This Lecture

 Substitution model

* An example using the substitution model
» Designing recursive procedures

» Designing iterative procedures

* Proving that our code works

Substitution model

A way to figure out what happens during evaluation
* Not really what happens in the computer

Rules of substitution model:
If self-evaluating (e.g. number, string, #t / #f), just return value
If name, replace it with value associated with that name
If lambda, create a procedure
If special form (e.q. if), follow the special form’s rules for evaluating
If combination (e,e; e, ... e,):
« Evaluate subexpressions g, in any order to produce values
(Vo Vi Vs ... V)
 Ifv,is primitive procedure (e.g. +), just apply ittov, ... v,
« Ifv,is compound procedure (created by lambda):

— Substitute v, ... v, for corresponding parameters in body of procedure, then
repeat on body

a bk W

Micro Quiz

(define average (lambda (x y) (/ (+ x y) 2)))
(average (+ 3 4) 3)
(5)

Rules of substitution model
If self-evaluating (e.g. number, string, #t / #f), just return value
If name, replace it with value associated with that name
If lambda, create a procedure
If special form (e.q. if), follow the special form’s rules for evaluating
If combination (e, e; e, ... e):
« Evaluate subexpressions g; in any order to produce values
(Vo Vi Vs ... V)
« Ifv,is primitive procedure (e.g. +), just apply ittov, ... v,
 Ifv,is compound procedure (created by lambda):

— Substitute v, ... v, for corresponding parameters in body of
procedure, then repeat on body

Sl o= GU NS =

Substitution model —a simple example

(define square (lambda (x) (* x x)))

(square 4)
square =2 [procedure (x) (* x x)]
4 2> 4

(* 4 4)

16

(define average (lambda (x y) (/ (+ x y) 2)))

(average 5 (square 3))
(average 5 (* 3 3))
(average 5 9)

(/ (+ 5 9) 2)

(/ 14 2)

7

A less trivial example: factorial

« Compute n factorial, defined as
n! = n(n-1)(n-2)(n-3)...1

« How can we capture this in a procedure, using the
idea of finding a common pattern?

How to design recursive algorithms

 Follow the general approach:
1. Wishful thinking
2. Decompose the problem
3. Identify non-decomposable (smallest) problems

1. Wishful thinking

« Assume the desired procedure exists.
« Want to implement fact? OK, assume it exists.

« BUT, it only solves a smaller version of the problem.

— This is just like finding a common pattern: but here, solving
the bigger problem involves the same pattern in a smaller
problem

2. Decompose the problem

* Solve a problem by
1. solve a smaller instance (using wishful thinking)
2. convert that solution to the desired solution

« Step 2 requires creativity!
* Must design the strategy before writing Scheme code.
* n! = n(n-1)(n-2)... = n[(n-1)(n-2)...] = n * (n-1)!
* solve the smaller instance, multiply it by n to get solution

(define fact
(lambda (n) (* n (fact (- n 1)))))

Minor Difficulty

(define fact
(lambda (n) (* n (fact (- n 1)))))

(fact 2)

(* 2 (fact 1))

(* 2 (* 1 (fact 0)))

(*2 (*1 (* 0 (fact -1)))) ...doh!

3. ldentify non-decomposable problems

« Decomposing iIs not enough by itself

» Must identify the "smallest" problems and solve
directly

* Define 1! = 1 (or alternatively define 0! = 1)

(define fact
(lambda (n)

(if (= n 1)
1
(* n (fact (- n 1)))))

General form of recursive algorithms

* test, base case, recursive case

(define fact

(lambda (n)
(if (= n 1) . test for base case
1 : base case

(* n (fact (- n 1))))) ;recursivecase

* base case: smallest (non-decomposable) problem
* recursive case: larger (decomposable) problem

« more complex algorithms may have multiple base cases or
multiple recursive cases (requiring more than one test)

Summary of recursive processes

* Design a recursive algorithm by
1. wishful thinking
2. decompose the problem
3. identify non-decomposable (smallest) problems

« Recursive algorithms have
1. test
2. base case
3. recursive case

(define fact (lambda (n)
(if (=n 1) 1 (* n (fact (- n 1))))))

(fact 3)

(if (=3 1) 1 (* 3 (fact (- 3 1))))

(1f #£ 1 (* 3 (fact (- 3 1))))

(* 3 (fact (- 3 1)))

(* 3 (fact 2))

(* 3 (if (=2 1) 1 (* 2 (fact (- 2 1)))))

(* 3 (if #£ 1 (* 2 (fact (- 2 1)))))

(* 3 (* 2 (fact (- 2 1))))

(* 3 (* 2 (fact 1)))

(* 3 (*2 (if (=1 1) 1 (* 1 (fact (-1 1))))))
(* 3 (* 2 (if #t 1 (*1 (fact (-1 1))))))
(* 3 (* 2 1))

(* 3 2)

6

(define fact (lambda (n)
(1f (=n1l) 1 (* n (fact (- n 1))))))

(fact 3)

Note the “shape” of this
process

(* 3 (fact 2))

(* 3 (* 2 (fact 1)))

(* 3 (* 2 1))
(* 3 2)

The fact procedure uses arecursive
algorithm

 For a recursive algorithm:

* In the substitution model, the expression keeps growing
(fact 3)
(* 3 (fact 2))
(* 3 (* 2 (fact 1)))

Recursive algorithms use increasing
space

 |In a recursive algorithm, bigger operands consume more space

(fact 4)

(* 4 (fact 3))

(* 4 (* 3 (fact 2)))

(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (*21)))

24
(fact 7))

8
(* 8 (* 7 (fact 6)))
8 (* 7 (* 6 (fact 5))))

))))))))

- R

7 6 (*5 (¥ 4 (* 3 (*
(* 8 (¥ 7 (* 6 (* 5 (x4 (* 3 (*
7 6 (*5 (¥ 4 (¥ 3 2)

A Problem With Recursive Algorithms

* Try computing 101!
101 *100*99*98*97 96 * ... *2™* 1
* How much space do we consume with pending operations?

» Better idea:
 start with 1, remember that 2 is next
« compute 1 * 2, remember that 3 is next
« compute 2 * 3, remember that 4 is next
« compute 6 * 4, remember that 5 is next

* compute 942594 77598383594208516231244829367/495623127947
02543768327889353416977599316221476503087/8615918083469116234
90003549599583369706302603264000000000000000000000000, and stop

* This is an iterative algorithm — it uses constant space

lterative algorithm to compute 4! as a table

* In this table:

* One column for each piece of information used

* One row for each step

first row
handles 0!

cleanly

Current value Next to compute

product
—_| :

Al S

/

product * |

2

answer

g

~(6
—(24

- N|
A
HhDh S

™

| +1

<

v,

 The last row is the one where i > n

« The answer is in the product column of the last row

lterative factorial in scheme

(define ifact (lambda (n) (ifact- helper 1 1n)))

(define ifact-helper (lambda (product i n)

f

(if (> 1 n)

product

(1fact-helper (* product 1) (+ i 1) n))

) answer is in product column of last row
at last row wheni>n

initial
row of table

compute
next row
of table

Partial trace for (ifact 4)

(define ifact-helper (lambda (product i n)
(1f (> i n) product
(1fact-helper (* product 1i)
(+ 1 1) n))))

(1fact 4)

(1fact-helper 1 1 4)

(i1f (> 1 4) 1 (ifact-helper (* 1 1) (+ 1 1) 4))
(1fact-helper 1 2 4)

(i1f (> 2 4) 1 (ifact-helper (* 1 2) (+ 2 1) 4))
(1fact-helper 2 3 4)

(1f (> 3 4) 2 (ifact-helper (* 2 3) (+ 3 1) 4))
(1fact-helper 6 4 4)

(1f (> 4 4) 6 (ifact-helper (* 6 4) (+ 4 1) 4))
(ifact-helper 24 5 4)

(1f (> 5 4) 24 (ifact-helper (* 24 5) (+ 5 1) 4))
24

Partial trace for (ifact 4)

(define ifact-helper (lambda (product i n)
(1f (> 1 n) product
(1fact-helper (* product 1i)
(+ 1 1) n))))

(ifact 4)
(Lfact-helper 1 1 4)

Note the “shape” of this
(ifact-helper 1 2 4) process

(ifact-helper 2 3 4)
(ifact-helper 6 4 4)
(ifact-helper 24 5 4)

24

Recursive process = pending
operations when procedure calls itself

* Recursive factorial:

(define fact (lambda (n)
(if (=n 1) 1
(* n (fact (- n 1)))
)))

ending operation
(fact 4) P J oP

(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))

« Pending operations make the expression grow continuously

lterative process = no pending
operations

 |[terative factorial:

(define ifact-helper (lambda (product i n)
(Lf (> count n) product

(1fact-helper (* product 1i)
Q (+ 1 1) n))))

(ifact-helper 1 1 4) \{no pending operations

(ifact-helper 1 2 4)
(ifact-helper 2 3 4)
(ifact-helper 6 4 4)
(ifact-helper 24 5 4)

 Fixed space because no pending operations

Summary of iterative processes

* |terative algorithms use constant space

« How to develop an iterative algorithm
1. Figure out a way to accumulate partial answers

2. Write out a table to analyze precisely:
— initialization of first row
— update rules for other rows
— how to know when to stop

3. Translate rules into Scheme code

* Iterative algorithms have no pending operations
when the procedure calls itself

Why Is our code correct?

* How do we know that our code will always work?

Proof by authority — someone with whom we dare not
disagree says it is right!
For example

Proof by statistics — we try enough examples to
convince ourselves that it will always work!

E.g. keep trying, but bring sandwiches and a cot

Proof by faith — we really, really, really believe that we
always write correct code!

E.g. the Pset is due in 5 minutes and | don’t have time

Formal proof — we break down and use mathematical
logic to determine that code is correct.

Proof by induction

« Proof by induction is a very powerful tool in predicate
logic

P(0)
vn:P(n) > P(n+1)
-.vn:P(n)

* Informally, if you can:
1. Show that some proposition P is true for n=0

2. Show that whenever P is true for some legal value of n, then it
follows that P is true for n+1

...then you can conclude that P is true for all legal values of n

A simple example

1 =2

1+2
1+2+4
1+2+4+8=

An example of proof by induction

P(n): 22' ot

'°11

Base case: n=0:2°=2'-1 ‘
Inductive step: vn:P(n) — P(n +1)

izi :2n+1_1 P(n)

Zzi + 2n+1 _ (2n+1 _1) + 2n+1

n+1

Zzi :2n+2 1 P(n_l_l) ‘

Steps in proof by induction

1. Define the predicate P(n) (induction hypothesis)
Decide what the variable n denotes
Decide the universe over which n applies

2. Prove that P(0) is true (base case)

3. Prove that P(n) implies P(n+1) for all n (inductive step)

Do this by assuming that P(n) is true, then trying to prove that
P(n+1) is true

4. Conclude that P(n) is true for all n by the principle of
induction.

Back to factorial
* Induction hypothesis P(n):

“our recursive procedure for f£act correctly computes n!
for all integer values of n, starting at 1”

(define fact
(lambda (n)
(1f (= n 1)
1
(* n (fact (- n 1))))))

Proof by induction that fact works

 Base case: does this work when n=17?

* Note that this is P(1), not P(0) — we need to adjust the base case
because our universe of legal values for n includes only the positive
Integers

* Yes — the IF statement guarantees that in this case we only
evaluate the consequent expression: thus we return 1,
which is 1!

(define fact
(lambda (n)
(1f (=n 1)
1
(* n (fact (- n 1))))))

Proof by induction that fact works

* Inductive step: We assume it works for some legal value of n > 0...
SO (fact n) computes n! correctly

... and show that it works correctly for n+1
« What does (fact n+1) compute?
« Use the substitution model:

(fact n+1)
(if (= n+l 1) 1 (* nt+l (fact (- n+l 1))))
(if #f£f 1 (* ntl (fact (- n+l 1))))

(* ntl (fact (- n+1l 1)))
(* n+tl (fact n))

(* ntl n!)

(n+1)!

« By induction, £act will always compute what we expected, provided
the input is in the right range (n > 0)

| essons learned

* Induction provides the basis for supporting
recursive procedure definitions

* |n designing procedures, we should rely on the
same thought process
* Find the base case, and create solution

» Determine how to reduce to a simpler version of same
problem, plus some additional operations

« Assume code will work for simpler problem, and design
solution to extended problem

