6.001 SICP
Further Variations on a Scheme

Beyond Scheme — more language variants

Lazy evaluation
« Complete conversion — normal order evaluator
« Upward compatible extension — lazy, lazy-memo

Punchline: Small edits to the interpreter give us a new
programming language

1/31

Stages of an interpreter |input to each stage

<}exical analyze{) "(average 4 (+ 5 5))"

(average 4 (
<%arse€>

+ 5 5))

<%valuato€> ol Tyl T
1 1

I symbol | 4 1 g

<%nvironmen€> average

Ul =

<%rinte€> 7

" '7 " 2/31

Evaluation model

Rules of evaluation:

If expression is self-evaluating (e.g. a number), just return value

If expression is a name, look up value associated with that name in
environment

If expression is a lambda, create procedure and return

If expression is special form (e.g. if) follow specific rules for evaluating
subexpressions

If expression is a compound expression
« Evaluate subexpressions in any order

« If first subexpression is primitive (or built-in) procedure, just apply it
to values of other subexpressions

« If first subexpression is compound procedure (created by lambda),
evaluate the body of the procedure in a new environment, which
extends the environment of the procedure with a new frame in
which the procedure’s parameters are bound to the supplied
arguments

3/31

Alternative models for computation

» Applicative Order (aka Eager evaluation):
 evaluate all arguments, then apply operator

 Normal Order (aka Lazy evaluation):
* go ahead and apply operator with unevaluated argument
subexpressions
 evaluate a subexpression only when value is needed
* to print
* by primitive procedure (that is, primitive procedures
are "strict" in their arguments)

4/31

Applicative Order Example

(define (foo x)
(write-line "inside foo")
(+ x x))

(foo (begin (write-line "eval arg") 222))

=> (begin (write-line “eval arg”) 222)
=> 222

=> (begin (write-line "inside foo")
(+ 222 222))

We first evaluated argument, then

substituted value into the body of

eval arg
the procedure

inside foo

=> 444

5/31

Normal Order Example

(define (foo x)
(write-line "inside foo")
(+ x x))

(foo (begin (write-line "eval arg") 222))

=> (begin (write-line "inside foo") From body

(+ (begin (w-1 "eval arg") 222) > | of foo

(begin (w-1 "eval arg") 222)))
./

As if we substituted the
unevaluated expression in the

eval arg body of the procedure
eval arg

inside foo

=> 444

6/31

Applicative Order vs. Normal Order

(define (foo x)
(write-line "inside foo")
(+ x x))

(foo (begin (write-line "eval arg") 222))

Applicative order Normal order
eval arg inside foo
inside foo eval arg
Think of as substituting eval arg
values for variables in _ _ _
expressions Think of as expanding expressions

until only involve primitive
operations and data structures

7/31

Normal order (lazy evaluation) versus applicative order

« How can we change our evaluator to use normal order?

» Create “delayed objects” — expressions whose
evaluation has been deferred

« Change the evaluator to force evaluation only when
needed

« Why is normal order useful?
« What kinds of computations does it make easier?

8/31

Mapply — the original version

(define (mapply procedure
(cond ((primitive-proce
(apply-primitive
procedure

arguments)
dure? procedure)
-procedure

arguments))—

Actual values

((compound-procedur
(eval-sequence
(procedure-body p
(extend-environme
(procedure-pa

e’ procedure)

rocedure)
nt

rameters prnhpdu

re)

arguments <

Actual values

(procedure-environment procedure))))
(else (error "Unknown procedure" procedure))))

9/31

How can we implement lazy evaluation?

(define (l-apply procedure arguments |env,; ; changed

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure Delayed
procedure expressions
Need to convert

(list-of-arg-values arguments env)|))
to actual values
(compound-procedure? procedure)

L
A

(l1-eval-sequence

(procedure-body procedure) Delayed

Need to create (extend-environment Expressions

delayed version
of arguments

that will lead to
values (procedure-environment procedure))))

(procedure-parameters procedure)

klist—of—delayed—args arguments env)

(else (error "Unknown proc" procedure))))

10/31

Lazy Evaluation — 1-eval

» Most of the work is in 1-apply; need to call it with:

« actual value for the operator
* just expressions for the operands
 the environment...

(define (l-eval exp env)
(cond ((self-evaluating? exp) exp)

((application? exp

(l1-apply (actual-value (operator exp) env)

(operands exp)+—

env))

Remember — this is just
tree structure!!

(else (error "Unknown expression" exp))))

11/31

Meval versus L-Eval

(define (meval exp env)
(cond ((self-evaluating? exp) exp)

((cond? exp) (meval (cond->if exp) env))

((appl
(mapp

(else

ication? exp)

ly |(meval (operator exp) env)
\(llst—of—values (operands exp) env)))

(define (l-eval exp env)
(cond ((self-evaluating? exp) exp)

((cond? exp)
((application? exp
(l-apply | (actual-value (operator exp) env)

(operands exp)
env))

(else (error "Unknown expression" exp))))

exp))))

12/31

Actual vs. Delayed Values

(define (actual-value exp env)

(force-it| (1-eval exp env)))

(define (list-of-arg-values exps env) Usedwhen applyinga
(if (no-operands? exps) '() primitive procedure
(cons (actual-value (first-operand exps) env)
(list-of-arg-values (rest-operands exps)

env))))

(define (list-of-delayed-args exps env) Used when applying a
(if (no-operands? exps) compound procedure
"()
(cons |(delay-it| (first-operand exps) env)
(list-of-delayed-args (rest-operands exps)
env))))

13/31

Representing Thunks

« Abstractly — a thunk Is a "promise" to return a value when
later needed ("forced")

« Concretely —our —— 73—, -
representation:

thunk exp env

14/31

Thunks — delay-it and force-it

(define (delay-it exp env) (list 'thunk exp env))
(define (thunk? obj) (tagged-list? obj 'thunk))
(define (thunk-exp thunk) (cadr thunk))

(define (thunk-env thunk) (caddr thunk))

(define (force-it obj)
(cond ((thunk? obj)
(actual-value (thunk-exp obj)
(thunk-env obj)))

(else obj)))

(define (actual-value exp env)

(force-it (l-eval exp env)))

15/31

Memo-izing evaluation

* In lazy evaluation, if we reuse an argument, have to
reevaluate each time

 In usual (applicative) evaluation, argument is evaluated
once, and just referenced

« Can we keep track of values once we've obtained them,
and avoid cost of reevaluation?

16/31

Sidebar on memoization

 |[dea of memoization is for a procedure to remember if it has
been called with a particular argument(s) and if so to simply
return the saved value

« Can have problems if mutation is allowed — works best for
functional programming
(define (memoize proc)
(let ((history ‘()))
(lambda (argqg)
(let ((already-there (in-history? arg history)))
(1f already-there
(value already-there)
(let ((return (proc arg)))
(set! history
(insert-history return history))
return))))))

17/31

Sidebar on memoization

(define (memoize proc)
(let ((history ‘())) (define foo (memoize square))

(lLambda (arg)
(let ((already-there (in-history? arg history))) Siore pairings of

(define (square x) (* x X))

(if already-there argument values and
(value already-there) associated procedure
values in history, e.g.

let t [
(let ((return (proc arg))) an A-list
(set! history

(insert-history return history))

return))))))

foo: \ square:y

\ 4

proc:

a

history: ‘()

—— Calling foo will create a

frame here which gives 18/31
access to the history

Memo-izing Thunks

 |dea: once thunk exp has been evaluated, remember it

« If value Is needed again, just return it rather than
recompute

_.i __.i - i /|
 Concretely —-mutate [a thunk exp env
thunk into an
evaluated-thunk
— LT
Why mutuate? — l 1
because other evaluated-| regyult
names or data thunk

structures may
point to this thunk! 10731

Thunks — Memoizing Implementation

(define (evaluated-thunk? obj)
(tagged-1ist? obj 'evaluated-thunk))

(define (thunk-value evaluated-thunk)
(cadr evaluated-thunk))

(define (force-it obj)
(cond ((thunk? obj)
(let ((result (actual-value (thunk-exp obj)
(thunk-env obj))))
(set-car! obj 'evaluated-thunk)
(set-car! (cdr obj) result)
(set-cdr! (cdr obj) '())
result))
((evaluated-thunk? obj) (thunk-value obj))
(else obj)))

20/31

Lazy Evaluation — other changes needed

« Example — need actual predicate value in conditional if...
(define (l-eval-if exp env)
(Lf (true? (actual-value (if-predicate exp) env))
(l1-eval (if-consequent exp) env)

(L-eval (if-alternative exp) env)))

« Example — don't need actual value in assignment...
(define (l-eval-assignment exp env)
(set-variable-value!
(assignment-variable exp)
(l1-eval (assignment-value exp) env)

env)
'ok)

21/31

Summary of lazy evaluation

» This completes changes to evaluator

« Apply takes a set of expressions for arguments and an
environment

— Forces evaluation of arguments for primitive
procedure application

— Else defers evaluation and unwinds computation
further

— Need to pass in environment since don’t know when
it will be needed

* Need to force evaluation on branching operations (e.g.
If)

« Otherwise small number of changes make big change
In behavior of language

22/31

Laziness and Language Design

« We have a dilemma with lazy evaluation
« Advantage: only do work when value actually needed
» Disadvantages

— not sure when expression will be evaluated; can be
very big issue in a language with side effects

— may evaluate same expression more than once

 Memoization doesn't fully resolve our dilemma
« Advantage: Evaluate expression at most once
 Disadvantage: What if we want evaluation on each use?

« Alternative approach: give programmer control!

23/31

Variable Declarations: 1lazy and lazy-memo

« Handle lazy and lazy-memo extensions in an upward-
compatible fashion.;

(lambda (a (b lazy) c¢ (d lazy-memo)) ...)

« "a", "c" are usual variables (evaluated before procedure
application)

* "p" Is lazy; it gets (re)-evaluated each time its value is
actually needed

« "d" Is lazy-memo; it gets evaluated the first time its
value is needed, and then that value is returned again
any other time it is needed again.

24/31

Syntax Extensions — Parameter Declarations

(define (first-variable wvar-decls) (car wvar-decls))
(define (rest-variables wvar-decls) (cdr var-decls))
(define declaration? pair?)

(define (parameter-name wvar-decl)

(1f (pair? var-decl) (car var-decl) wvar-decl))

(define (lazy? var-decl)

(and (pair? wvar-decl) (eq? 'lazy (cadr wvar-decl))))
(define (memo? wvar-decl)

(and (pair? wvar-decl)

(eq? 'lazy-memo (cadr var-decl))))

25/31

Controllably Memo-izing Thunks

e thunk

 thunk-memo
e evaluated-thunk

when
forced

— never gets memoized
— first eval is remembered

— memoized-thunk that has

already been evaluated

— LT ol T
T
thunk- exp env
memo
— LT U
| 1
evaluated-| reosult

thunk

26/31

A new version of delay-it

« Look at the variable declaration to do the right thing...

(define (delay-it decl exp env)
(cond ((not (declaration? decl))
(1-eval exp env))
((lazy? decl)
(1ist 'thunk exp env))
((memo? decl)
(1ist 'thunk-memo exp env))

(else (error "unknown declaration:" decl))))

27/31

Change to force-it

(define (force-it obj)
(cond ((thunk? obj) ;eval, but don't remember it
(actual-value (thunk-exp obj)
(thunk-env obj)))
((memoized-thunk? obj) ;eval and remember
(let ((result
(actual-value (thunk-exp obj)
(thunk-env obj))))
(set-car! obj 'evaluated-thunk)
(set-car! (cdr obj) result)
(set-cdr! (cdr obj) '())
result))
((evaluated-thunk? obj) (thunk-value obj))
(else obj)))

28/31

Changes to l-apply

« Key: in |-apply, only delay "lazy" or "lazy-memo" params
* make thunks for "lazy" parameters
 make memoized-thunks for "lazy-memo" parameters

(define (l-apply procedure arguments env)
(cond ((primitive-procedure? procedure)
.) ; as before; apply on list-of-arg-values
((compound procedure? procedure)
(l-eval-sequence
(procedure-body procedure)
(let ((params (procedure-parameters procedure)))
(extend-environment
(map parameter-name params)
(list-of-delayed-args params arguments env)
(procedure-environment procedure)))))
(else (error "Unknown proc" procedure))))

29/31

Deciding when to evaluate an argument...

* Process each variable declaration together with application
subexpressions — delay as necessary:.

(define (list-of-delayed-args var-decls exps env)
(Lf (no-operands? exps)
'()
(cons (delay-it (first-variable var-decls)
(first-operand exps)
env)
(list-of-delayed-args
(rest-variables wvar-decls)

(rest-operands exps)
env))))

30/31

Summary

« Lazy evaluation — control over evaluation models
« Convert entire language to normal order
« Upward compatible extension
—lazy & lazy-memo parameter declarations

« We have created a new language (with new syntax), using
only relatively small changes to the interpreter.

31/31

