
Today’s topics

• Orders of growth of processes

• Relating types of procedures to different orders of

growth

Computing factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• We can run this for various values of n:

(fact 10)

(fact 100)

(fact 1000)

(fact 10000)

• Takes longer to run as n gets larger, but still manageable for large n

(e.g. n = 10000 – takes about 13 seconds of “real time” in DrScheme;

while n = 1000 – takes about 0.2 seconds of “real time”)

Fibonacci numbers

The Fibonacci numbers are described by the following equations:

fib(0) = 0

fib(1) = 1

fib(n) = fib(n-2) + fib(n-1) for n ≥ 2

Expanding this sequence, we get

fib(0) = 0

fib(1) = 1

fib(2) = 1

fib(3) = 2

fib(4) = 3

fib(5) = 5

fib(6) = 8

fib(7) = 13

...

A contrast to (fact n): computing

Fibonacci

(define (fib n)

(if (= n 0)

0

(if (= n 1)

1

(+ (fib (- n 1)) (fib (- n 2))))))

• We can run this for various values of n:

(fib 10)

(fib 20)

(fib 100)

(fib 1000)

• These take much longer to run as n gets larger

A contrast: computing Fibonacci

(define (fib n)

(if (= n 0)

0

(if (= n 1)

1

(+ (fib (- n 1)) (fib (- n 2))))))

• Later we’ll see that when calculating (fib n), we need more than
2n/2 addition operations

(fib 100) uses + at least 250 times

(fib 2000) uses + at least 21000 times

= 1,125,899,906,842,624

=10,715,086,071,862,673,209,484,250,490,600,018,105,614,048,117,055,336,074,437,

503,883,703,510,511,249,361,224,931,983,788,156,958,581,275,946,729,175,531,468,

251,871,452,856,923,140,435,984,577,574,698,574,803,934,567,774,824,230,985,421,

074,605,062,371,141,877,954,182,153,046,474,983,581,941,267,398,767,559,165,543,

946,077,062,914,571,196,477,686,542,167,660,429,831,652,624,386,837,205,668,069,

376

Computing Fibonacci: putting it in

context

• A rough estimate: the universe is approximately 1010 years = 3x1017

seconds old

• Fastest computer around (not your laptop) can do about 280x1012

arithmetic operations a second, or about 1032 operations in the lifetime

of the universe

• 2100 is roughly 1030

• So with a bit of luck, we could run (fib 200) in the lifetime of the

universe …

• A more precise calculation gives around 1000 hours to solve (fib

100)

• That is 1000 6.001 lectures, or 40 semesters, or 20 years of 6.001 or …

An overview of this lecture

• Measuring time requirements (complexity) of a

function

• Simplifying the time complexity with asymptotic

notation

• Calculating the time complexity for different

functions

• Measuring space complexity of a function

Measuring the time complexity of a

function

• Suppose n is a parameter that measures the size

of a problem

• For fact and fib, n is just the procedure’s parameter

• Let t(n) be the amount of time necessary to solve

a problem of size n

• What do we mean by “the amount of time”? How

do we measure “time”?

• Typically, we will define t(n) to be the number of

primitive operations (e.g. the number of additions)

required to solve a problem of size n

An example: factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• Define t(n) to be the number of multiplications required by
(fact n)

• By looking at fact, we can see that:

t(0) = 0

t(n) = 1 + t(n-1) for n ≥ 1

• In other words: solving (fact n) for any n ≥ 1 requires

one more multiplication than solving (fact (- n 1))

Expanding the recurrence

t(0) = 0

t(n) = 1 + t(n-1) for n>=1

t(0) = 0

t(1) = 1 + t(0) = 1

t(2) = 1 + t(1) = 2

t(3) = 1 + t(2) = 3

…

In general:

t(n) = n

Expanding the recurrence

t(0) = 0

t(n) = 1 + t(n-1) for n>=1

• How would we prove that t(n) = n for all n?

• Proof by induction (remember from last lecture?):

• Base case: t(n) = n is true for n = 0

• Inductive step: if t(n) = n then it follows that

t(n+1) = n+1

• Hence by induction this is true for all n

A second example: Computing

Fibonacci

(define (fib n)

(if (= n 0)

0

(if (= n 1)

1

(+ (fib (- n 1)) (fib (- n 2))))))

• Define t(n) to be the number of primitive operations (=,+,-) required by

(fib n)

• By looking at fib, we can see that:

t(0) = 1

t(1) = 2

t(n) = 5 + t(n-1) + t(n-2) for n ≥ 2

• In other words: solving (fib n) for any n ≥ 2 requires 5 more primitive

ops than solving (fib (- n 1)) and solving (fib (- n 2))

Looking at the Recurrence

t(0) = 1

t(1) = 2

t(n) = 5 + t(n-1) + t(n-2) for n ≥ 2

• We can see that t(n) ≥ t(n-1) for all n ≥ 2

• So, for n ≥ 2, we have

t(n) = 5 + t(n-1) + t(n-2)

≥ 2 t(n-2)

• Every time n increases by 2, we more than double the number of
primitive ops that are required

• If we iterate the argument, we get

t(n) ≥ 2 t(n-2) ≥ 4 t(n-4) ≥ 8 t(n-6) ≥ 16 t(n-8) …

• A little more math shows that

t(n) ≥ 2 n/2

Different Rates of Growth

• So what does it really mean for things to grow at different

rates?

n t(n) = log n

(logarithmic)

t(n) = n

(linear)

t(n) = n^2

(quadratic)

t(n) = n^3

(cubic)

t(n) = 2^n

(exponential)

1

10

100

1,000

10,000

100,000

0

3.3

6.6

10.0

13.3

16.68

1

10

100

1,000

10,000

100,000

1

100

10,000

10^6

10^9

10^12

1

1000

10^6

10^9

10^12

10^15

2

1024

~10^30

~10^300

~10^3,000

~10^30,000

Asymptotic Notation

• Formal definition:

We say t(n) has order of growth Q(f(n)) if there are

constants N, k1 and k2 such that for all n ≥ N, we have

k1f(n) ≤ t(n) ≤ k2f(n)

• This is what we call a tight asymptotic bound.

• Examples

t(n)=n has order of growth Q(n)

because 1n ≤ t(n) ≤ 1n for all n ≥ 1 (pick N=1, k1=1, k2=1)

t(n)=8n has order of growth Q(n)

because 8n ≤ t(n) ≤ 8n for all n ≥ 1 (pick N=1, k1=8, k2=8)

Asymptotic Notation

• Formal definition:

We say t(n) has order of growth Q(f(n)) if there are

constants N, k1 and k2 such that for all n ≥ N, we have

k1f(n) ≤ t(n) ≤ k2f(n)

• More examples

t(n)=3n2 has order of growth Q(n2)

because 3n2 ≤ t(n) ≤ 3n2 for all n ≥ 1 (pick N=1, k1=3, k2=3)

t(n)=3n2+5n+3 has order of growth Q(n2)

because 3n2 ≤ t(n) ≤ 4n2 for all n ≥ 6 (pick N=6, k1=3, k2=4)

or because 3n2 ≤ t(n) ≤ 11n2 for all n ≥ 1 (pick N=1, k1=3, k2=11)

Theta, Big-O, Little-o

• Q(f(n)) is called a tight asymptotic bound because it

squeezes t(n) from above and below:

• Q(f(n)) means k1f(n) ≤ t(n) ≤ k2f(n) “theta”

• We can also talk about the upper bound or lower bound

separately

• O(f(n) means t(n) ≤ k2f(n) “big-O”

• Ω(f(n)) means k1f(n) ≤ t(n) “omega”

• Sometimes we will abuse notation and use an upper bound

as our approximation

• We should really use “big-O” notation in that case, saying that t(n)

has order of growth O(f(n)), but we are sometimes sloppy and call

this Q(f(n)) growth.

Motivation

• In many cases, calculating the precise expression for t(n) is

laborious, e.g.:

• In both of these cases, t(n) has order of growth Q(n3)

• Advantages of asymptotic notation

• In many cases, it’s much easier to show that t(n) has a particular

order of growth, e.g., cubic, rather than calculating a precise

expression for t(n)

• Usually, the order of growth is what we really care about: the most

important thing about the above functions is that they are both

cubic (i.e., have order of growth Q(n3))

7865)(23  nnnnt 14184)(23  nnnt

Some common orders of growth

)(nΘ

)(log nΘ

)(2nΘ

)(3nΘ

)2(nΘ

)(nΘ 

Constant

Logarithmic growth

Linear growth

Quadratic growth

Cubic growth

Exponential growth

Exponential growth for any 1

)1(Θ

An example: factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• Define t(n) to be the number of multiplications required by (fact n)

• By looking at fact, we can see that:

t(0) = 0

t(n) = 1 + t(n-1) for n >= 1

• Solving this recurrence gives t(n) = n, so order of growth is)(nΘ

A general result: linear growth

For any recurrence of the form

where c1 is a constant ≥ 0

and c2 is a constant > 0

Then we have linear growth, i.e.,

Q(n)
Why?

• If we expand this out, we get

• And this has order of growth Q(n)

 1for)1()(

)0(

2

1





nntcnt

ct

21)(nccnt 

Connecting orders of growth to algorithm

design

• We want to compute ab, just using multiplication

and addition

• Remember our stages:

• Wishful thinking

• Decomposition

• Smallest sized subproblem

Connecting orders of growth to algorithm

design

• Wishful thinking

• Assume that the procedure my-expt exists, but only

solves smaller versions of the same problem

• Decompose problem into solving smaller version

and using result

an = a  a  a = a  an-1

(define my-expt

(lambda (a n)

(* a (my-expt a (- n 1)))))

Connecting orders of growth to algorithm

design

• Identify smallest size subproblem

• a0 = 1

(define my-expt

(lambda (a n)

(if (= n 0)

1

(* a (my-expt a (- n 1))))))

The order of growth of my-expt

(define my-expt

(lambda (a n)

(if (= n 0)

1

(* a (my-expt a (- n 1))))))

• Define the size of the problem to be n (the second parameter)

• Define t(n) to be the number of primitive operations required
(=,*,-)

• By looking at the code, we can see that t(n) has the form:

• Hence this is also linear

1for)1(3)(

1)0(





nntnt

t

Using different processes for the same

goal

• Are there other ways to decompose this problem?

• We can take advantage of the following trick:

(define (new-expt a n)

(cond ((= n 0) 1)

((even? n) (new-expt (* a a) (/ n 2)))

(else (* a (new-expt a (- n 1))))))

New special form:

(cond (<predicate1> <consequent> <consequent> …)

(<predicate2> <consequent> <consequent> …)

…

(else <consequent> <consequent>))

2)(
n

n aaa 

The order of growth of new-expt

(define (new-expt a n)

(cond ((= n 0) 1)

((even? n) (new-expt (* a a) (/ n 2)))

(else (* a (new-expt a (- n 1))))))

• If n is even, then 1 step reduces to n/2 sized problem

• If n is odd, then 2 steps reduces to n/2 sized problem

• Thus in at most 2k steps, reduces to n/2^k sized problem

• We are done when problem size is just 1, which implies order

of growth in time of

Q(log n)

The order of growth of new-expt

(define (new-expt a n)

(cond ((= n 0) 1)

((even? n) (new-expt (* a a) (/ n 2)))

(else (* a (new-expt a (- n 1))))))

• t(n) has the following form:

• It follows that

odd isif)1(4)(

even isif)2/(4)(

1)0(

nntnt

nntnt

t







odd is if)2/)1((8)(nntnt 

A general result: logarithmic growth

For any recurrence of the form

where c1 is a constant ≥ 0

and c2 is a constant > 0

Then we have logarithmic growth, i.e.,

Q(log n)

• Intuition: at each step we halve the size of the problem

• We can only halve n around log n times before we reach
the base case (e.g. n=1 or n=0)

 1for)2/()(

)0(

2

1





nntcnt

ct

Different Rates of Growth

• Note why this makes a difference

n t(n) = log n

(logarithmic)

t(n) = n

(linear)

t(n) = n^2

(quadratic)

t(n) = n^3

(cubic)

t(n) = 2^n

(exponential)

1

10

100

1,000

10,000

100,000

0

3.3

6.6

10.0

13.3

16.68

1

10

100

1,000

10,000

100,000

1

100

10,000

10^6

10^9

10^12

1

1000

10^6

10^9

10^12

10^15

2

1024

1.3 x 10^30

1.1 x 10^300

Back to Fibonacci

(define fib

(lambda (n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1))

(fib (- n 2)))))))

• If t(n) is defined as the number of primitive operations (=,+,-), then:

• And for n ≥ 2 we have

2for)2()1(5)(

2)1(

1)0(







nntntnt

t

t

)2(2)( ntnt

Another general result: exponential

growth

• If we can show:

with constants c1 ≥ 0, c2 > 0,

and constant  > 1

and constant b ≥ 1

Then we have exponential growth, i.e.,

Ω(n/b)

• Intuition: Every time we add b to the problem size n, the amount of

computation required is multiplied by a factor of .

 1for)()(

)0(

2

1





nntcnt

ct

b

Why is our version of fib so

inefficient?

(define fib

(lambda (n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1))

(fib (- n 2)))))))

• When computing (fib 6), the recursion computes (fib 5) and

(fib 4)

• The computation of (fib 5)then involves computing (fib 4) and

(fib 3). At this point (fib 4) has been computed twice. Isn’t this

wasteful?

Why is our version of fib so

inefficient?

• Let’s draw the computation tree: the subproblems that

each (fib n) needs to call

• We’ll use the notation

…to signify that computing (fib 5) involves recursive

calls to (fib 4) and (fib 3)

5

4 3

The computation tree for (fib 7)

7

6 5

5 4 4 3

4 3 3 2 3 2 2 1

3 2 2 1 2 1 2 1

2 1

• There’s a lot of repeated computation here: e.g., (fib 3)is

recomputed 5 times

An efficient implementation of

Fibonacci

(define (ifib n) (fib-iter 0 1 0 n))

(define (fib-iter i a b n)

(if (= i n)

b

(fib-iter (+ i 1) (+ a b) a n)))

• Recurrence (measured in number of primitive operations):

• Order of growth is

)(nQ

1for)1(3)(

1)0(





nntnt

t

ifib is now linear

• If you trace the function, you will see that we avoid
repeated computations. We’ve gone from exponential
growth to linear growth!

(ifib 5)

(fib-iter 0 1 0 5)

(fib-iter 1 1 1 5)

(fib-iter 2 2 1 5)

(fib-iter 3 3 2 5)

(fib-iter 4 5 3 5)

(fib-iter 5 8 5 5)

5

How much space (memory) does a

procedure require?

• So far, we have considered the order of growth of

t(n) for various procedures. T(n) is the time for the

procedure to run, when given an input of size n.

• Now, let’s define s(n) to be the space or memory

requirements of a procedure when the problem

size is n. What is the order of growth of s(n)?

• Note that for now we will measure space

requirements in terms of the maximum number of

pending operations.

Tracing factorial

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

• A trace of fact shows that it leads to a recursive process, with
pending operations.

(fact 4)

(* 4 (fact 3))

(* 4 (* 3 (fact 2)))

(* 4 (* 3 (* 2 (fact 1))))

(* 4 (* 3 (* 2 (* 1 (fact 0)))))

(* 4 (* 3 (* 2 (* 1 1))))

(* 4 (* 3 (* 2 1)))

…

24

Tracing factorial

• In general, running (fact n) leads to n pending

operations

• Each pending operation takes a constant amount

of memory

• In this case, s(n) has order of growth that is linear

in space:
)(nQ

A contrast: iterative factorial

(define (ifact n) (ifact-helper 1 1 n))

(define (ifact-helper product i n)

(if (> i n)

product

(ifact-helper (* product i)

(+ i 1)

n)))

A contrast: iterative factorial

• A trace of (ifact 4):

(ifact 4)

(ifact-helper 1 1 4)

(ifact-helper 1 2 4)

(ifact-helper 2 3 4)

(ifact-helper 6 4 4)

(ifact-helper 24 5 4)

24

• (ifact n)has no pending operations, so s(n) has an order of growth

that is constant

• Its time complexity t(n) is

• In contrast, (fact n) has linear growth in both space and time

• In general, iterative processes often have a lower order of growth for
s(n) than recursive processes

)1(Q

)(nQ
)(nQ

Summary

• We’ve described how to calculate t(n), the time complexity of a

procedure as a function of the size of its input

• We’ve introduced asymptotic notation for orders of growth

• There is a huge difference between exponential order of growth and

non-exponential growth, e.g., if your procedure has

You will not be able to run it for large values of n.

• We’ve given examples of procedures with linear, logarithmic, and

exponential growth for t(n). Main point: you should be able to work out

the order of growth of t(n) for simple procedures in Scheme

• The space requirements s(n) for a procedure depend on the number of

pending operations. Iterative processes tend to have fewer pending

operations than their corresponding recursive processes.

)2()(nnt Q

Towers of Hanoi

• Three posts, and a set of different size disks

• Any stack must be sorted in decreasing order from bottom

to top

• The goal is to move the disks one at a time, while

preserving these conditions, until the entire stack has

moved from one post to another

Towers of Hanoi

(define move-tower

(lambda (size from to extra)

(cond ((= size 0) true)

(else (move-tower (- size 1) from extra to)

(print-move from to)

(move-tower (- size 1) extra to from)))))

(define print-move

(lambda (from to)

(display ``Move top disk from ``)

(display from)

(display `` to ``)

(display to)

(newline)))

A tree recursion

Move 4

Move 3 Move 3

Move 2Move 2Move 2Move 2

Move 1

Move 1

Move 1

Move 1

Move 1

Move 1

Move 1

Move 1

Orders of growth for towers of Hanoi

• What is the order of growth in time for towers of

Hanoi?

• What is the order of growth in space for towers of

Hanoi?

Another example of different

processes

• Suppose we want to compute the elements of

Pascal’s triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Pascal’s triangle

• We need some notation

• Let’s order the rows, starting with n=0 for the first row

• The nth row then has n+1 elements

• Let’s use P(j,n) to denote the jth element of the nth row.

• We want to find ways to compute P(j,n) for any n, and

any j, such that 0 <= j <= n

Pascal’s triangle the traditional way

• Traditionally, one thinks of Pascal’s triangle being

formed by the following informal method:

• The first element of a row is 1

• The last element of a row is 1

• To get the second element of a row, add the first and

second element of the previous row

• To get the k’th element of a row, and the (k-1)’st and

k’th element of the previous row

Pascal’s triangle the traditional way

• Here is a procedure that just captures that idea:

(define pascal

(lambda (j n)

(cond ((= j 0) 1)

((= j n) 1)

(else (+ (pascal (- j 1) (- n 1)

(pascal j (- n 1)))))))

Pascal’s triangle the traditional way

• What kind of process does this generate?

• Looks a lot like fibonacci

• There are two recursive calls to the procedure in the

general case

• In fact, this has a time complexity that is exponential

and a space complexity that is linear

(define pascal

(lambda (j n)

(cond ((= j 0) 1)

((= j n) 1)

(else (+ (pascal (- j 1) (- n 1)

(pascal j (- n 1)))))))

Solving the same problem a different

way

• Can we do better?

• Yes, but we need to do some thinking.

• Pascal’s triangle actually captures the idea of how many different

ways there are of choosing objects from a set, where the order of

choice doesn’t matter.

• P(0, n) is the number of ways of choosing collections of no objects,

which is trivially 1.

• P(n, n) is the number of ways of choosing collections of n objects,

which is obviously 1, since there is only one set of n things.

• P(j, n) is the number of ways of picking sets of j objects from a set

of n objects.

Solving the same problem a different

way

• So what is the number of ways of picking sets of j objects

from a set of n objects?

• Pick the first one – there are n possible choices

• Then pick the second one – there are (n-1) choices left.

• Keep going until you have picked j objects

• But the order in which we pick the objects doesn’t matter, and there

are j! different orders, so we have

)!(

!
)1)...(1(

jn

n
jnnn




1)....1(

)1)...(1(

!)!(

!






 jj

jnnn

jjn

n

Solving the same problem a different

way

• So here is an easy way to implement this idea:
(define pascal

(lambda (j n)

(/ (fact n)

(* (fact (- n j)) (fact j)))))

• What is complexity of this approach?
• Three different evaluations of fact

• Each is linear in time and in space

• So combination takes 3n steps, which is also linear in time; and has
at most n deferred operations, which is also linear in space

Solving the same problem a different

way

• What about computing with a different version of fact?
(define pascal

(lambda (j n)

(/ (ifact n)

(* (ifact (- n j)) (ifact j)))))

• What is complexity of this approach?

• Three different evaluations of fact

• Each is linear in time and constant in space

• So combination takes 3n steps, which is also linear in time; and has
no deferred operations, which is also constant in space

Solving the same problem the direct

way

• Now, why not just do the computation directly?

(define pascal

(lambda (j n)

(/ (help n 1 (+ n (- j) 1))

(help j 1 1))))

(define help

(lambda (k prod end)

(if (= k end)

(* k prod)

(help (- k 1) (* prod k) end))))

1)....1(

)1)...(1(

!)!(

!






 jj

jnnn

jjn

n

Solving the same problem the direct

way

• So what is complexity here?

• Help is an iterative procedure, and has constant space

and linear time

• This version of Pascal only uses two versions of help

(as opposed the previous version that used three

versions of ifact).

• In practice, this means this version uses fewer

multiplies that the previous one, but it is still linear in

time, and hence has the same order of growth.

So why do these orders of growth

matter?

• Main concern is general order of growth

• Exponential is very expensive as the problem size

grows.

• Some clever thinking can sometimes convert an

inefficient approach into a more efficient one.

• In practice, actual performance may improve by

considering different variations, even though the

overall order of growth stays the same.

