This Lecture

- Substitution model
- An example using the substitution model
- Designing recursive procedures
- Designing iterative procedures
- Proving that our code works

Substitution model

- A way to figure out what happens during evaluation
- Not really what happens in the computer

Rules of substitution model:

1. If self-evaluating (e.g. number, string, \#t / \#f), just return value
2. If name, replace it with value associated with that name
3. If lambda, create a procedure
4. If special form (e.g. if), follow the special form's rules for evaluating
5. If combination ($e_{0} e_{1} e_{2} \ldots e_{n}$):

- Evaluate subexpressions e_{i} in any order to produce values $\left(v_{0} v_{1} v_{2} \ldots v_{n}\right)$
- If v_{0} is primitive procedure (e.g. +), just apply it to $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$
- If v_{0} is compound procedure (created by lambda):
- Substitute $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$ for corresponding parameters in body of procedure, then repeat on body

Micro Quiz

(define average (lambda (x y) (/ (+ x y) 2)))
(average (+ 3 4) 3)
(5)

Rules of substitution model

1. If self-evaluating (e.g. number, string, \#t / \#f), just return value
2. If name, replace it with value associated with that name
3. If lambda, create a procedure
4. If special form (e.g. if), follow the special form's rules for evaluating
5. If combination ($e_{0} e_{1} e_{2} \ldots e_{n}$):

- Evaluate subexpressions e_{i} in any order to produce values $\left(v_{0} v_{1} v_{2} \ldots v_{n}\right)$
- If v_{0} is primitive procedure (e.g. +), just apply it to $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$
- If v_{0} is compound procedure (created by lambda):
- Substitute $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$ for corresponding parameters in body of procedure, then repeat on body

Substitution model - a simple example

```
(define square (lambda (x) (* x x)))
(square 4)
    square }->\mathrm{ [procedure (x) (* x x)]
    4 > 4
(* 4 4)
16
(define average (lambda (x y) (/ (+ x y) 2)))
(average 5 (square 3))
(average 5 (* 3 3))
(average 5 9)
(/ (+ 5 9) 2)
(/ 14 2)
7
```


A less trivial example: factorial

- Compute \mathbf{n} factorial, defined as

$$
n!=n(n-1)(n-2)(n-3) \ldots 1
$$

- How can we capture this in a procedure, using the idea of finding a common pattern?

How to design recursive algorithms

- Follow the general approach:

1. Wishful thinking
2. Decompose the problem
3. Identify non-decomposable (smallest) problems

1. Wishful thinking

- Assume the desired procedure exists.
- Want to implement fact? OK, assume it exists.
- BUT, it only solves a smaller version of the problem.
- This is just like finding a common pattern: but here, solving the bigger problem involves the same pattern in a smaller problem

2. Decompose the problem

- Solve a problem by

1. solve a smaller instance
(using wishful thinking)
2. convert that solution to the desired solution

- Step 2 requires creativity!
- Must design the strategy before writing Scheme code.
- $n!=n(n-1)(n-2) \ldots=n[(n-1)(n-2) \ldots]=n$ * $(n-1)!$
- solve the smaller instance, multiply it by n to get solution (define fact
(lambda (n) (* n (fact (- n 1)))))

Minor Difficulty

(define fact
(lambda (n) (* n (fact (- n 1)))))
(fact 2)
(* 2 (fact 1))
(* 2 (* 1 (fact 0)))
(* 2 (* 1 (* 0 (fact -1)))) d'oh!

3. Identify non-decomposable problems

- Decomposing is not enough by itself
- Must identify the "smallest" problems and solve directly
- Define 1 ! $=1$ (or alternatively define $0!=1$)
(define fact
(lambda (n)

$$
\begin{aligned}
& (\text { if }(=n 1) \\
& \quad 1 \\
& \quad(* \mathrm{n}(\text { fact }(-\mathrm{n} 1)))))
\end{aligned}
$$

General form of recursive algorithms

- test, base case, recursive case

```
(define fact
    (lambda (n)
    (if (= n 1)
        1
        (* n (fact (- n 1))))) ;recursive case
```

- base case: smallest (non-decomposable) problem
- recursive case: larger (decomposable) problem
- more complex algorithms may have multiple base cases or multiple recursive cases (requiring more than one test)

Summary of recursive processes

- Design a recursive algorithm by

1. wishful thinking
2. decompose the problem
3. identify non-decomposable (smallest) problems

- Recursive algorithms have

1. test
2. base case
3. recursive case
(define fact (lambda (n) (if (= n 1) $1(* \operatorname{n~(fact~(-n~1))))))~}$
(fact 3)
(if (= 3 1) 1 (* 3 (fact (- 31))))
(if \#f 1 (* 3 (fact (- 3 1))))
(* 3 (fact (- 3 1)))
(* 3 (fact 2))
(* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))
(* 3 (if \#f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (fact (- 2 1))))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 (if (= 1 1) 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 (if \#t 1 (* 1 (fact (-11))))))
(* 3 (* 2 1))
(* 3 2)
6
```
(define fact (lambda (n)
(fact 3)
(* 3 (fact 2))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 1))
(* 3 2)
6
```

 (if (= n 1) 1 (* \(n(f a c t(-n 1)))))\)
 Note the "shape" of this process

The fact procedure uses a recursive algorithm

- For a recursive algorithm:
- In the substitution model, the expression keeps growing
(fact 3)
(* 3 (fact 2))
(* 3 (* 2 (fact 1)))

Recursive algorithms use increasing space

- In a recursive algorithm, bigger operands consume more space

24
(fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6$))$
(* 8 (* 7 (* 6 (fact 5$)))$)

40320

A Problem With Recursive Algorithms

- Try computing 101!

$$
101 \text { * } 100 \text { * } 99 \text { * } 98 * 97 \text { * } 96 \text { * ... * } 2 \text { * } 1
$$

- How much space do we consume with pending operations?
- Better idea:
- start with 1 , remember that 2 is next
- compute $1^{*} 2$, remember that 3 is next
- compute 2 * 3 , remember that 4 is next
- compute 6 * 4 , remember that 5 is next
- ...
- compute 94259477598383594208516231244829367495623127947 025437683278893534169775993162214765030878615918083469116234 90003549599583369706302603264000000000000000000000000 , and stop
- This is an iterative algorithm - it uses constant space

Iterative algorithm to compute 4! as a table

- In this table:
- One column for each piece of information used
- One row for each step

- The last row is the one where $\mathrm{i}>\mathrm{n}$
- The answer is in the product column of the last row

Iterative factorial in scheme

Partial trace for (ifact 4)

(define ifact-helper (lambda (product in) (if (> i n) product (ifact-helper (* product i) (+ i 1) n)))
(ifact 4)
(ifact-helper 114)
(if (> 1 4) 1 (ifact-helper (* 111) (+ 1 1) 4))
(ifact-helper 124)
(if (> 24) 1 (ifact-helper (* 12) (+ 2 1) 4))
(ifact-helper 23 4)
(if (> 3 4) 2 (ifact-helper (* 2 3) (+ 3 1) 4))
(ifact-helper 644)
(if (> 4 4) 6 (ifact-helper (* 64$)(+41) 4)$)
(ifact-helper 245 4)
(if (> 5 4) 24 (ifact-helper (* 24 5) (+ 5 1) 4)) 24

Partial trace for (ifact 4)

(define ifact-helper (lambda (product i n)
(if (> i n) product (ifact-helper (* product i)
(+ i 1) n)))
(ifact 4)
(ifact-helper 114)
(ifact-helper 12 4)
Note the "shape" of this process
(ifact-helper 23 4)
(ifact-helper 64 4)
(ifact-helper 245 4)

Recursive process = pending operations when procedure calls itself

- Recursive factorial:

```
(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 (fact 1))))
- Pending operations make the expression grow continuously

\section*{Iterative process = no pending operations}
- Iterative factorial:

- Fixed space because no pending operations

\section*{Summary of iterative processes}
- Iterative algorithms use constant space
- How to develop an iterative algorithm
1. Figure out a way to accumulate partial answers
2. Write out a table to analyze precisely:
- initialization of first row
- update rules for other rows
- how to know when to stop
3. Translate rules into Scheme code
- Iterative algorithms have no pending operations when the procedure calls itself

\section*{Why is our code correct?}
- How do we know that our code will always work?
- Proof by authority - someone with whom we dare not disagree says it is right!
- For example
- Proof by statistics - we try enough examples to convince ourselves that it will always work!
- E.g. keep trying, but bring sandwiches and a cot
- Proof by faith - we really, really, really believe that we always write correct code!
- E.g. the Pset is due in 5 minutes and I don't have time
- Formal proof - we break down and use mathematical logic to determine that code is correct.


\section*{Proof by induction}
- Proof by induction is a very powerful tool in predicate logic
\[
P(0)
\]
\[
\forall n: P(n) \rightarrow P(n+1)
\]
\(\therefore \forall n: P(n)\)
- Informally, if you can:
1. Show that some proposition \(P\) is true for \(n=0\)
2. Show that whenever \(P\) is true for some legal value of \(n\), then it follows that \(P\) is true for \(n+1\)
...then you can conclude that \(P\) is true for all legal values of \(n\)

\section*{A simple example}

\[
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
\]

\section*{An example of proof by induction}
\(\begin{array}{ll}\text { Base case: } & n=0: 2^{0}=2^{1}-1 \\ \text { Inductive step: } & \forall n: P(n) \rightarrow P(n+1)\end{array}\)
\[
\begin{aligned}
& \sum_{i=0}^{n} 2^{i}=2^{n+1}-1 \quad P(n) \\
& \sum_{i=0}^{n} 2^{i}+2^{n+1}=\left(2^{n+1}-1\right)+2^{n+1} \\
& \sum_{i=0}^{n+1} 2^{i}=2^{n+2}-1 \quad P(n+1)
\end{aligned}
\]

\section*{Steps in proof by induction}
1. Define the predicate \(\mathbf{P ( n )}\) (induction hypothesis)
- Decide what the variable \(\mathbf{n}\) denotes
- Decide the universe over which \(\mathbf{n}\) applies
2. Prove that \(P(0)\) is true (base case)
3. Prove that \(\mathbf{P ( n )}\) implies \(\mathbf{P ( n + 1 )}\) for all n (inductive step)
- Do this by assuming that \(P(n)\) is true, then trying to prove that \(P(n+1)\) is true
4. Conclude that \(\mathbf{P}(\mathbf{n})\) is true for all \(\mathbf{n}\) by the principle of induction.

\section*{Back to factorial}
- Induction hypothesis \(\mathrm{P}(\mathrm{n})\) :
"our recursive procedure for fact correctly computes n ! for all integer values of \(n\), starting at 1 "
(define fact
(lambda (n)
```

 (if (= n 1)
 1
 (* n (fact (- n 1))))))
    ```

\section*{Proof by induction that fact works}
- Base case: does this work when \(n=1\) ?
- Note that this is \(P(1)\), not \(P(0)\) - we need to adjust the base case because our universe of legal values for \(n\) includes only the positive integers
- Yes - the IF statement guarantees that in this case we only evaluate the consequent expression: thus we return 1, which is 1 !
(define fact
(lambda (n)
(if (= n 1)
1
(* \(n(\) fact \((-\mathrm{n} 1)))))\)

\section*{Proof by induction that fact works}
- Inductive step: We assume it works for some legal value of \(n>0 \ldots\)
- so (fact n) computes n! correctly
... and show that it works correctly for \(\mathrm{n}+1\)
- What does (fact \(n+1\) ) compute?
- Use the substitution model:
```

(fact n+1)
(if (= n+1 1) 1 (* n+1 (fact (- n+1 1))))
(if \#f 1 (* n+1 (fact (- n+1 1))))
(* n+1 (fact (- n+1 1)))
(* n+1 (fact n))
(* n+1 n!)
(n+1)!

```
- By induction, fact will always compute what we expected, provided the input is in the right range ( \(\mathrm{n}>0\) )

\section*{Lessons learned}
- Induction provides the basis for supporting recursive procedure definitions
- In designing procedures, we should rely on the same thought process
- Find the base case, and create solution
- Determine how to reduce to a simpler version of same problem, plus some additional operations
- Assume code will work for simpler problem, and design solution to extended problem```

