formula for the approximate percentage tolerance of the
product of two intervals in terms of the tolerances of the factors. You may
simplify the problem by assuming that all numbers are positive.

After considerable work, Alyssa P. Hacker delivers her finished system. Several
years later, after she has forgotten all about it, she gets a frenzied call from an
irate user, Lem E. Tweakit. It seems that Lem has noticed that the formula for
parallel resistors can be written in two algebraically equivalent ways:
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and

He has written the following two programs, each of which computes the parallel-
resistors formula differently:

(define (par1 r1 r2)
  (div-interval (mul-interval r1 r2)
                (add-interval r1 r2)))
(define (par2 r1 r2)
  (let ((one (make-interval 1 1))) 
    (div-interval one
                  (add-interval (div-interval one r1)
                                (div-interval one r2)))))

Lem complains that Alyssa's program gives different answers for the two ways of
computing. This is a serious complaint.

Exercise 2.14.  Demonstrate that Lem is right. Investigate the behavior of the
system on a variety of arithmetic expressions. Make some intervals A and B, and
use them in computing the expressions A/A and A/B. You will get the most
insight by using intervals whose width is a small percentage of the center value.
Examine the results of the computation in center-percent form (see exercise 2.12).

Exercise 2.15.  Eva Lu Ator, another user, has also noticed the different intervals
computed by different but algebraically equivalent expressions. She says that a
formula to compute with intervals using Alyssa's system will produce tighter error
bounds if it can be written in such a form that no variable that represents an
uncertain number is repeated. Thus, she says, par2 is a ``better'' program for
parallel resistances than par1. Is she right? Why?

Exercise 2.16.  Explain, in general, why equivalent algebraic expressions may lead
to different answers. Can you devise an interval-arithmetic package that does not
have this shortcoming, or is this task impossible? (Warning: This problem is very
difficult.)

2 The name cons stands for ``construct.'' The names car and cdr derive from the original implementation of
Lisp on the IBM 704. That machine had an addressing scheme that allowed one to reference the ``address''
and ``decrement'' parts of a memory location. Car stands for ``Contents of Address part of Register'' and cdr
(pronounced ``could-er'') stands for ``Contents of Decrement part of Register.''

3 Another way to define the selectors and constructor is

(define make-rat cons)
(define numer car)
(define denom cdr)

The first definition associates the name make-rat with the value of the expression cons, which is the primitive
procedure that constructs pairs. Thus make-rat and cons are names for the same primitive constructor.

Defining selectors and constructors in this way is efficient: Instead of make-rat calling cons, make-rat is cons, so
there is only one procedure called, not two, when make-rat is called. On the other hand, doing this defeats
debugging aids that trace procedure calls or put breakpoints on procedure calls: You may want to watch
make-rat being called, but you certainly don't want to watch every call to cons.
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We have chosen not to use this style of definition in this book.

4 Display is the Scheme primitive for printing data. The Scheme primitive newline starts a new line for printing.
Neither of these procedures returns a useful value, so in the uses of print-rat below, we show only what
print-rat prints, not what the interpreter prints as the value returned by print-rat.

5 Surprisingly, this idea is very difficult to formulate rigorously. There are two approaches to giving such a
formulation. One, pioneered by C. A. R. Hoare (1972), is known as the method of abstract models. It
formalizes the ``procedures plus conditions'' specification as outlined in the rational-number example above.
Note that the condition on the rational-number representation was stated in terms of facts about integers
(equality and division). In general, abstract models define new kinds of data objects in terms of previously
defined types of data objects. Assertions about data objects can therefore be checked by reducing them to
assertions about previously defined data objects. Another approach, introduced by Zilles at MIT, by Goguen,
Thatcher, Wagner, and Wright at IBM (see Thatcher, Wagner, and Wright 1978), and by Guttag at Toronto
(see Guttag 1977), is called algebraic specification. It regards the ``procedures'' as elements of an abstract
algebraic system whose behavior is specified by axioms that correspond to our ``conditions,'' and uses the
techniques of abstract algebra to check assertions about data objects. Both methods are surveyed in the
paper by Liskov and Zilles (1975).

[Go to first, previous, next page;   contents;   index]

https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-13.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-15.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start

