
6.001: Structure and Interpretation of 

Computer Programs

• Symbols

• Quotation

• Relevant details of the reader

• Example of using symbols

• Alists

• Differentiation



Data Types in Lisp/Scheme

• Conventional

• Numbers (integer, real, rational, complex)

– Interesting property in “real” Scheme: exactness

• Booleans: #t, #f

• Characters and strings: #\a, “Hello World!”

• Vectors: #(0 “hi” 3.7)

• Lisp-specific

• Procedures: value of +, result of evaluating ( (x) x)

• Pairs and Lists: (3 . 7), (1 2 3 5 7 11 13 17)

• Symbols: pi, +, MyGreatGrandMotherSue



Symbols

• So far, we’ve seen them as the names of variables

• But, in Lisp, all data types are first class

• Therefore, we should be able to

– Pass symbols as arguments to procedures

– Return them as values of procedures

– Associate them as values of variables

– Store them in data structures

– E.g., (apple orange banana)

apple orange banana



How do we refer to Symbols?

• Substitution Model’s rule of evaluation:

• Value of a symbol is the value it is associated with in 

the environment

• We associate symbols with values using the special 
form define

– (define pi 3.1415926535)

• … but that doesn’t help us get at the symbol itself



Referring to Symbols

• Say your favorite color

• Say “your favorite color”

• In the first case, we want the meaning associated with the 

expression, e.g., 

• red

• In the second, we want the expression itself, e.g., 

• your favorite color

• We use quotation to distinguish our intended meaning



New Special Form: quote

• Need a way of telling interpreter: “I want the following 

object as whatever it is, not as an expression to be 

evaluated”

(quote alpha)

;Value: alpha

(define pi 3.1415926535)

;Value: "pi --> 3.1415926535"

pi

;Value: 3.1415926535

(quote pi)

;Value: pi

(+ pi pi)

;Value: 6.283185307

(+ pi (quote pi))

;The object pi, passed as

the first argument to 

integer->flonum, is not 

the correct type.

(define fav (quote pi))

fav

;Value: pi



• A data abstraction consists of:

• constructors

• selectors

• operations

• contract

Review: data abstraction

(define make-point

(lambda (x y) (list x y)))

(define x-coor

(lambda (pt) (car pt)))

(define on-y-axis?

(lambda (pt) (= (x-coor pt) 0)))

(x-coor (make-point <x> <y>)) = <x>



Symbol: a primitive type

• constructors: 

None since really a primitive, not an object with parts

• Only way to “make one” is to type it

– (or via string->symbol from character strings, but shhhh…)

• selectors

None

– (except symbol->string)

• operations:
symbol? ; type: anytype -> boolean

(symbol? (quote alpha)) ==> #t

eq? ; discuss in a minute

R5RS shows the

full riches of Scheme



What’s the difference between 

symbols and strings?

• Symbol

• Evaluates to the value 
associated with it by define

• Every time you type a particular 
symbol, you get the exact same 
one!  Guaranteed.

– Called interning

• E.g., (list (quote pi)
(quote pi))

• String

• Evaluates to itself

• Every time you type a particular 
string, it’s up to the 
implementation whether you get 
the same one or different ones.

• E.g., (list ”pi” ”pi”)

or

pi

”pi” ”pi”

”pi”



The operation eq? tests for the same 

object 

• a primitive procedure

• returns #t if its two arguments are the same object

• very fast 

(eq? (quote eps) (quote eps))   ==> #t

(eq? (quote delta) (quote eps)) ==> #f

• For those who are interested:
; eq?:  EQtype, EQtype ==> boolean

; EQtype = any type except number or string

• One should therefore use = for equality of numbers, not 
eq?



Making list structure with symbols

((red 700) (orange 600) (yellow 575) (green 550)

(cyan 510) (blue 470) (violet 400))

(list (list (quote red) 700) (list (quote orange) 600)

… (list (quote violet) 400))

red 700

orange 600

violet 400



More Syntactic Sugar

• To the reader,

’pi

is exactly the same as 

if you had typed

(quote pi)

• Remember REPL

'pi

;Value: pi

User types

’pi

(quote pi)

read

pi
eval

pi

print



More Syntactic Sugar

• To the reader,

’pi

is exactly the same as 

if you had typed

(quote pi)

• Remember REPL

'pi

;Value: pi

'17

;Value: 17

'"hi there"

;Value: "hi there"

User types

’17

(quote 17)

read

17
eval

17

print



More Syntactic Sugar

• To the reader,

’pi

is exactly the same as 

if you had typed

(quote pi)

• Remember REPL

'pi

;Value: pi

'17

;Value: 17

'"hi there"

;Value: "hi there"

'(+ 3 4)

;Value: (+ 3 4)

User types

’(+ 3 4)

(quote

(+ 3 4))

read

(+ 3 4)
eval

(+ 3 4)

print



More Syntactic Sugar

• To the reader,

’pi

is exactly the same as 

if you had typed

(quote pi)

• Remember REPL

'pi

;Value: pi

'17

;Value: 17

'"hi there"

;Value: "hi there"

'(+ 3 4)

;Value: (+ 3 4)

''pi

;Value: (quote pi)

But in Dr. Scheme,
'pi

User types

’’pi

(quote 

(quote pi))

read

(quote pi)eval

(quote pi)

print



But wait… Clues about “guts” of Scheme

(pair? (quote (+ 2 3)))

;Value: #t

(pair? '(+ 2 3))

;Value: #t

(car '(+ 2 3))

;Value: +

(cadr '(+ 2 3))

;Value: 2

(null? (cdddr '(+ 2 3)))

;Value: #t

+ 2 3

Now we know that 

expressions are 

represented by lists!



Your turn: what does evaluating these print out?

(define x 20)

(+ x 3)                ==>

'(+ x 3)               ==>

(list (quote +) x '3)  ==>

(list '+ x 3)          ==>

(list + x 3)           ==>

23

(+ x 3)

(+ 20 3)

(+ 20 3)

([procedure #…]

20 3)



The Grimson Rule of  Thumb for Quote

'((quote fred) (quote quote) (+ 3 5)))

(quote ((quote fred) (quote quote) (+ 3 5))))

???

What's the value of the quoted expression?

WHATEVER IS UNDER YOUR THUMB!

('fred 'quote (+ 3 5)))

'



Revisit making list structure with symbols

(list (list (quote red) 700) (list (quote orange) 600)

… (list (quote violet) 400))

(list (list ’red 700) (list ’orange 600) … (list ’violet 400))

’((red 700) (orange 600) (yellow 575) (green 550)

(cyan 510) (blue 470) (violet 400))

• Because the reader knows how to turn parenthesized (for 

lists) and dotted (for pairs) expressions into list structure!

red 700

orange 600

violet 400



Aside: What all does the reader “know”?

• Recognizes and creates

• Various kinds of numbers

– 312 ==> integer

– 3.12e17 ==> real, etc.

• Strings enclosed by “…”

• Booleans #t and #f

• Symbols

• ’… ==> (quote …)

• (…) ==> pairs (and lists, which are made of pairs)

• and a few other obscure things



Traditional LISP structure: association list

• A list where each element is a list of the key and value.

15x 20y

x: 15

y: 20 

• Represent the table

as the alist:   ((x 15) (y 20))



Alist operation: find-assoc

(define (find-assoc key alist)

(cond 

((null? alist) #f)

((equal? key (caar alist)) (cadar alist))

(else (find-assoc key (cdr alist)))))

(define a1 '((x 15) (y 20)))

(find-assoc 'y a1)  ==> 20

15x 20y



An aside on testing equality

• = tests equality of numbers

• Eq? Tests equality of symbols

• Equal? Tests equality of symbols, numbers or lists of                

symbols and/or numbers that print the same



Alist operation: add-assoc

(define (add-assoc key val alist) 

(cons (list key val) alist))

(define a2 (add-assoc 'y 10 a1))

a2 ==> ((y 10) (x 15) (y 20))

(find-assoc 'y a2) ==> 10

We say that the new binding for y 

“shadows” the previous one



Alists are not an abstract data type

• Missing a constructor:

• Used quote or list to construct

(define a1 '((x 15) (y 20)))

• There is no abstraction barrier: the implementation is 

exposed. 

• User may operate on alists using standard list operations.

(filter (lambda (a) (< (cadr a) 16)) a1))

==> ((x 15))



Why do we care that Alists are not an ADT?

• Modularity is essential for software engineering

• Build a program by sticking modules together

• Can change one module without affecting the rest

• Alists have poor modularity

• Programs may use list ops like filter and map on alists

• These ops will fail if the implementation of alists change

• Must change whole program if you want a different table

• To achieve modularity, hide information

• Hide the fact that the table is implemented as a list

• Do not allow rest of program to use list operations

• ADT techniques exist in order to do this



Symbolic differentiation

(deriv <expr> <with-respect-to-var>) ==> <new-expr>

Algebraic expression Representation

x + 3 (+ x 3)

x x

5y (* 5 y)

x + y + 3 (+ x (+ y 3))

(deriv '(+ x 3) 'x)       ==> 1

(deriv '(+ (* x y) 4) 'x) ==> y

(deriv '(* x x) 'x)       ==> (+ x x)



Building a system for differentiation

Example of:

• Lists of lists

• How to use the symbol type

• Symbolic manipulation 

1. how to get started

2. a direct implementation

3. a better implementation



1. How to get started

• Analyze the problem precisely

deriv constant dx = 0
deriv variable dx  = 1 if variable is the same as x

= 0 otherwise

deriv (e1+e2) dx     = deriv e1 dx + deriv e2 dx
deriv (e1*e2) dx     = e1 * (deriv e2 dx) + e2 * (deriv e1 dx)

•Observe:
•e1 and e2 might be complex subexpressions

•derivative of (e1+e2) formed from deriv e1 and deriv e2

•a tree problem



Type of the data will guide implementation

• legal expressions
x (+ x y)

2 (* 2 x) (+ (* x y) 3)

• illegal expressions
* (3 5 +) (+ x y z)

() (3) (* x)

; Expr = SimpleExpr | CompoundExpr

; SimpleExpr = number | symbol

; CompoundExpr = a list of three elements where the first

element is either + or *

;  = pair< (+|*), pair<Expr, pair<Expr,null> >>



2. A direct implementation

• Overall plan: one branch for each subpart of the type

(define deriv (lambda (expr var)

(if (simple-expr? expr)

<handle simple expression>

<handle compound expression>

)))

•To implement simple-expr? look at the type
•CompoundExpr is a pair

•nothing inside SimpleExpr is a pair

•therefore
(define simple-expr? (lambda (e) 

(not (pair? e))))



Simple expressions

• One branch for each subpart of the type

(define deriv (lambda (expr var)

(if (simple-expr? expr)

(if (number? expr) 

<handle number>

<handle symbol>

)

<handle compound expression>

)))

• Implement each branch by looking at the math

0

(if (eq? expr var)

1  0)



Compound expressions

• One branch for each subpart of the type

(define deriv (lambda (expr var)

(if (simple-expr? expr)

(if (number? expr) 0

(if (eq? expr var) 1 0))

(if (eq? (car expr) '+)

<handle add expression>

<handle product expression>

)

)))



Sum expressions

• To implement the sum branch, look at the math

(define deriv (lambda (expr var)

(if (simple-expr? expr)

(if (number? expr) 0

(if (eq? expr var) 1 0))

(if (eq? (car expr) '+)

(list '+

(deriv (cadr expr) var)

(deriv (caddr expr) var))

<handle product expression>

)

)))

(deriv '(+ x y) 'x) ==> (+ 1 0)  (a list!)



The direct implementation works, but...

• Programs always change after initial design

• Hard to read

• Hard to extend safely to new operators or simple exprs

• Can't change representation of expressions

• Source of the problems:

• nested if expressions

• explicit access to and construction of lists

• few useful names within the function to guide reader



3. A better implementation

1. Use cond instead of nested if expressions

2. Use data abstraction

• do this for every branch:

(define variable? (lambda (e)

(and (not (pair? e)) (symbol? e))))

•To use cond:
•write a predicate that collects all tests to get to a branch:
(define sum-expr? (lambda (e)

(and (pair? e) (eq? (car e) '+))))

; type: Expr -> boolean



Use data abstractions

• To eliminate dependence on the representation:

(define make-sum (lambda (e1 e2)

(list '+ e1 e2))

(define addend (lambda (sum) (cadr sum)))

(define augend (lambda (sum) (caddr sum)))



A better implementation

(define deriv (lambda (expr var)

(cond

((number? expr)  0)

((variable? expr) (if (eq? expr var) 1 0))

((sum-expr? expr)

(make-sum (deriv (addend expr) var)

(deriv (augend expr) var)))

((product-expr? expr)

<handle product expression>)

(else

(error "unknown expression type" expr))

))



Isolating changes to improve performance

(deriv '(+ x y) 'x) ==> (+ 1 0)  (a list!)

(define make-sum
(lambda (e1 e2)
(cond ((number? e1)

(if (number? e2) 
(+ e1 e2)
(list '+ e1 e2)))

((number? e2)
(list '+ e2 e1))
(else (list '+ e1 e2)))))

(deriv '(+ x y) 'x) ==>  1



Modularity makes changes easier

• But conventional mathematics doesn’t use prefix 

notation like this:

(+ 2 x) or (* (+ 3 x) (+ x y))

• Could we change our program somehow to use 

more algebraic expressions, still fully 

parenthesized, like:

(2 + x) or ((3 + x) * (x + y))

• What do we need to change?



Just change data abstraction

• Constructors

• Accessors

• Predicates

(define (make-sum e1 e2)

(list e1 '+ e2))

(define (augend expr)

(caddr expr))

(define (sum-expr? expr)

(and (pair? expr) (eq? '+ (cadr expr))))



Separating simplification from 

differentiation

• Exploit Modularity:

• Rather than changing the code to handle simplification of 

expressions, write a separate simplifier

(define (simplify expr)

(cond ((or (number? expr) (variable? expr))

expr)

((sum-expr? expr)

(simplify-sum

(simplify (addend expr))

(simplify (augend expr))))

((product-expr? expr)

(simplify-product

(simplify (multiplier expr))

(simplify (multiplicand expr))))

(else (error "unknown expr type" expr))))



Simplifying sums

(define (simplify-sum add aug)

(cond

((and (number? add) (number? aug))

;; both terms are numbers: add them

(+ add aug))

((or (number? add)

(number? aug))

;; one term only is number

(cond ((and (number? add)

(zero? add))

aug)

((and (number? aug)

(zero? aug))

add)

(else (make-sum add aug))))

((eq? add aug)

;; adding same term twice

(make-product 2 add))

…

(+ 2 3)  5

(+ 2 x)  (+ 2 x)

(+ 0 x)  x

(+ x 0)  x

(+ x x)  (* 2 x)



More special cases in simplification

(define (simplify-sum add aug)

(cond

…

((product-expr? aug)

;; check for special case of (+ x (* 3 x))

;; i.e., adding something to a multiple of itself

(let ((mulr (simplify (multiplier aug)))

(muld (simplify (multiplicand aug))))

(if (and (number? mulr)

(eq? add muld))

(make-product (+ 1 mulr) add)

;; not special case: lose

(make-sum add aug))))

(else (make-sum add aug))))

(+ x (* 3 x))  (* 4 x)



Special cases in simplifying products

(define (simplify-product f1 f2)

(cond ((and (number? f1) (number? f2))

(* f1 f2))

((number? f1)

(cond ((zero? f1) 0)

((= f1 1) f2)

(else (make-product f1 f2))))

((number? f2)

(cond ((zero? f2) 0)

((= f2 1) f1)

(else (make-product f2 f1))))

(else (make-product f1 f2))))

(* (+ 3 x) 2)  (* 2 (+ 3 x))

(* 3 5)  15

(* 0 (+ x 1))  0
(* 1 (+ x 1))  (+ x 1)



Simplified derivative looks better

(deriv '(+ x 3) 'x)

;Value: (+ 1 0)

(deriv '(+ x (* x y)) 'x)

;Value: (+ 1 (+ (* x 0) (* 1 y)))

(simplify (deriv '(+ x 3) 'x))

;Value: 1

(simplify (deriv '(+ x (* x y)) 'x))

;Value: (+ 1 y)

• But, which is simpler?

• a*(b+c)

or

• a*b + a*c

• Depends on context…



Recap

• Symbols

• Are first class objects

• Allow us to represent names

• Quotation (and the reader’s syntactic sugar for ')

• Let us evaluate (quote …) to get … as the value

– I.e., “prevents one evaluation”

– Not really, but informally, has that effect.

• Lisp expressions are represented as lists

• Encourages writing programs that manipulate programs

– Much more, later

• Symbolic differentiation (introduction)


