
1

6.001 SICP
Environment model
• Models of computation

• Substitution model
– A way to figure out what happens during evaluation

– (define l '(a b c))
– (car l)  a
– (define m '(1 2 3))
– (car l)  a

– Not really what happens in the computer
– (car l)  a
– (set-car! l 'z)
– (car l)  z

• The Environment Model

2

(define make-counter
(lambda (n)

(lambda () (set! n (+ n 1))
n)))

(define ca (make-counter 0))
(ca) ==> 1
(ca) ==> 2 ; not functional programming!
(define cb (make-counter 0))
(cb) ==> 1
(ca) ==> 3 ; ca and cb are independent

Can you figure out why this code works?

3

What the EM is:
• A precise, completely mechanical description of:

• name-rule looking up the value of a variable
• define-rule creating a new definition of a var
• set!-rule changing the value of a variable
• lambda-rule creating a procedure
• application applying a procedure

•Basis for implementing a scheme interpreter
•for now: draw EM state with boxes and pointers
•later on: implement with code

•Enables analyzing more complex scheme code:
•Example: make-counter

4

A shift in viewpoint
• As we introduce the environment model, we are going to

shift our viewpoint on computation
• Variable:

• OLD – name for value
• NEW – place into which one can store things

• Procedure:
• OLD – functional description
• NEW – object with inherited context

• Expressions
• Now only have meaning with respect to an environment

5

Frame: a table of bindings
• Binding: a pairing of a name and a value

Example: x is bound to 15 in frame A
y is bound to (1 2) in frame A
the value of the variable x in frame A is 15

21

x: 15
A

y:

6

Environment: a sequence of frames
• Environment E1 consists of frames A and B

z: 10

B

E1

E2

x: 15
A

21

y:

this arrow is called
the enclosing

environment pointer

• Environment E2 consists of frame B only
• A frame may be shared by multiple environments

7

Evaluation in the environment model

• All evaluation occurs in an environment

• The current environment changes when the
interpreter applies a procedure

•To evaluate a combination
•Evaluate the subexpressions in the current environment
•Apply the value of the first to the values of the rest

•The top environment is called the global environment (GE)
•Only the GE has no enclosing environment

8

Name-rule
• A name X evaluated in environment E gives

the value of X in the first frame of E where X is bound

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

• In E1, the binding of x in frame A shadows the binding of x in B

•x | GE ==> 3

•z | GE ==> 10 z | E1 ==> 10 x | E1 ==> 15

10

Define-rule
• A define special form evaluated in environment E

creates or replaces a binding in the first frame of E
(define z 25) | E1(define z 20) | GE

z: 25

z: 20

x: 15A

21

z: 10
x: 3

B

E1

GE

y:

z | GE ==> 20

z | E1 ==> 25

11

(set! z 25) | E1

Set!-rule
• A set! of variable X evaluated in environment E changes

the binding of X in the first frame of E where X is bound
(set! z 20) | GE

20 25

x: 15A

21

z: 10
x: 3

B

E1

GE

y:

12

Define versus Set!

2025

x: 15A

21

z: 10
x: 3

B

E1

GE

y:z: 25

z: 20

x: 15A

21

z: 10
x: 3

B

E1

GE

y:

Using defines Using set!s

13

Your turn: evaluate the following in order
(+ z 1) | E1 ==>
(set! z (+ z 1)) | E1 (modify EM)
(define z (+ z 1)) | E1 (modify EM)
(set! y (+ z 1)) | GE (modify EM)

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

11

11

z: 12

Error:
unbound
variable: y

15

Double bubble: how to draw a procedure

(lambda (x) (* x x))

A compound proc
that squares its

argument

#[compound-...]

Environment
pointer

Code pointer
parameters: x
body: (* x x)

16

Lambda-rule
• A lambda special form evaluated in environment E

creates a procedure whose environment pointer is E

x: 15
A

z: 10
x: 3

B

E1

parameters: x
body: (* x x)

square:

(define square (lambda (x) (* x x))) | E1

environment pointer
points to frame A

because the lambda
was evaluated in E1

and E1 → A
Evaluating a lambda
actually returns a
pointer to the
procedure object

17

To apply a compound procedure P to arguments:
1. Create a new frame A
2. Make A into an environment E:

A's enclosing environment pointer goes to the same frame
as the environment pointer of P

3. In A, bind the parameters of P to the argument values

4. Evaluate the body of P with E as the current environment

18

1. Create a new frame A
2. Make A into an environment E: A's
enclosing environment pointer goes to the
same frame as the environment pointer of P
3. In A, bind the parameters of P to the
argument values
4. Evaluate the body of P with E as the current
environment

Achieving Inner Peace (and A Good Grade), Part II

*Om Mani Padme Hum…

*

19

(square 4) | GE

x: 10
GE

parameters: x
body: (* x x)

square:

A

E1 x: 4

(* x x) | E1

*: #[prim]

==> 16

* | E1 ==> #[prim]

x | E1 ==> 4

square | GE ==> #[proc]

20

Example: inc-square

GE

p: x
b: (* x x)

square:
inc-square:

p: y
b: (+ 1 (square y))

(define square (lambda (x) (* x x))) | GE

(define inc-square
(lambda (y) (+ 1 (square y))) | GE

21

Example cont'd: (inc-square 4) | GE

GE

p: x
b: (* x x)

square:
inc-square:

p: y
b: (+ 1

(square y))

E1
y: 4

(+ 1 (square y)) | E1

+ | E1 ==> #[prim]

inc-square | GE ==> #[compound-proc ...]

(square y) | E1

22

Example cont'd: (square y) | E1

E2
x: 4

(* x x) | E2

* | E2 ==> #[prim] x | E2 ==> 4

GE

p: x
b: (* x x)

square:
inc-square:

p: y
b: (+ 1

(square y))

E1
y: 4

==> 16 (+ 1 16) ==> 17
y | E1 ==> 4square | E1 ==> #[compound]

(+ 1 (square y)) | E1

+ | E1 ==> #[prim]

(square y) | E1

23

Lessons from the inc-square example

• EM doesn't show the complete state of the interpreter
• missing the stack of pending operations

• The GE contains all standard bindings (*, cons, etc)
• omitted from EM drawings

• Useful to link environment pointer of each frame
to the procedure that created it

24

Example: make-counter
• Counter: something which counts up from a number

(define make-counter
(lambda (n)

(lambda () (set! n (+ n 1))
n

)))

(define ca (make-counter 0))
(ca) ==> 1
(ca) ==> 2 ; not functional programming
(define cb (make-counter 0))
(cb) ==> 1
(ca) ==> 3
(cb) ==> 2 ; ca and cb are independent

25

(define ca (make-counter 0)) | GE

GE

p: n
b:(lambda ()

(set! n
(+ n 1))

n)

make-counter:

E1
n: 0

(lambda () (set! n (+ n 1)) n) | E1

p:
b:(set! n (+ n 1)) n

ca:

environment pointer
points to E1

because the lambda
was evaluated in E1

26

(ca) | GE

(set! n (+ n 1)) | E2

1

n | E2 ==> 1

E2
empty

GE

p: n
b:(lambda ()

(set! n
(+ n 1))

n)

make-counter:

E1
n: 0

p:
b:(set! n (+ n 1)) n

ca:

==> 1

27

E3

(ca) | GE

(set! n (+ n 1)) | E3

GE

p: n
b:(lambda ()

(set! n
(+ n 1))

n)

make-counter:

E1
n: 0

p:
b:(set! n (+ n 1)) n

ca:

1

n | E3 ==> 2

empty

==> 2

2

28

(define cb (make-counter 0)) | GE

(lambda () (set! n (+ n 1)) n) | E4

n: 0
E4

p:
b:(set! n
(+ n 1)) n

cb:GE

p: n
b:(lambda ()

(set! n
(+ n 1))

n)

make-counter:

E1
n: 2

p:
b:(set! n

(+ n 1)) n

ca:

E3

29

(cb) | GE

1
n: 0

E4

p:
b:(set! n
(+ n 1)) n

cb:GE

p: n
b:(lambda ()

(set! n
(+ n 1))

n)

make-counter:

E1
n: 2

p:
b:(set! n

(+ n 1)) n

ca:

E2

==> 1

E5

30

Capturing state in local frames & procedures

n: 1
E4

p:
b:(set! n
(+ n 1)) n

cb:GE

p: n
b:(lambda ()

(set! n
(+ n 1))

n)

make-counter:

E1
n: 2

p:
b:(set! n

(+ n 1)) n

ca:

E2

31

Lessons from the make-counter example

• Environment diagrams get complicated very quickly
• Rules are meant for the computer to follow,

not to help humans
• A lambda inside a procedure body captures the

frame that was active when the lambda was evaluated
• this effect can be used to store local state

32

Environments are important in other languages

USA Britain

New England

Macintosh | USA

Milkshake | USA
Canadian bacon | New England

Macintosh | Britain

Milkshake | New England
Canadian bacon | Canada

Canada

Frappe | New England

Unbound variable!!

	6.001 SICP�Environment model
	Can you figure out why this code works?
	What the EM is:
	A shift in viewpoint
	Frame: a table of bindings
	Environment: a sequence of frames
	Evaluation in the environment model
	Name-rule
	Define-rule
	Set!-rule
	Define versus Set!
	Your turn: evaluate the following in order
	Double bubble: how to draw a procedure
	Lambda-rule
	To apply a compound procedure P to arguments:
	Achieving Inner Peace (and A Good Grade), Part II
	 (square 4) | GE
	Example: inc-square
	Example cont'd: (inc-square 4) | GE
	Example cont'd: (square y) | E1
	Lessons from the inc-square example
	Example: make-counter
	(define ca (make-counter 0)) | GE
	(ca) | GE
	(ca) | GE
	(define cb (make-counter 0)) | GE
	(cb) | GE
	Capturing state in local frames & procedures
	Lessons from the make-counter example
	Environments are important in other languages

