6.001 SICP
Environment model

 Models of computation
e Substitution model

— A way to flgure out what happens during evaluatlon
— (define I "(a b ©)) <
—(car 1) = a
— (define m "(1 2 3))

—(car 1) =2 a

— Not really what happens in the computer
—(car 1) = a
— (set-car! 1 "2z)

—(car 1) = 7

e The Environment Model

Can you figure out why this code works?

(define make-counter
(lambda (n)
(lambda () (set! n (+ n 1))

n)))

(define ca (make-counter 0))

(ca) ==> 1

(ca) ==> 2 , hot functional programming!
(define cb (make-counter 0))

(cb) ==> 1

(ca) ==> 3 , ca and cb are i1ndependent

What the EM Is:

* A precise, completely mechanical description of:

 name-rule looking up the value of a variable
 define-rule creating a new definition of a var
 set!-rule changing the value of a variable
* lambda-rule creating a procedure

e application applying a procedure

*Enables analyzing more complex scheme code:
Example: make-counter

*Basis for immplementing a scheme interpreter
for now: draw EM state with boxes and pointers
Jater on: implement with code

A shift Iin viewpoint

* As we introduce the environment model, we are going to
shift our viewpoint on computation

e Variable:
 OLD — name for value
« NEW - place into which one can store things
e Procedure:
e OLD — functional description
« NEW - object with inherited context
o Expressions
 Now only have meaning with respect to an environment

Frame: a table of bindings

e Binding: a pairing of a name and a value

Example: X IS bound to 15 in frame A
y is bound to (1 2) in frame A
the value of the variable x in frame Ais 15

®

X: 15
Y- \

N7

Environment: a sequence of frames

e Environment E1 consists of frames A and B

 Environment E2 consists of frame B only
o A frame may be shared by multiple environments

\

E2 ~z: 10 fthis arrow is called
N the enclosing
@ = 1envwonment pomterj
E1 4% o
Y- \

\’ —_’l/l

Evaluation in the environment model

o All evaluation occurs in an environment

* The current environment changes when the
Interpreter applies a procedure

*The top environment is called the global environment (GE)
*Only the GE has no enclosing environment

*To evaluate a combination

*Evaluate the subexpressions in the current environment
*Apply the value of the first to the values of the rest

Name-rule

 Aname X evaluated in environment E gives
the value of X in the first frame of E where X is bound

*Z | g ==> Z | g ==> X | g ==>

 In E1, the binding of x in frame A shadows the binding of X in B

CE |z: 10 *X | g ==>
X: 3

£1 »x:_ 15
Y- \

Define-rule

» A define special form evaluated in environment E
creates or replaces a binding in the first frame of E

(define z 20) | 4 (define z 25) |
Zz—310-

GE ~[x: 3 Z | g ==> 20
z: 20

™ [x:
E1 | y: Z | g ==> 25
z:h

10

Set!-rule

» A set! of variable X evaluated in environment E changes
the binding of X in the first frame of E where X is bound

(set! z 20) | &

GE -

z: 10 20 25
X: 3

®

El —

(set! z 25) | ¢

2 11

Define versus Set!

Using defines

.z.:_ﬂ)
GF———| X: 3
z- 20

@ X - 1b1
2y
\

=<1

N<—1

Using set!s

Z: 19025
GF———|Xx: 3

A[xT 15
E].—>YN

= ——

12

N<~—1

Your turn: evaluate the following in order

(+z1) g ==> 11
(set! z (+ z 1)) | 4 (modify EM)
(define z (+ z 1)) | g (modify EM)
(set! v (+ z 1)) | & (modify EM) Error:
unbound
n variable: y

GE »z: 167 11

X: 3
£1 [x= 15 2- 12

y- \

D M= e %

1 2 13

Double bubble: how to draw a procedure

(lambda (X) (* x X))
% {—»\ #[compound-. . .]

Environment
pointer

A compound proc
that squares its
argument

Code pointer

parameters: X
body: (* X X)

15

Lambda-rule

* Alambda special form evaluated in environment E
creates a procedure whose environment pointer is E

(define square (lambda (X) (* X xX))) | ¢

z: 10

X: 3

Y environment pointer
@ - points to frame A
E1l %= 15 because the lambda

square- was evaluated in E1
N\ and E1 — A
Evaluating a lambda /

actually returns a
pointer to the
procedure object

parameters: X
body: (* X X) 16

To apply a compound procedure P to arguments:

1. Create a new frame A

2. Make A into an environment E:
A's enclosing environment pointer goes to the same frame
as the environment pointer of P

3. In A, bind the parameters of P to the argument values

4. Evaluate the body of P with E as the current environment

17

Achieving Inner Peace (and A Good Grade), Part I

*Om Mani Padme Hum... 18

(square 4) |

x: 10 *: #[prim
CE — square: ~ [prim]

parameters: X
body: (* X X) @
E1 —| X: 4

square | ;¢ ==> #[proc]

" X X) | g E=> 16
* g ==> #[prim]

X g =>4 =

Example: inc-square

GE inc—sqgare:
square: ~ —\\\\\\

A

P: X y
(+ 1 (square y))

P -
b: (* x X) b-

(define square (lambda (X) (* X X))) |
(define 1Inc-square

(lambda (y) (+ 1 (square y))) | e

20

Example cont'd: (inc-square 4) |

GE inc—sqgare:
square: ~ \

g —
(PC-} y: 4

p: X Py (+ 1 (square y)) | g
b: (* xx) b: (+1 + | g ==> #lprim]
(square Yy)) (square y) |

Inc-square | ;¢ ==> #[compound-proc ...]

21

Example cont'd: (square y) | ¢

GE Inc-square: \

square: ~
4 E— i
|
/ El ! E2
CTXQ* y: 4 X:
p: X p: Yy (+ 1 (square y)) | g
b: (* xx) b: (+1 + | g ==> #Llprim]
(square y)) (square y) |
square | g; ==> #[compound] y | g ==> 4

(X X) | ==> 16 (+ 1 16) ==> 17

* | g ==> #[prim] X | gp==> 4

22

Lessons from the 1nc-square example

 EM doesn't show the complete state of the interpreter
* missing the stack of pending operations

 The GE contains all standard bindings (*, cons, etc)
e omitted from EM drawings

e Useful to link environment pointer of each frame
to the procedure that created it

23

Example: make-counter

e Counter: something which counts up from a number

(define make-counter
(lambda (n)
(lambda () (set! n (+ n 1))
n

)))

(define ca (make-counter 0))

(ca) ==> 1

(ca) ==> 2 ; not functional programming
(define cb (make-counter 0))

(cb) ==>1

(ca) ==> 3

(cb) ==> 2 ; ca and cb are Independent

24

(define ca (make-counter 0)) | 4

)

_ -
GE make-counter:

ca: \

AN

P: N
b:(lambda ()
(set! n
(+ n 1))

n)

P -

-

~

environment pointer

points to E1

because the lambda

was evaluated in E1

b:(set! n (+ n 1)) n
(lambda () (set! n (+ n 1)) n) |

25

(ca) | g ==>1

_

GE make-counter: —
CP@J el
0! n n: g 1 |-
b:(lambda ()
(set! n E2
(+ n 1)) empty
n) D:

b:(set! n (+ n 1)) n

(set! n (+ n 1)) | n|g==>1

(ca) | g ==> 2

_

GE make—counter:-//
p' n: g% |«
2
b: (Iambda O
(set! n Eg\
(+ n 1)) empty
n) D:

b:(set! n (+ n 1)) n

(set! n (+ n 1)) | N | gg ==> 2

27

(define cb (make-counter 0)) |

)

GE make-counter: —]
Ca:\ C :\
N\ | N\ +
N
E1l E4
0 N n: 2 |+ n: O
b:(lambda ()
(set! n E3
(+ n 1))
n) D: D:
b:(set! n b:(set! n
(+nl)n (+n1l))n
(lambda () (set! n (+ n 1)) n) | g 28

(cb) [== 1

_

GE make-counter: —]
ca. \ ch: \
AN ! N *
E1 + E4
0! n: 2 |[— n:_o
- 1
b:(lambda () }
(set! n E2
(+ n 1))
" p: p: ' ES
b:(set! n b:(set! n
(+ni))n

(+nl)n

Capturing state in local frames & procedures

GE | make-counter: =

OC

P N
b:(lambda (
(set! n
(+ nl

n)

Lessons from the make-counter example

 Environment diagrams get complicated very quickly

* Rules are meant for the computer to follow,
not to help humans

* Alambda inside a procedure body captures the
frame that was active when the lambda was evaluated

 this effect can be used to store local state

E1
: ! : |
b: (lambda (

(set! n E2
(+ n 1)) @‘
n) . =

‘ b: (set! n b: (set! n

w il 1 ”

Environments are important in other languages

Britain

New England Canada

Unbound variable!!

Macintosh | USA Macintosh | Britain
Milkshake | USA ARSI YN BRE 1and

Canadian bacon | New England Canadian bacon | Canada =2

	6.001 SICP�Environment model
	Can you figure out why this code works?
	What the EM is:
	A shift in viewpoint
	Frame: a table of bindings
	Environment: a sequence of frames
	Evaluation in the environment model
	Name-rule
	Define-rule
	Set!-rule
	Define versus Set!
	Your turn: evaluate the following in order
	Double bubble: how to draw a procedure
	Lambda-rule
	To apply a compound procedure P to arguments:
	Achieving Inner Peace (and A Good Grade), Part II
	 (square 4) | GE
	Example: inc-square
	Example cont'd: (inc-square 4) | GE
	Example cont'd: (square y) | E1
	Lessons from the inc-square example
	Example: make-counter
	(define ca (make-counter 0)) | GE
	(ca) | GE
	(ca) | GE
	(define cb (make-counter 0)) | GE
	(cb) | GE
	Capturing state in local frames & procedures
	Lessons from the make-counter example
	Environments are important in other languages

