
1/32

Data Mutation

• Primitive and compound data mutators

•set! for names

•set-car!, set-cdr! for pairs

• Stack example

• non-mutating

• mutating

• Queue example

• non-mutating

• mutating

2/32

• A data abstraction consists of:

• constructors

• selectors

• mutators

• operations

• contract

Elements of a Data Abstraction

-- makes a new structure

-- changes an existing structure

3/32

Primitive Data

(define x 10) creates a new binding for name;

special form

x returns value bound to name

• To Mutate:
(set! x "foo") changes the binding for name;

special form (value is undefined)

4/32

Assignment -- set!

• Substitution model -- functional programming:
(define x 10)

(+ x 5) ==> 15 - expression has same value

... each time it evaluated (in

(+ x 5) ==> 15 same scope as binding)

• With mutation:
(define x 10)

(+ x 5) ==> 15 - expression "value" depends

... on when it is evaluated

(set! x 94)

...

(+ x 5) ==> 99

5/32

Compound Data

• constructor:

(cons x y) creates a new pair p

• selectors:

(car p) returns car part of pair p

(cdr p) returns cdr part of pair p

• mutators:

(set-car! p new-x) changes car part of pair p

(set-cdr! p new-y) changes cdr part of pair p

; Pair,anytype -> undef -- side-effect only!

6/32

Example 1: Pair/List Mutation

(define a (list 1 2))

(define b a)

a  (1 2)

b  (1 2) 1 2b

a

(set-car! a 10)

b  (10 2)

10

X

Compare with:

(define a (list 1 2))

(define b (list 1 2))

1 2

a

1 2

b

10

X

(set-car! a 10)

b  (1 2)

7/32

Example 2: Pair/List Mutation

(define x (list 'a 'b))

a b

x

X

21

(set-car! (cdr x)

(list 1 2))

1. Evaluate (cdr x) to get

a pair object

2. Change car part of that

pair object

• How can we use mutation to

achieve the result at right?

8/32

Sharing, Equivalence and Identity

• How can we tell if two things are equivalent?

-- Well, what do you mean by "equivalent"?

1. The same object: test with eq?

(eq? a b) ==> #t

2. Objects that "look" the same: test with equal?

(equal? (list 1 2) (list 1 2)) ==> #t

(eq? (list 1 2) (list 1 2)) ==> #f

1 21 2

(1 2) (1 2)

1 2b

a

9/32

Sharing, Equivalence and Identity

• How can we tell if two things are equivalent?

-- Well, what do you mean by "equivalent"?

1. The same object: test with eq?

(eq? a b) ==> #t

2. Objects that "look" the same: test with equal?

(equal? (list 1 2) (list 1 2)) ==> #t

(eq? (list 1 2) (list 1 2)) ==> #f

• If we change an object, is it the same object?

-- Yes, if we retain the same pointer to the object

• How tell if part of an object is shared with another?

-- If we mutate one, see if the other also changes

10/32

x ==> (3 4)

y ==> (1 2)

(set-car! x y)

x ==>

followed by

(set-cdr! y (cdr x))

x ==>

Your Turn

3 4

x

1 2

y

((1 2) 4)

X

((1 4) 4)

X

3 4

x

1 2

y

11/32

End of part 1

• Scheme provides built-in mutators

•set! to change a binding

•set-car! and set-cdr! to change a pair

• Mutation introduces substantial complexity

• Unexpected side effects

• Substitution model is no longer sufficient to explain

behavior

12/32

Stack Data Abstraction
• constructor:

(make-stack) returns an empty stack

• selectors:
(top-stack s) returns current top element from a stack s

• operations:
(insert-stack s elt) returns a new stack with the element

added to the top of the stack

(delete-stack s) returns a new stack with the top

element removed from the stack

(empty-stack? s) returns #t if no elements, #f otherwise

13/32

Stack Contract

• If s is a stack, created by (make-stack)and subsequent stack
procedures, where i is the number of inserts and j is the number
of deletes, then

1. If j>i then it is an error

2. If j=i then (empty-stack? s) is true,
and (top-stack s) is an error.

3. If j<i then (empty-stack? s) is false, and for any val,
(top-stack

(delete-stack

(insert-stack s val))) = (top-stack s)

4. If j<=i then for any val,
(top-stack (insert-stack s val))) = val

14/32

Stack Implementation Strategy

• implement a stack as a list

dba

• we will insert and delete items at the front of the list

15/32

Stack Implementation

; Stack<A> = List<A>

(define (make-stack) '())

(define (empty-stack? s) ; Stack<A> -> boolean

(null? s))

(define (insert-stack s elt) ; Stack<A>, A -> Stack<A>

(cons elt s))

(define (delete-stack s) ; Stack<A> -> Stack<A>

(if (not (empty-stack? s))

(cdr s)

(error "stack underflow – delete"))

(define (top-stack s) ; Stack<A> -> A

(if (not (empty-stack? s))

(car s)

(error "stack underflow – top")))

16/32

Limitations in our Stack

• Stack does not have identity

(define s (make-stack))

s ==> ()

(insert s 'a) ==> (a)

s ==> ()

(set! s (insert s 'b))

s ==> (b)

17/32

• Attach a type tag – defensive programming

• Additional benefit:

• Provides an object whose identity remains even as the

object mutates

Alternative Stack Implementation – pg. 1

• Note: This is a change to the abstraction! User should

know if the object mutates or not in order to use the
abstraction correctly.

acdstack

s X

(delete! s)

18/32

Alternative Stack Implementation – pg. 2

; Stack<A> = Pair<tag, List<A>>

(define (make-stack) (cons 'stack '()))

(define (stack? s) ; anytype -> boolean

(and (pair? s) (eq? 'stack (car s))))

(define (empty-stack? s) ; Stack<A> -> boolean

(if (stack? s)

(null? (cdr s))

(error "object not a stack:" s)))

19/32

Alternative Stack Implementation – pg. 3

(define (insert-stack! s elt); Stack<A>, A -> Stack<A>

(if (stack? s)

(set-cdr! s (cons elt (cdr s)))

(error "object not a stack:" s)

stack)

(define (delete-stack! s) ; Stack<A> -> Stack<A>

(if (not (empty-stack? s))

(set-cdr! s (cddr s))

(error "stack underflow – delete"))

stack)

(define (top-stack s) ; Stack<A> -> A

(if (not (empty-stack? s))

(cadr s)

(error "stack underflow – top")))

20/32

Queue Data Abstraction (Non-Mutating)

• constructor:
(make-queue) returns an empty queue

• accessors:
(front-queue q) returns the object at the front of the

queue. If queue is empty signals error

• operations:
(insert-queue q elt) returns a new queue with elt at the

rear of the queue

(delete-queue q) returns a new queue with the item at the

front of the queue removed

(empty-queue? q) tests if the queue is empty

21/32

Queue Contract

• If q is a queue, created by (make-queue) and

subsequent queue procedures, where i is the number of
inserts, and j is the number of deletes

1. If j>i then it is an error

2. If j=i then (empty-queue? q) is true,

and (front-queue q) is an error

3. If j<i then (empty-queue? q) is false,

and (front-queue q) is the (j+1)st element

inserted into the queue

22/32

Simple Queue Implementation – pg. 1

• Let the queue simply be a list of queue elements:

c db

• The front of the queue is the first element in the list

• To insert an element at the tail of the queue, we need to
“copy” the existing queue onto the front of the new element:

d newcb

23/32

Simple Queue Implementation – pg. 2

(define (make-queue) '())

(define (empty-queue? q) (null? q)); Queue<A> -> boolean

(define (front-queue q) ; Queue<A> -> A

(if (not (empty-queue? q))

(car q)

(error "front of empty queue:" q)))

(define (delete-queue q) ; Queue<A> -> Queue<A>

(if (not (empty-queue? q))

(cdr q)

(error "delete of empty queue:" q)))

(define (insert-queue q elt) ; Queue<A>, A -> Queue<A>

(if (empty-queue? q)

(cons elt '())

(cons (car q) (insert-queue (cdr q) elt))))

24/32

Simple Queue - Orders of Growth

• How efficient is the simple queue implementation?

• For a queue of length n

– Time required -- number of cons, car, cdr calls?

– Space required -- number of new cons cells?

• front-queue, delete-queue:

• Time: T(n) = Q(1) that is, constant in time

• Space: S(n) = Q(1) that is, constant in space

• insert-queue:

• Time: T(n) = Q(n) that is, linear in time

• Space: S(n) = Q(n) that is, linear in space

25/32

Queue Data Abstraction (Mutating)

• constructor:
(make-queue) returns an empty queue

• accessors:
(front-queue q) returns the object at the front of the

queue. If queue is empty signals error

• mutators:
(insert-queue! q elt) inserts the elt at the rear of the queue

and returns the modified queue

(delete-queue! q) removes the elt at the front of the queue

and returns the modified queue

• operations:

(queue? q) tests if the object is a queue

(empty-queue? q) tests if the queue is empty

26/32

Better Queue Implementation – pg. 1

• We’ll attach a type tag as a defensive measure

• Maintain queue identity

• Build a structure to hold:

• a list of items in the queue

• a pointer to the front of the queue

• a pointer to the rear of the queue

queue

c dba

front-ptr

rear-ptr

27/32

Queue Helper Procedures

• Hidden inside the abstraction

(define (front-ptr q) (cadr q))

(define (rear-ptr q) (cddr q))

(define (set-front-ptr! q item)

(set-car! (cdr q) item))

(define (set-rear-ptr! q item)

(set-cdr! (cdr q) item))

queue

c dba

front-ptr

rear-ptr

28/32

Better Queue Implementation – pg. 2

(define (make-queue)

(cons 'queue (cons '() '())))

(define (queue? q) ; anytype -> boolean

(and (pair? q) (eq? 'queue (car q))))

(define (empty-queue? q) ; Queue<A> -> boolean

(if (queue? q)

(null? (front-ptr q))

(error "object not a queue:" q)))

(define (front-queue q) ; Queue<A> -> A

(if (not (empty-queue? q))

(car (front-ptr q))

(error "front of empty queue:" q)))

29/32

Queue Implementation – pg. 3

(define (insert-queue! q elt); Queue<A>, A -> Queue<A>

(let ((new-pair (cons elt '())))

(cond ((empty-queue? q) (set-front-ptr! q new-pair)

(set-rear-ptr! q new-pair))

(else (set-cdr! (rear-ptr q) new-pair)

(set-rear-ptr! q new-pair)))

q)))

queue

c dba

front-ptr

rear-ptr

e

30/32

Queue Implementation – pg. 4

(define (delete-queue! q) ; Queue<A> -> Queue<A>

(if (not (empty-queue? q))

(set-front-ptr! q (cdr (front-ptr q)))

(error "delete of empty queue:" q))

q)

queue

c dba

front-ptr

rear-ptr

31/32

Mutating Queue - Orders of Growth

• How efficient is the mutating queue implementation?

• For a queue of length n

– Time required -- number of cons, car, cdr calls?

– Space required -- number of new cons cells?

• front-queue, delete-queue!:

• Time: T(n) = O(1) that is, constant in time

• Space: S(n) = O(1) that is, constant in space

• insert-queue!:

• Time: T(n) = O(1) that is, constant in time

• Space: S(n) = O(1) that is, constant in space

32/32

Summary

• Built-in mutators which operate by side-effect

•set! (special form)

•set-car! ; Pair, anytype -> undef

•set-cdr! ; Pair, anytype -> undef

• Extend our notion of data abstraction to include mutators

• Mutation is a powerful idea

• enables new and efficient data structures

• can have surprising side effects

• breaks our model of "functional" programming
(substitution model)

