
1

6.001 SICP

Interpretation

• Parts of an interpreter

• Arithmetic calculator

• Names

• Conditionals and if

• Storing procedures in the environment

• Environment as explicit parameter

• Defining new procedures

2

Why do we need an interpreter?

• Abstractions let us bury details and focus on use of

modules to solve large systems

• We need a process to unwind abstractions at execution

time to deduce meaning

• We have already seen such a process – the Environment

Model

• Now want to describe that process as a procedure

3

Stages of an interpreter

"(average 40 (+ 5 5))"

(average 40 (

+ 5 5))

40symbol

average

5symbol + 5

25

Lexical analyzer

Parser

Evaluator

Environment

Printer

"25"

input to each stage

4

Role of each part of the interpreter

• Lexical analyzer

• break up input string into "words" called tokens

• Parser

• convert linear sequence of tokens to a tree

• like diagramming sentences in elementary school

• also convert self-evaluating tokens to their internal values

– e.g., #f is converted to the internal false value

• Evaluator

• follow language rules to convert parse tree to a value

• read and modify the environment as needed

• Printer

• convert value to human-readable output string

5

Goal of today’s lecture

• Implement an interpreter

• Only write evaluator and environment

• Use Scheme's reader for lexical analysis and parsing

• Use Scheme's printer for output

• To do this, our language must resemble Scheme

• Call the language scheme*

• All names end with a star to distinguish from Scheme

names

• Start with interpreter for simple arithmetic expressions

• Progressively add more features

6

1. Arithmetic calculator

Want to evaluate arithmetic expressions of two arguments,

like:

(plus* 24 (plus* 5 6))

7

(define (tag-check e sym) (and (pair? e) (eq? (car e) sym)))

(define (sum? e) (tag-check e 'plus*))

(define (eval exp)

(cond

((number? exp) exp)

((sum? exp) (eval-sum exp))

(else

(error "unknown expression " exp))))

(define (eval-sum exp)

(+ (eval (cadr exp)) (eval (caddr exp))))

(eval '(plus* 24 (plus* 5 6)))

1. Arithmetic calculator

8

We are just walking through a tree …

24plus*

65plus*

(eval)

24plus*

65plus*

sum? checks the tag

9

We are just walking through a tree …

(eval-sum)

24plus*

65plus*

65plus*

(+ (eval 24) (eval))

(+ (eval 5) (eval 6))

10

1. Arithmetic calculator

(plus* 24 (plus* 5 6))

• What are the argument and return values of eval each

time it is called in the evaluation of this expression?

(eval '(plus* 24 (plus* 5 6)))

(eval-sum '(plus* 24 (plus* 5 6)))

(eval 24) (eval '(plus* 5 6))

(eval-sum '(plus* 5 6))

(eval 5) (eval 6)

24

5 6

11

11

35

35

11

1. Things to observe

•cond determines the expression type

• No work to do on numbers

• Scheme's reader has already done the work

• It converts a sequence of characters like "24" to an

internal binary representation of the number 24

•eval-sum recursively calls eval on both argument

expressions

12

2. Names

• Extend the calculator to store intermediate results as

named values

(define* x* (plus* 4 5)) store result as x*

(plus* x* 2) use that result

• Store bindings between names and values in a table

13

(define (define? exp) (tag-check exp 'define*))

(define (eval exp)

(cond

((number? exp) exp)

((sum? exp) (eval-sum exp))

((symbol? exp) (lookup exp))

((define? exp) (eval-define exp))

(else

(error "unknown expression " exp))))

; table ADT from prior lecture:

; make-table void -> table

; table-get table, symbol -> (binding | null)

; table-put! table, symbol, anytype -> undef

; binding-value binding -> anytype

(define environment (make-table))

2. Names

14

(define (lookup name)

(let ((binding (table-get environment name)))

(if (null? binding)

(error "unbound variable: " name)

(binding-value binding))))

(define (eval-define exp)

(let ((name (cadr exp))

(defined-to-be (caddr exp)))

(table-put! environment name (eval defined-to-be))

'undefined))

(eval '(define* x* (plus* 4 5)))

(eval '(plus* x* 2))

2. Names …

How many times is eval called in these two evaluations?

4 evals – define*, plus*, 4, 5

3 evals – plus*, x*, 2

15

Evaluation of page 2 lines 36 and 37

(eval '(define* x* (plus* 4 5)))

(eval '(plus* 4 5))

(eval 4) ==> 4

(eval 5) ==> 5

==> 9 names values

x* 9==> undefined

(eval '(plus* x* 2))

(eval 'x*) ==> 9

(eval 2) ==> 2

==> 11

• Show argument and return values of eval for each call

• Show the environment each time it changes

environment

16

2. Things to observe

• Use scheme function symbol? to check for a name

• the reader converts sequences of characters like "x*"

to symbols in the parse tree

• Can use any implementation of the table ADT

•eval-define recursively calls eval on the second

subtree but not on the first one

•eval-define returns a special undefined value

17

3. Conditionals and if

• Extend the calculator to handle predicates and if:

(if* (greater* y* 6) (plus* y* 2) 15)

greater* an operation that returns a boolean

if* an operation that evaluates the first subexp,

and checks if its value is true or false

• What are the argument and return values of eval each

time it is called in the expression above?

18

(define (greater? exp) (tag-check exp 'greater*))

(define (if? exp) (tag-check exp 'if*))

(define (eval exp)

(cond ...

((greater? exp) (eval-greater exp))

((if? exp) (eval-if exp))

(else (error "unknown expression " exp))))

(define (eval-greater exp)

(> (eval (cadr exp)) (eval (caddr exp))))

(define (eval-if exp)

(let ((predicate (cadr exp))

(consequent (caddr exp))

(alternative (cadddr exp)))

(let ((test (eval predicate)))

(cond

((eq? test #t) (eval consequent))

((eq? test #f) (eval alternative))

(else (error "predicate not boolean: "

predicate))))))

(eval '(define* y* 9))

(eval '(if* (greater* y* 6) (plus* y* 2) 15))

3. Conditionals and If

Note: if* is stricter

than Scheme’s if

19

We are just walking through a tree …

(eval)

6y*greater*

if*

6y*greater* 2y*plus*

15

Then (eval) or (eval 15)

2y*plus*

20

Evaluation of page 3 line 32

(eval '(if* (greater* y* 6) (plus* y* 2) 15))

(eval '(greater* y* 6))

(eval 'y*) ==> 9

(eval 6) ==> 6

==> #t

(eval '(plus* y* 2))

(eval 'y*) ==> 9

(eval 2) ==> 2

==> 11

==> 11

21

3. Things to observe

•eval-greater is just like eval-sum from page 1

• recursively call eval on both argument expressions

• call Scheme > to compute value

•eval-if does not call eval on all argument expressions:

• call eval on the predicate

• call eval either on the consequent or on the alternative

but not both

• this is the mechanism that makes if* a special form

22

4. Store operators in the environment

• Want to add lots of operators but keep eval short

• Operations like plus* and greater* are similar

• evaluate all the argument subexpressions

• perform the operation on the resulting values

• Call this standard pattern an application

• Implement a single case in eval for all applications

• Approach:

•eval the first subexpression of an application

• put a name in the environment for each operation

• value of that name is a procedure

• apply the procedure to the operands

23

(define (application? e) (pair? e))

(define (eval exp)

(cond

((number? exp) exp)

((symbol? exp) (lookup exp))

((define? exp) (eval-define exp))

((if? exp) (eval-if exp))

((application? exp) (apply (eval (car exp))

(map eval (cdr exp))))

(else

(error "unknown expression " exp))))

(define scheme-apply apply) ;; rename scheme’s apply so we can reuse the name

(define (apply operator operands)

(if (primitive? operator)

(scheme-apply (get-scheme-procedure operator) operands)

(error "operator not a procedure: " operator)))

;; primitive: an ADT that stores scheme procedures

(define prim-tag 'primitive)

(define (make-primitive scheme-proc)(list prim-tag scheme-proc))

(define (primitive? e) (tag-check e prim-tag))

(define (get-scheme-procedure prim) (cadr prim))

(define environment (make-table))

(table-put! environment 'plus* (make-primitive +))

(table-put! environment 'greater* (make-primitive >))

(table-put! environment 'true* #t)

4. Store operators

in the environment

24

Environment after eval 4 line 36

names values

z* 9

true* #t

greater*

plus*

symbol

primitive

scheme

procedure

>
symbol

primitive

scheme

procedure

+

(eval '(define* z* 9))

(eval '(plus* 9 6))

(eval '(if* true* 10 15))

25

Evaluation of eval 4 line 37

(eval '(plus* 9 6))

(apply (eval 'plus*) (map eval '(9 6)))

(apply '(primitive #[add])

(list (eval 9) (eval 6))

(apply '(primitive #[add]) '(9 6))

(scheme-apply

(get-scheme-procedure '(primitive #[add]))

'(9 6))

(scheme-apply #[add] '(9 6))

15

evaluating a

combination…

…turns into

applying a proc to

a set of values

26

Evaluation of eval 4 line 38

(eval '(if* true* 10 15))

(eval-if '(if* true* 10 15))

(let ((test (eval 'true*))) (cond ...))

(let ((test (lookup 'true*))) (cond ...))

(let ((test #t)) (cond ...))

(eval 10)

10

Apply is never called!

27

4. Things to observe

• applications must be the last case in eval

• no tag check

• apply is never called in line 38

• applications evaluate all subexpressions

• expressions that need special handling, like if*,

gets their own case in eval

28

5. Environment as explicit parameter

• Change from
(eval '(plus* 6 4))

to
(eval '(plus* 6 4) environment)

• All procedures that call eval now have extra argument

•lookup and define use environment from argument

• No other change from evaluator 4

• Only nontrivial code: case for application? in eval

29

(define (eval exp env)

(cond

((number? exp) exp)

((symbol? exp) (lookup exp env))

((define? exp) (eval-define exp env))

((if? exp) (eval-if exp env))

((application? exp) (apply (eval (car exp) env)

(map (lambda (e) (eval e env))

(cdr exp))))

(else (error "unknown expression " exp))))

(define (lookup name env)

(let ((binding (table-get env name)))

(if (null? binding)

(error "unbound variable: " name)

(binding-value binding))))

(define (eval-define exp env)

(let ((name (cadr exp))

(defined-to-be (caddr exp)))

(table-put! env name (eval defined-to-be env))

'undefined))

(define (eval-if exp env)

(let ((predicate (cadr exp))

(consequent (caddr exp))

(alternative (cadddr exp)))

(let ((test (eval predicate env)))

(cond

((eq? test #t) (eval consequent env))

((eq? test #f) (eval alternative env))

(else (error ”predicate not boolean: "

predicate))))))

5. Environment as
explicit parameter

This change is boring!

Exactly the same

functionality as #4.

(eval '(define* z* (plus* 4 5))

environment)

(eval '(if* (greater* z* 6) 10 15)

environment)

30

6. Defining new procedures

• Want to add new procedures

• For example, a scheme* procedure:

(define* twice* (lambda* (x*) (plus* x* x*)))

(twice* 4)

• Strategy:

• Add a case for lambda* to eval

– the value of lambda* is a compound procedure

• Extend apply to handle compound procedures

• Implement environment model

31

(define (lambda? e) (tag-check e 'lambda*))

(define (eval exp env)

(cond ((number? exp) exp)

((symbol? exp) (lookup exp env))

((define? exp) (eval-define exp env))

((if? exp) (eval-if exp env))

((lambda? exp) (eval-lambda exp env))

((application? exp) (apply (eval (car exp) env)

(map (lambda (e) (eval e env))

(cdr exp))))

(else (error "unknown expression " exp))))

(define (eval-lambda exp env)

(let ((args (cadr exp))

(body (caddr exp)))

(make-compound args body env)))

(define (apply operator operands)

(cond ((primitive? operator)

(scheme-apply (get-scheme-procedure operator) operands))

((compound? operator)

(eval (body operator)

(extend-env-with-new-frame

(parameters operator)

operands

(env operator))))

(else (error "operator not a procedure: " operator))))

;; ADT that implements the “double bubble”

(define compound-tag 'compound)

(define (make-compound parameters body env)

(list compound-tag parameters body env))

(define (compound? exp) (tag-check exp compound-tag))

(define (parameters compound) (cadr compound))

(define (body compound) (caddr compound))

(define (env compound) (cadddr compound))

6. Defining new

procedures

32

Implementation of lambda*

(eval '(lambda* (x*) (plus* x* x*)) GE)

(eval-lambda '(lambda* (x*) (plus* x* x*)) GE)

(make-compound '(x*) '(plus* x* x*) GE)

(list 'compound '(x*) '(plus* x* x*) GE)

symbol

compound

symbol

plus*
symbol

x*

GE

This data

structure is

a procedure!

33

Defining a named procedure

(eval '(define* twice*

(lambda* (x*) (plus* x* x*))) GE)

names values

z* 9

true* #t

plus*

twice*

symbol

primitive

scheme

procedure +

symbol

compound

symbol

plus*
symbol

x*

34

Implementation of apply (1)

(eval '(twice* 4) GE)

(apply (eval 'twice* GE)

(map (lambda (e) (eval e GE)) '(4)))

(apply (list 'compound '(x*) '(plus* x* x*) GE)

'(4))

(eval '(plus* x* x*)

(extend-env-with-new-frame '(x*) '(4) GE))

(eval '(plus* x* x*) E1)

some-other-environment)

name value

x* 4

GE

E1

A

35

Implementation of apply (2)

(eval '(plus* x* x*) E1)

(apply (eval 'plus* E1)

(map (lambda (e) (eval e E1)) '(x* x*)))

(apply '(primitive #[add]) (list (eval 'x* E1)

(eval 'x* E1)))

(apply '(primitive #[add]) '(4 4))

(scheme-apply #[add] '(4 4))

8

name value

x* 4

GE

E1

A

36

Implementation of environment model

• Environment = list<table>

name value

x* 4

GE

E1

A

E1

name value

x* 4
name value

plus* (primitive #[add])

greater* (primitive #[grt])

...

GE

37

; Environment model code (part of eval 6)

; Environment = list<table>

(define (extend-env-with-new-frame names values env)

(let ((new-frame (make-table)))

(make-bindings! names values new-frame)

(cons new-frame env)))

(define (make-bindings! names values table)

(for-each

(lambda (name value) (table-put! table name value))

names values))

; the initial global environment

(define GE

(extend-env-with-new-frame

(list 'plus* 'greater*)

(list (make-primitive +) (make-primitive >))

nil))

; lookup searches the list of frames for the first match

(define (lookup name env)

(if (null? env)

(error "unbound variable: " name)

(let ((binding (table-get (car env) name)))

(if (null? binding)

(lookup name (cdr env))

(binding-value binding)))))

; define changes the first frame in the environment

(define (eval-define exp env)

(let ((name (cadr exp))

(defined-to-be (caddr exp)))

(table-put! (car env) name (eval defined-to-be env))

'undefined))

(eval '(define* twice* (lambda* (x*) (plus* x* x*))) GE)

(eval '(twice* 4) GE)

38

Summary

• Cycle between eval and apply is the core of the evaluator

• eval calls apply with operator and argument values

• apply calls eval with expression and environment

• no pending operations on either call

– an iterative algorithm if the expression is iterative

• What is still missing from scheme* ?

• ability to evaluate a sequence of expressions

• data types other than numbers and booleans

39

Cute Punchline

• Everything in these lectures would still work if you deleted the stars

from the names.

• We just wrote (most of) a Scheme interpreter in Scheme.

• Seriously nerdly, eh?

• The language makes things explicit

– e.g., procedures and procedure app in environment

• More generally

– Writing a precise definition for what the Scheme language

means

– Describing computation in a computer language forces

precision and completeness

– Sets the foundation for exploring variants of Scheme

