
1

Data abstraction, revisited

• Design tradeoffs:

• Speed vs robustness

modularity

ease of maintenance

• Table abstract data type: 3 versions

• No implementation of an ADT is necessarily "best"

• Abstract data types hide information, in types as well as in

the code

2

Table: a set of bindings

• binding: a pairing of a key and a value

• Abstract interface to a table:

• make
create a new table

• put! key value
insert a new binding
replaces any previous binding of that key

• get key
look up the key, return the corresponding value

• This definition IS the table abstract data type

• Code shown later is a particular implementation of the
ADT

3

Examples of using tables

Fred

John

Bill

People

34

48

Age

2000

1999

1998

Age

Job

Pay

34

Values associated with keys might be data structures

.

.

Values might be shared by multiple structures

4

Traditional LISP structure: association list

• A list where each element is a list of the key and value.

15x 20y

x: 15

y: 20

• Represent the table

as the alist: ((x 15) (y 20))

5

Alist operation: find-assoc

(define (find-assoc key alist)

(cond

((null? alist) #f)

((equal? key (caar alist)) (cadar alist))

(else (find-assoc key (cdr alist)))))

(define a1 '((x 15) (y 20)))

(find-assoc 'y a1) ==> 20

15x 20y

6

An aside on testing equality

• = tests equality of numbers

• Eq? Tests equality of symbols

• Equal? Tests equality of symbols, numbers or lists of

symbols and/or numbers that print the same

7

Alist operation: add-assoc

(define (add-assoc key val alist)

(cons (list key val) alist))

(define a2 (add-assoc 'y 10 a1))

a2 ==> ((y 10) (x 15) (y 20))

(find-assoc 'y a2) ==> 10

We say that the new binding for y

“shadows” the previous one

8

Alists are not an abstract data type

• Missing a constructor:

• Used quote or list to construct

(define a1 '((x 15) (y 20)))

• There is no abstraction barrier: the implementation is

exposed.

• User may operate on alists using standard list operations.

(filter (lambda (a) (< (cadr a) 16)) a1))

==> ((x 15))

9

Why do we care that Alists are not an ADT?

• Modularity is essential for software engineering

• Build a program by sticking modules together

• Can change one module without affecting the rest

• Alists have poor modularity

• Programs may use list ops like filter and map on alists

• These ops will fail if the implementation of alists change

• Must change whole program if you want a different table

• To achieve modularity, hide information

• Hide the fact that the table is implemented as a list

• Do not allow rest of program to use list operations

• ADT techniques exist in order to do this

10

Table1: Table ADT (implemented as an Alist)

(define table1-tag 'table1)

(define (make-table1) (cons table1-tag nil))

(define (table1-get tbl key)

(find-assoc key (cdr tbl)))

(define (table1-put! tbl key val)

(set-cdr! tbl (add-assoc key val (cdr tbl))))

14

Table1 example
(define tt1 (make-table1))

(table1-put! tt1 'y 20)

(table1-put! tt1 'x 15)

tt1

table1

15x

(table1-get tt1 ‘y)

(define (table1-get tbl key)

(find-assoc key (cdr tbl)))

(define (table1-put! tbl key val)

(set-cdr! tbl

(add-assoc key val (cdr tbl))))

(define (add-assoc key val alist)

(cons (list key val) alist))

(define (find-assoc key alist)

(cond ((null? alist) #f)

((equal? key (caar alist)) (cadar alist))

(else (find-assoc key (cdr alist)))))

20y

15

How do we know Table1 is an ADT implementation

• Potential reasons:

• Because it has a type tag No

• Because it has a constructor No

• Because it has mutators and accessors No

• Actual reason:

• Because the rest of the program does not apply any

functions to Table1 objects other than the functions

specified in the Table ADT

• For example, no car, cdr, map, filter done to tables

• The implementation (as an Alist) is hidden from the rest of

the program, so it can be changed easily

16

Information hiding in types: opaque names

• Opaque: type name that is defined but unspecified

• Given functions m1 and m2 and unspecified type MyType:

(define (m1 number) ...) ; number  MyType

(define (m2 myt) ...) ; MyType  undef

• Which of the following is OK? Which is a type mismatch?

(m2 (m1 10)) ; return type of m1 matches

; argument type of m2

(car (m1 10)) ; return type of m1 fails to match

; argument type of car

; car: pair<A,B>  A

• Effect of an opaque name:

no functions have the correct types except the functions of

the ADT

17

Types for table1

• Here is everything the rest of the program knows

Table1<k,v> opaque type

make-table1 void  Table1<anytype,anytype>

table1-put! Table1<k,v>, k, v  undef

table1-get Table1<k,v>, k  (v | nil)

• Here is the hidden part, only the implementation knows it:

Table1<k,v> = symbol  Alist<k,v>

Alist<k,v> = list< k  v >

18

Lessons so far

• Association list structure can represent the table ADT

• The data abstraction technique (constructors, accessors,

etc) exists to support information hiding

• Information hiding is necessary for modularity

• Modularity is essential for software engineering

• Opaque type names denote information hiding

19

Now let's talk about efficiency

• Speed of operations

• put

• get

• What if it's the Boston Yellow Pages?

Fast

Slow

Really need to use other information to get to

right place to search

20

Hash tables

• Suppose a program is written using Table1

• Suppose we measure that a lot of time is spent in
table1-get

• Want to replace the implementation with a faster one

• Standard data structure for fast table lookup: hash table

• Idea:

• keep N association lists instead of 1

• choose which list to search using a hash function

– given the key, hash function computes
a number x where 0 <= x <= (N-1)

• Speed of hash table?

21

What’s a hash function?

• Maps an input to a fixed length output (e.g. integer between 0 and N)

• Ideally the set of inputs is uniformly distributed over the output range

• Ideally the function is very rapid to compute

• Example:

• First letter of last name:

– 26 buckets

– Non-uniform

• Convert last name by position in alphabet, add, take modular
arithmetic

– GRIMSON: 7+18+9+13+19+15+14 = 95 (mod 26 = 17)

– GREEN: 7+18+5+5+14=49 (mod 26 = 23)

• Uses:

• Fast storage and retrieval of data

• Hash functions that are hard to invert are very valuable in
cryptography

22

Hash function output chooses a bucket

key

Association list

Association list

Association list

hash

function

index

buckets

0

1

2

3

...

N-1
If a key is in the

table, it is in the Alist

of the bucket whose

index is hash(key)

Search in alist using

normal operations

23

Store buckets using the vector ADT

• Vector: fixed size collection with indexed access

vector<A> opaque type

make-vector number, A  vector<A>

vector-ref vector<A>, number  A

vector-set! vector<A>,number, A  undef

(make-vector size value) ==> a vector with size locations;

each initially contains value

(vector-ref v index) ==> whatever is stored at that index of v

(error if index >= size of v)

(vector-set! v index val) stores val at that index of v

(error if index >= size of v)

Vector has

constant speed

access

24

The Bucket Abstraction

(define (make-buckets N v) (make-vector N v))

(define make-buckets make-vector)

(define bucket-ref vector-ref)

(define bucket-set! vector-set!)

25

Table2: Table ADT implemented as hash table

(define t2-tag 'table2)

(define (make-table2 size hashfunc)

(let ((buckets (make-buckets size nil)))

(list t2-tag size hashfunc buckets)))

(define (size-of tbl) (cadr tbl))

(define (hashfunc-of tbl) (caddr tbl))

(define (buckets-of tbl) (cadddr tbl))

• For each function defined on this slide, is it

• a constructor of the data abstraction?

• an accessor of the data abstraction?

• an operation of the data abstraction?

• none of the above?

26

get in table2

(define (table2-get tbl key)

(let ((index

((hashfunc-of tbl) key (size-of tbl))))

(find-assoc key

(bucket-ref (buckets-of tbl) index))))

• Same type as table1-get

27

put! in table2

(define (table2-put! tbl key val)

(let ((index

((hashfunc-of tbl) key (size-of tbl)))

(buckets (buckets-of tbl)))

(bucket-set! buckets index

(add-assoc key val

(bucket-ref buckets index)))))

• Same type as table1-put!

28

Table2 example
(define tt2 (make-table2 4 hash-a-point))

(table2-put! tt2 (make-point 5 5) 20)

(table2-put! tt2 (make-point 5 7) 15)

tt2

table2

4 vector

15point

5,7
20point

5,5

(table2-get tt2 (make-point 5 5))

29

Is Table1 or Table2 better?

• Answer: it depends!

• Table1: make extremely fast

put! extremely fast

get O(n) where n=# calls to put!

• Table2: make space N where N=specified size

put! must compute hash function

get compute hash function plus O(n)

where n=average length of a bucket

• Table1 better if almost no gets or if table is small

• Table2 challenges: predicting size, choosing a hash function

that spreads keys evenly to the buckets

30

Summary

• Introduced three useful data structures

• association lists

• vectors

• hash tables

• Operations not listed in the ADT specification are internal

• The goal of the ADT methodology is to hide information

• Information hiding is denoted by opaque type names

