
Higher-Order Procedures

• Today’s topics

• Procedural abstractions

• Capturing patterns across procedures – Higher Order 

Procedures



Procedural abstraction

• Process of procedural abstraction

• Define formal parameters, capture pattern of computation 

as a process in body of procedure

• Give procedure a name

• Hide implementation details from user, who just invokes 

name to apply procedure

Input: type
Output: type

Details of contract for 

converting input to output

procedure



Procedural abstraction example: sqrt

To find an approximation of  square root of x:
• Make a guess G
• Improve the guess by averaging G and x/G
• Keep improving the guess until it is good enough

(define try (lambda (guess x)

(if (good-enuf? guess x)

guess

(try (improve guess x) x))))

(define good-enuf? (lambda (guess x)

(< (abs (- (square guess) x)) 0.001)))

(define improve (lambda (guess x)

(average guess (/ x guess))))

(define average (lambda (a b) (/ (+ a b) 2)))

(define sqrt (lambda (x) (try 1 x)))



The universe of procedures for sqrt

try improve average

Good-enuf?

sqrt

sqrt



sqrt - Block Structure

(define sqrt 

(lambda (x)

(define good-enuf?

(lambda (guess)

(< (abs (- (square guess) x))

0.001)))

(define improve 

(lambda (guess)

(average guess (/ x guess))))

(define try 

(lambda (guess)

(if (good-enuf? guess)

guess

(try (improve guess)))))

(try 1))

)

good-enuf?

improve

try

sqrt

x: number : numberx



Typecasting

• We are going to find that it is convenient to reason 

about procedures (and data structures) in terms of 

the number and kinds of arguments, and the kind 

of output they produce

• We call this typing of a procedure or data 

structure



Types – a motivation

(+ 5 10) ==> 15

(+ "hi” 5) 

;The object "hi", passed as the first 

argument to integer-add, is not the correct 

type

• Addition is not defined for strings



Types – simple data

• We want to collect a taxonomy of expression types:

• Simple Data

– Number

– Integer

– Real

– Rational

– String

– Boolean

– Names (symbols)

• We will use this for notational purposes, to reason about 

our code.  Scheme checks types of arguments for built-in 

procedures, but not for user-defined ones.



Types – procedures 

• Because procedures operate on objects and return 

values, we can define their types as well.

• We will denote a procedures type by indicating the 

types of each of its arguments, and the type of the 

returned value, plus the symbol  to indicate that 

the arguments are mapped to the return value

• E.g. number  number specifies a procedure 

that takes a number as input, and returns a 

number as value



Types

•(+ 5 10) ==> 15

(+ "hi” 5) 

;The object "hi", passed as the first 

argument to integer-add, is not the correct 

type

two arguments,

both numbers
result value of integer-add

is a number

• The type of the integer-add procedure is

number, number  number

• Addition is not defined for strings



• expression: evaluates to a value of type:

15 number

"hi" string

square number  number

> number,number  boolean

(> 5 4) ==> #t

Type examples

•The type of a procedure is a contract:
• If the operands have the specified types,

the procedure will result in a value of the specified type

• Otherwise, its behavior is undefined

 maybe an error, maybe random behavior



Types, precisely

• A type describes a set of scheme values

• number  number describes the set:

all procedures, whose result is a number, 

which require one argument that must be a number

• Every scheme value has a type

• Some values can be described by multiple types

• If so, choose the type which describes the largest set 

• Special form keywords like define do not name values

• therefore special form keywords have no type



number, number, number      number 

Your turn

• The following expressions evaluate to values of what type?

(lambda (a b c) (if (> a 0) (+ b c) (- b c)))

(lambda (p) (if p "hi" "bye"))

(* 3.14 (* 2 5))

number

Boolean       string 



Summary of types

• type: a set of values

• every value has a type

• procedure types (types which include ) indicate

• number of arguments required

• type of each argument

• type of result of the procedure 

• Types: a mathematical theory for reasoning efficiently

about programs

• useful for preventing certain common types of errors

• basis for many analysis and optimization algorithms



What is procedure abstraction?

Capture a common pattern

(* 2 2)

(* 57 57)

(* k k)

Formal parameter for pattern

Actual pattern

(lambda (x) (* x x))

Give it a name (define square (lambda (x) (* x x)))

Note the type:   number  number



(define (sum-integers a b)
(if (> a b)

0
(+ a (sum-integers (+ 1 a) b))))

(define (sum-squares a b)
(if (> a b)

0
(+ (square a)

(sum-squares (+ 1 a) b))))

(define (pi-sum a b)
(if (> a b)

0
(+ (/ 1 (square a))

(pi-sum (+ a 2) b))))

Other common patterns

• 1 + 2 + … + 100  

• 1 + 4 + 9 + … + 1002

• 1 + 1/32 + 1/52 + … + 1/1012 (= p2/8)

(define (sum term a next b)

(if (> a b)

0

(+ (term a)

(sum term (next a) next b))))




100

1k

k




100

1

2

k

k





101

,1

2

oddk

k



Let’s examine this new procedure

(define (sum term a next b)

(if (> a b)

0

(+ (term a)

(sum term (next a) next b))))

What is the type of this procedure?

_________________________________  ____________________________________  num(__________, ___, __________, ___)  num(________, ___, __________, ___)  num(num  num, ___, __________, ___)  num(num  num, num, __________, ___)  num(num  num, num, ________, ___)  num(num  num, num, num  num, ___)  num(num  num, num, num  num, num)  num

1. What type is the output?

2. How many arguments?

3. What type is each argument?



Higher order procedures

• A higher order procedure:

takes a procedure as an argument or returns one as a value

(define (sum-integers a b)

(if (> a b)

0

(+ a (sum-integers (+ 1 a) b))))

(define (sum term a next b)

(if (> a b)

0

(+ (term a)(sum term (next a) next b))))

(define (sum-integers1 a b)

(sum                                         )(lambda (x) x) a (lambda (x) (+ x 1)) b)



Higher order procedures

(define (sum-squares a b)

(if (> a b)

0

(+ (square a)

(sum-squares (+ 1 a) b))))

(define (sum term a next b)

(if (> a b)

0

(+ (term a)(sum term (next a) next b))))

(define (sum-squares1 a b)

(sum square a (lambda (x) (+ x 1)) b))



Higher order procedures

(define (pi-sum a b)

(if (> a b)

0

(+ (/ 1 (square a))

(pi-sum (+ a 2) b))))

(define (sum term a next b)
(if (> a b)

0
(+ (term a)(sum term (next a) next b))))

(define (pi-sum1 a b)
(sum (lambda (x) (/ 1 (square x))) a 

(lambda (x) (+ x 2)) b))



Higher order procedures

• Takes a procedure as an argument or returns one as a value

(define (sum-integers1 a b)
(sum (lambda (x) x) a (lambda (x) (+ x 1)) b))

(define (sum-squares1 a b)
(sum square a (lambda (x) (+ x 1)) b))

(define (add1 x) (+ x 1))

(define (sum-squares1 a b)(sum square a add1 b))

(define (pi-sum1 a b)
(sum (lambda (x) (/ 1 (square x))) a 

(lambda (x) (+ x 2)) b))

(define (add2 x) (+ x 2))

(define (pi-sum1 a b)
(sum (lambda (x) (/ 1 (square x))) a add2 b))



Returning A Procedure As A Value

(define (add1 x) (+ x 1))

(define (add2 x) (+ x 2))

(define incrementby (lambda (n) . . . ))

(define add1 (incrementby 1))

(define add2 (incrementby 2))

. . . 

(define add37.5 (incrementby 37.5))

incrementby: #  (#  #)



Returning A Procedure As A Value

(define incrementby 
(lambda(n)(lambda (x) (+ x n))))

(incrementby                    2) 
( (lambda(n)(lambda (x) (+ x n))) 2)

(lambda (x) (+ x 2))

(incrementby 2)  a procedure of one var (x) that
increments x by 2

((incrementby 3) 4)  ?

( (lambda(x)(+ x 3))  4) 



Nano-Quiz/Lecture Problem

(define incrementby 

(lambda(n)(lambda (x) (+ x n))))

(define f1 (incrementby 6))  ?

(f1 4) 

(define f2 (lambda (x)(incrementby 6)))  ?

(f2 4)      ?

((f2 4) 6)  ?



Procedures as values: Derivatives

2: xxf 
3: xxf 

xxf 2:' 
23:' xxf 

• Taking the derivative is a function:

• What is its type?

D:(#  # )  (#  #)

')( ffD 



Computing derivatives



 )()(
)(

xfxf
xDf




(define deriv

(lambda (f)

(lambda (x) (/ (- (f (+ x epsilon)) (f x))

epsilon)) ))

• A good approximation:

(number  number)  (number number)



Using “deriv”

(define square (lambda (y) (* y y)) )

(define epsilon 0.001)

((deriv square) 5) (define deriv 

(lambda (f)

(lambda (x) (/ (- (f (+ x epsilon))

(f x))

epsilon)) ))



Finding fixed points of functions

• Here’s a common way of finding fixed points

• Given a guess x1, let new guess by f(x1)

• Keep computing f of last guess, till close enough

(define (close? u v)   (< (abs (- u v)) 0.0001))

(define (fixed-point f i-guess)

(define (try g)

(if (close? (f g) g)

(f g)

(try (f g))))

(try i-guess))

. ofpoint  fixeda  called is a  such and ,)(  then,

a  find can  weif  then: mationa transfor as ofThink 

/by  defined is  ofroot  Square

fyyyfxy

y

x
yf

xxxx









Using fixed points

(fixed-point (lambda (x) (+ 1 (/ 1 x))) 1)  

 1.6180

or x = 1 + 1/x when x = (1 +     )/2

(define (sqrt x)

(fixed-point 

(lambda (y) (/ x y))

1))

Unfortunately if we try (sqrt 2), this oscillates between 1, 2, 1, 2, 

5

xy

xy

y
xy







2

(define (fixed-point f i-guess)

(define (try g)

(if (close? (f g) g)

(f g)

(try (f g))))

(try i-guess))



So damp out the oscillation

(define (average-damp f)

(lambda (x)

(average x (f x))))

Check out the type:

(number  number)   (number  number)

that is, this takes a procedure as input, and returns a NEW 

procedure as output!!!

•((average-damp square) 10)

•((lambda (x) (average x (square x))) 10)

•(average 10 (square 10))

•55



… which gives us a clean version of sqrt

(define (sqrt x)

(fixed-point

(average-damp

(lambda (y) (/ x y)))

1))

Compare this to Heron’s algorithm (the one we saw earlier) 
– same process, but ideas intertwined with code

(define (cbrt x)

(fixed-point

(average-damp

(lambda (y) (/ x (square y))))

1))



Procedures as arguments: a more 

complex example

• (define compose (lambda (f g x) (f (g x))))

(compose square double 3)

(square (double 3))

(square (* 3 2))

(square 6)

(* 6 6)

36

No!  Nothing in compose requires a number

What is the type of compose?  Is it:

(number  number), (number  number), number  number



Compose works on other types too

(compose 

(lambda (p) (if p "hi" "bye")) 

(lambda (x) (> x 0)) 

-5

)  ==> "bye"

Will any call to compose work? 
(compose < square 5)

wrong number of args to <
<: number, number  boolean

(compose square double "hi")

wrong type of arg to double
double: number  number

boolean  string

number  boolean

number

result: a string

(define compose (lambda (f g x) (f (g x))))



Type of compose

• Use type variables.

compose:   (B  C), (A  B), A  C

• Meaning of type variables:
All places where a given type variable appears must

match when you fill in the actual operand types

• The constraints are:

• F and G must be functions of one argument

• the argument type of G matches the type of X

• the argument type of F matches the result type of G

• the result type of compose is the result type of F

(define compose (lambda (f g x) (f (g x))))



Higher order procedures

• Procedures may be passed in as arguments

• Procedures may be returned as values

• Procedures may be used as parts of data 

structures

• Procedures are first class objects in Scheme!!


