
This Lecture

• Substitution model

• An example using the substitution model

• Designing recursive procedures

• Designing iterative procedures

• Proving that our code works

• A way to figure out what happens during evaluation

• Not really what happens in the computer

Rules of substitution model:
1. If self-evaluating (e.g. number, string, #t / #f), just return value

2. If name, replace it with value associated with that name

3. If lambda, create a procedure

4. If special form (e.g. if), follow the special form’s rules for evaluating

5. If combination (e0 e1 e2 … en):

• Evaluate subexpressions ei in any order to produce values
(v0 v1 v2 … vn)

• If v0 is primitive procedure (e.g. +), just apply it to v1 … vn

• If v0 is compound procedure (created by lambda):

– Substitute v1 … vn for corresponding parameters in body of procedure, then
repeat on body

Substitution model

(define average (lambda (x y)(/ (+ x y) 2)))

(average (+ 3 4) 3)

(5)

Micro Quiz

Rules of substitution model
1. If self-evaluating (e.g. number, string, #t / #f), just return value

2. If name, replace it with value associated with that name

3. If lambda, create a procedure

4. If special form (e.g. if), follow the special form’s rules for evaluating

5. If combination (e0 e1 e2 … en):

• Evaluate subexpressions ei in any order to produce values
(v0 v1 v2 … vn)

• If v0 is primitive procedure (e.g. +), just apply it to v1 … vn

• If v0 is compound procedure (created by lambda):

– Substitute v1 … vn for corresponding parameters in body of
procedure, then repeat on body

Substitution model – a simple example

(define square (lambda (x) (* x x)))

(square 4)

square [procedure (x) (* x x)]

4 4

(* 4 4)

16

(define average (lambda (x y) (/ (+ x y) 2)))

(average 5 (square 3))

(average 5 (* 3 3))

(average 5 9)

(/ (+ 5 9) 2)

(/ 14 2)

7

A less trivial example: factorial

• Compute n factorial, defined as

n! = n(n-1)(n-2)(n-3)...1

• How can we capture this in a procedure, using the

idea of finding a common pattern?

How to design recursive algorithms

• Follow the general approach:
1. Wishful thinking

2. Decompose the problem

3. Identify non-decomposable (smallest) problems

1. Wishful thinking
• Assume the desired procedure exists.

• Want to implement fact? OK, assume it exists.

• BUT, it only solves a smaller version of the problem.
– This is just like finding a common pattern: but here, solving

the bigger problem involves the same pattern in a smaller
problem

2. Decompose the problem

• Solve a problem by

1. solve a smaller instance (using wishful thinking)

2. convert that solution to the desired solution

• Step 2 requires creativity!

• Must design the strategy before writing Scheme code.

• n! = n(n-1)(n-2)... = n[(n-1)(n-2)...] = n * (n-1)!

• solve the smaller instance, multiply it by n to get solution

(define fact

(lambda (n) (* n (fact (- n 1)))))

Minor Difficulty

(define fact

(lambda (n) (* n (fact (- n 1)))))

(fact 2)

(* 2 (fact 1))

(* 2 (* 1 (fact 0)))

(* 2 (* 1 (* 0 (fact -1)))) … d’oh!

3. Identify non-decomposable problems

• Decomposing is not enough by itself

• Must identify the "smallest" problems and solve

directly

• Define 1! = 1 (or alternatively define 0! = 1)

(define fact

(lambda (n)

(if (= n 1)

1

(* n (fact (- n 1)))))

General form of recursive algorithms

• test, base case, recursive case

(define fact
(lambda (n)

(if (= n 1) ; test for base case

1 ; base case

(* n (fact (- n 1))))) ; recursive case

• base case: smallest (non-decomposable) problem

• recursive case: larger (decomposable) problem

• more complex algorithms may have multiple base cases or
multiple recursive cases (requiring more than one test)

Summary of recursive processes

• Design a recursive algorithm by

1. wishful thinking

2. decompose the problem

3. identify non-decomposable (smallest) problems

• Recursive algorithms have

1. test

2. base case

3. recursive case

(fact 3)

(if (= 3 1) 1 (* 3 (fact (- 3 1))))

(if #f 1 (* 3 (fact (- 3 1))))

(* 3 (fact (- 3 1)))

(* 3 (fact 2))

(* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))

(* 3 (if #f 1 (* 2 (fact (- 2 1)))))

(* 3 (* 2 (fact (- 2 1))))

(* 3 (* 2 (fact 1)))

(* 3 (* 2 (if (= 1 1) 1 (* 1 (fact (- 1 1))))))

(* 3 (* 2 (if #t 1 (* 1 (fact (- 1 1))))))

(* 3 (* 2 1))

(* 3 2)

6

(define fact (lambda (n)

(if (= n 1) 1 (* n (fact (- n 1))))))

(fact 3)

(* 3 (fact 2))

(* 3 (* 2 (fact 1)))

(* 3 (* 2 1))

(* 3 2)

6

Note the “shape” of this

process

(define fact (lambda (n)

(if (= n 1) 1 (* n (fact (- n 1))))))

The fact procedure uses a recursive

algorithm

• For a recursive algorithm:

• In the substitution model, the expression keeps growing
(fact 3)

(* 3 (fact 2))

(* 3 (* 2 (fact 1)))

Recursive algorithms use increasing

space
• In a recursive algorithm, bigger operands consume more space

(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 1)))
...
24

(fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))

...
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (fact 1))))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 2)))))
...
40320

A Problem With Recursive Algorithms

• Try computing 101!

101 * 100 * 99 * 98 * 97 * 96 * … * 2 * 1

• How much space do we consume with pending operations?

• Better idea:
• start with 1, remember that 2 is next

• compute 1 * 2, remember that 3 is next

• compute 2 * 3, remember that 4 is next

• compute 6 * 4, remember that 5 is next

• …

• compute 94259477598383594208516231244829367495623127947
025437683278893534169775993162214765030878615918083469116234
90003549599583369706302603264000000000000000000000000, and stop

• This is an iterative algorithm – it uses constant space

Iterative algorithm to compute 4! as a table

• In this table:

• One column for each piece of information used

• One row for each step

product i

1 2

2 3

24 5

6product * i i +14

n

4

4

4

4

1 1 4

• The answer is in the product column of the last row

answer

• The last row is the one where i > n

Next to computeCurrent value

first row
handles 0!

cleanly

Iterative factorial in scheme

(define ifact (lambda (n) (ifact-helper 1 1 n)))

(define ifact-helper (lambda (product i n)

(if (> i n)

product

(ifact-helper (* product i) (+ i 1) n))

)

)

initial

row of table

compute

next row

of table

answer is in product column of last row

at last row when i > n

Partial trace for (ifact 4)

(define ifact-helper (lambda (product i n)

(if (> i n) product

(ifact-helper (* product i)

(+ i 1) n))))

(if (> 2 4) 1 (ifact-helper (* 1 2) (+ 2 1) 4))
(ifact-helper 2 3 4)
(if (> 3 4) 2 (ifact-helper (* 2 3) (+ 3 1) 4))
(ifact-helper 6 4 4)
(if (> 4 4) 6 (ifact-helper (* 6 4) (+ 4 1) 4))
(ifact-helper 24 5 4)
(if (> 5 4) 24 (ifact-helper (* 24 5) (+ 5 1) 4))
24

(ifact-helper 1 2 4)
(if (> 1 4) 1 (ifact-helper (* 1 1) (+ 1 1) 4))

(ifact 4)
(ifact-helper 1 1 4)

Partial trace for (ifact 4)

(define ifact-helper (lambda (product i n)

(if (> i n) product

(ifact-helper (* product i)

(+ i 1) n))))

(ifact-helper 2 3 4)

(ifact-helper 6 4 4)

(ifact-helper 24 5 4)

24

(ifact-helper 1 2 4)

(ifact 4)
(ifact-helper 1 1 4)

Note the “shape” of this

process

Recursive process = pending

operations when procedure calls itself

• Recursive factorial:

(define fact (lambda (n)

(if (= n 1) 1

(* n (fact (- n 1)))

)))

(fact 4)

(* 4 (fact 3))

(* 4 (* 3 (fact 2)))

(* 4 (* 3 (* 2 (fact 1))))

• Pending operations make the expression grow continuously

pending operation

Iterative process = no pending

operations

• Iterative factorial:

(define ifact-helper (lambda (product i n)

(if (> count n) product

(ifact-helper (* product i)

(+ i 1) n))))

(ifact-helper 1 1 4)

(ifact-helper 1 2 4)

(ifact-helper 2 3 4)

(ifact-helper 6 4 4)

(ifact-helper 24 5 4)

• Fixed space because no pending operations

no pending operations

Summary of iterative processes

• Iterative algorithms use constant space

• How to develop an iterative algorithm

1. Figure out a way to accumulate partial answers

2. Write out a table to analyze precisely:

– initialization of first row

– update rules for other rows

– how to know when to stop

3. Translate rules into Scheme code

• Iterative algorithms have no pending operations

when the procedure calls itself

Why is our code correct?

• How do we know that our code will always work?

• Proof by authority – someone with whom we dare not

disagree says it is right!

• For example

• Proof by statistics – we try enough examples to

convince ourselves that it will always work!

• E.g. keep trying, but bring sandwiches and a cot

• Proof by faith – we really, really, really believe that we

always write correct code!

• E.g. the Pset is due in 5 minutes and I don’t have time

• Formal proof – we break down and use mathematical

logic to determine that code is correct.

Proof by induction

• Proof by induction is a very powerful tool in predicate

logic

• Informally, if you can:

1. Show that some proposition P is true for n=0

2. Show that whenever P is true for some legal value of n, then it

follows that P is true for n+1

…then you can conclude that P is true for all legal values of n

)(:

)1()(:

)0(

nPn

nPnPn

P

A simple example

1 = 1

1 + 2 = 3

1 + 2 + 4 = 7

1 + 2 + 4 + 8 = 15

…

?2
0

n

i

i 12 1 n

An example of proof by induction

)1()(: nPnPn

122:)(1

0

 n
n

i

inP

122:0 10 nBase case:

Inductive step:

122

2)12(22

122

2
1

0

111

0

1

0

n
n

i

i

nnn
n

i

i

n
n

i

i)(nP

)1(nP

Steps in proof by induction

1. Define the predicate P(n) (induction hypothesis)

• Decide what the variable n denotes

• Decide the universe over which n applies

2. Prove that P(0) is true (base case)

3. Prove that P(n) implies P(n+1) for all n (inductive step)

• Do this by assuming that P(n) is true, then trying to prove that

P(n+1) is true

4. Conclude that P(n) is true for all n by the principle of

induction.

Back to factorial

• Induction hypothesis P(n):

“our recursive procedure for fact correctly computes n!

for all integer values of n, starting at 1”

(define fact

(lambda (n)

(if (= n 1)

1

(* n (fact (- n 1))))))

Proof by induction that fact works

• Base case: does this work when n=1?

• Note that this is P(1), not P(0) – we need to adjust the base case

because our universe of legal values for n includes only the positive

integers

• Yes – the IF statement guarantees that in this case we only

evaluate the consequent expression: thus we return 1,

which is 1!

(define fact

(lambda (n)

(if (= n 1)

1

(* n (fact (- n 1))))))

Proof by induction that fact works

• Inductive step: We assume it works for some legal value of n > 0…

• so (fact n) computes n! correctly

… and show that it works correctly for n+1

• What does (fact n+1) compute?

• Use the substitution model:

(fact n+1)

(if (= n+1 1) 1 (* n+1 (fact (- n+1 1))))

(if #f 1 (* n+1 (fact (- n+1 1))))

(* n+1 (fact (- n+1 1)))

(* n+1 (fact n))

(* n+1 n!)

(n+1)!

• By induction, fact will always compute what we expected, provided

the input is in the right range (n > 0)

Lessons learned

• Induction provides the basis for supporting

recursive procedure definitions

• In designing procedures, we should rely on the

same thought process

• Find the base case, and create solution

• Determine how to reduce to a simpler version of same

problem, plus some additional operations

• Assume code will work for simpler problem, and design

solution to extended problem

