Basic Scheme February 8, 2007

« Compound expressions
 Rules of evaluation
» Creating procedures by capturing common patterns

Previous lecture

e Basics of Scheme

— Expressions and associated values (or syntax
and semantics)

« Self-evaluating expressions
— 1, “this 1s a string”, #f

* Names
—+, * >= <

« Combinations
- (*(+12)3)

* Define

e Rules for evaluation

Read-Eval-Print

+ *
Visibleworld ‘ G
READ
l’ Internal representation for
expression

l Value of expression

Execution world

___________________ t e e e e e -

Visible world 23

Summary of expressions

Numbers: value Is expression itself

Primitive procedure names: value Is pointer to
Internal hardware to perform operation

“Define”: has no actual value:; 1s used to create a
binding in a table of a name and a value

Names: value is looked up in table, retrieving
ninding

Rules apply recursively

Simple examples

25 > 4 25

(+(*35)4) > 60

+ - [#primitive procedure ...]

(define foobar (* 35)) = no value, creates binding of
foobar and 15

foobar -> 15 (value is looked up)

(define fred +) -> no value, creates binding

(fred 3 5) > 15

This lecture

Adding procedures and procedural abstractions to
capture processes

anguage elements -- procedures

» Need to capture ways of doing things — use
procedures

_ parameters :
(lambda (X) (* X X))~ bod Q
y

To process something ~ Multiply it by itself

Special form — creates a procedure and returns it
as value

anguage elements -- procedures

« Use this any ould use a procedure
((Iardea(x)(@\x)) 5)4/
A/lﬁ/'

(* 55) lambdaexp arg

25

anguage elements -- abstraction

 Use this anywhere you would use a procedure
((lambda(x)(* x x)) 5)

Don’t want to have to write obfuscatory code — S0 can give
the lambda a name

(define square (lambda (x) (* X X)) Rumplestiltskin effect!

(square 5) > 25 (The power of naming

things)

Scheme Basics

oW e

N =

Rules for evaluating
If self-evaluating, return value.
If a name, return value associated with name in environment.
If a special form, do something special.
If a combination, then
a. Evaluate all of the subexpressions of combination (in any order)

b. apply the operator to the values of the operands (arguments) and
return result

Rules for applying
If procedure is primitive procedure, just do it.

If procedure is a compound procedure, then:
evaluate the body of the procedure with each formal parameter
replaced by the corresponding actual argument value.

Interaction of define and lambda

1. (lambda (x) (* x X))
==> #[compound-procedure 9]

2. (define square (lambda (x) (* x x)))
==> undef

3. (square 4) ==> 16
4. ((lambda (x) (* x x)) 4) ==> 16

5. (define (square x) (* x x)) ==> undef

This 1s a convenient shorthand (called “syntactic sugar™) for 2
above — this Is a use of lambda!

Lambda special form

 |lambda syntax (lambda (x y) (/ (+ x y) 2))

o 1st operand position: the parameter list (x y)
— a list of names (perhaps empty) ()
— determines the number of operands required

 2nd operand position: the body (/ (+ x y) 2)
— may be any expression(s)
— not evaluated when the lambda is evaluated
— evaluated when the procedure is applied
— value of body is value of last expression evaluated
 mini-quiz: (define x (lambda () (+ 3 2)))
i X
. (x)

e semantics of lambda:

THE VALUE OF
A LAMBDA EXPRESSION
1S
A PROCEDURE

Achieving Inner Peace
(and a good grade)

*Om Mani Padme Hum...

Using procedures to describe processes

« How can we use the idea of a procedure to capture a
computational process?

What does a procedure describe?

« Capturing a common pattern
- (*33)
— (* 25 25)

— (* foobar foobar) Common pattern to
capture

(lambda (x) (* x x))

Name for thing that
changes

Modularity of common patterns

Here is a common pattern:

(sqgrt (+ (*3 3y (*Q D))

(sqrt (+ (*Q@_9) (* 6 16)))
(sqrt (+ (*Q@ 4y (* @_4D)

Here is one way to capture this pattern:
(define pythagoras
(lambda (x y)
(sqrt (+ (* x x) (* vy v)))))

Modularity of common patterns

Here Is a com
(sqrt
(sqrt
(sqrt

N pattern:
fﬂ-li
)

(+
+ I))

So here Is a cleaner way of capturing the pattern:
(define square (lambda (x) (* x x)))
(define pythagoras

(lambda (x y)

(sgqrt (+ (square x) (square y)))))

Why?

» Breaking computation into modules that capture
commonality

— Enables reuse in other places (e.g. square)

* |solates (abstracts away) details of computation
within a procedure from use of the procedure

— Useful even if used only once (i.e., a unique pattern)

(define (comp x y) (/(+(* x y) 17) (+(+ x y) 4))))

(define (comp x y) (/ (prod+l7 x y) (sum+4 x y)))

Why?

« May be many ways to divide up

(define square (lambda (x) (* x x)))
(define pythagoras
(lambda (x y)

(sqrt (+ (square x) (square y)))))

(define square (lambda (x) (* x x)))
(define sum-squares

(lambda (x y) (+ (square x) (square y))))
(define pythagoras

(lambda (y x) (sgqrt (sum-squares y X))))

Abstracting the process

 Stages In capturing common patterns of
computation
— Identify modules or stages of process
— Capture each module within a procedural abstraction

— Construct a procedure to control the interactions
between the modules

— Repeat the process within each module as necessary

A more complex example

« Remember our method for finding sgrts

— To find the square root of X
« Make a guess, called G
 If G is close enough, stop
 Else make a new guess by averaging G and X/G

The stages of “SQRT”

* When is something “close enough”
« How do we create a new guess

« How do we control the process of using the new guess in
place of the old one

Procedural abstractions

For “close enough™:
(define close-enuf?
(lambda (guess x)

(< (abs (- (square guess) x)) 0.001)))

1

Note use of procedural
abstraction!

Procedural abstractions

For “improve’:
(define average
(lambda (a b) (/ (+ a b) 2)))
(define improve
(lambda (guess x)

(average guess (/ x guess))))

Why this modularity?

« “Average” is something we are likely to want in other computations, so only
need to create once

Abstraction lets us separate implementation details from use
— Originally:

(define average

(lLambda (a b) (/ (+ a b) 2)))

— Could redefine as

(define average

(lambda (x y) (* (+ x y) 0.5)))

— No other changes needed to procedures that use average

— Also note that variables (or parameters) are internal to procedure — cannot
be referred to by name outside of scope of lambda

Controlling the process

» Basic Idea:
— Given X, G, want (improve G X) asnew guess

— Need to make a decision — for this need a new special form

(Lf <predicate> <consequence> <alternative>)

The IF special form

(Lf <predicate> <consequence> <alternative>)

— Evaluator first evaluates the <predicate> expression.

— If it evaluates to a TRUE value, then the evaluator evaluates and
returns the value of the <consequence> expression.

— Otherwise, it evaluates and returns the value of the
<alternatiwve> expression.

— Why must this be a special form? (i.e. why not just a regular
lambda procedure?)

Controlling the process

 Basic idea:
— Given X, G, want (improve G X) asnew guess

— Need to make a decision — for this need a new special form
(Lf <predicate> <consequence> <alternative>)

— So heart of process should be:

(Lif (close-enuf? G X)
G
(improve G X))

— But somehow we want to use the value returned by “improving” things
as the new guess, and repeat the process

Controlling the process

 Basic idea:
— Given X, G, want (improve G X) asnew guess
— Need to make a decision — for this need a new special form
(Lf <predicate> <consequence> <alternative>)
— So heart of process should be:
(define sqrt-loop (lambda G X)
(Lif (close-enuf? G X)
G
(sgrt-loop (improve G X) X)
— But somehow we want to use the value returned by “improving” things
as the new guess, and repeat the process
— Call process sgrt-loop and reuse it!

Putting It together

« Then we can create our procedure, by simply
starting with some initial guess:
(define sqrt
(lambda (x)
(sgqrt-loop 1.0 x)))

Checking that it does the “right thing”

 Next lecture, we will see a formal way of tracing
evolution of evaluation process

 For now, just walk through basic steps
— (sqrt 2)
e (sgrt-loop 1.0 2)
e (1f (close-enuf? 1.0 2))
* (sgrt-loop (improve 1.0 2) 2)
This is just like a normal combination
e (sgrt-loop 1.5 2)
e (1f (close-enuf? 1.5 2))
e (sqrt-loop 1.4166666 2)

e And so on...

Abstracting the process

 Stages In capturing common patterns of
computation
— Identify modules or stages of process
— Capture each module within a procedural abstraction

— Construct a procedure to control the interactions
between the modules

— Repeat the process within each module as necessary

Summarizing Scheme

* Primitives
— Numbers 1,-2.5, 3.67e25
— Strings
— Booleans

— Builtin procedures *, +,-,/,=,>, <, Creates a loop in system

-- Names ‘ — allows abstraction of

Means of Combination name for object

— (procedure argument, argument, ... argument,))
Means of Abstraction

- Lambda . ——__ | Create a procedure

— Define . — | Create names \

e Other forms

— if - ——— Control order of evaluation

