
1/31

6.001 SICP

Further Variations on a Scheme

Beyond Scheme – more language variants

Lazy evaluation

• Complete conversion – normal order evaluator

• Upward compatible extension – lazy, lazy-memo

Punchline: Small edits to the interpreter give us a new

programming language

2/31

Stages of an interpreter

"(average 4 (+ 5 5))"

(average 4 (

+ 5 5))

4symbol

average

5symbol + 5

7

Lexical analyzer

Parser

Evaluator

Environment

Printer

"7"

input to each stage

3/31

Evaluation model

Rules of evaluation:

• If expression is self-evaluating (e.g. a number), just return value

• If expression is a name, look up value associated with that name in
environment

• If expression is a lambda, create procedure and return

• If expression is special form (e.g. if) follow specific rules for evaluating
subexpressions

• If expression is a compound expression

• Evaluate subexpressions in any order

• If first subexpression is primitive (or built-in) procedure, just apply it
to values of other subexpressions

• If first subexpression is compound procedure (created by lambda),
evaluate the body of the procedure in a new environment, which
extends the environment of the procedure with a new frame in
which the procedure’s parameters are bound to the supplied
arguments

4/31

Alternative models for computation

• Applicative Order (aka Eager evaluation):

• evaluate all arguments, then apply operator

• Normal Order (aka Lazy evaluation):
• go ahead and apply operator with unevaluated argument
subexpressions
• evaluate a subexpression only when value is needed

• to print
• by primitive procedure (that is, primitive procedures
are "strict" in their arguments)

5/31

Applicative Order Example

(define (foo x)

(write-line "inside foo")

(+ x x))

(foo (begin (write-line "eval arg") 222))

We first evaluated argument, then

substituted value into the body of

the procedure
eval arg

=> (begin (write-line "inside foo")

(+ 222 222))

=> 222

=> (begin (write-line “eval arg”) 222)

=> 444

inside foo

6/31

Normal Order Example

(define (foo x)

(write-line "inside foo")

(+ x x))

(foo (begin (write-line "eval arg") 222))

As if we substituted the

unevaluated expression in the

body of the procedure

=> (begin (write-line "inside foo")

(+ (begin (w-l "eval arg") 222)

(begin (w-l "eval arg") 222)))

inside foo

eval arg

eval arg

=> 444

From body

of foo

7/31

Applicative Order vs. Normal Order

(define (foo x)

(write-line "inside foo")

(+ x x))

(foo (begin (write-line "eval arg") 222))

inside foo

eval arg

eval arg

Normal order

eval arg

inside foo

Applicative order

Think of as expanding expressions

until only involve primitive

operations and data structures

Think of as substituting

values for variables in

expressions

8/31

Normal order (lazy evaluation) versus applicative order

• How can we change our evaluator to use normal order?

• Create “delayed objects” – expressions whose

evaluation has been deferred

• Change the evaluator to force evaluation only when

needed

• Why is normal order useful?

• What kinds of computations does it make easier?

9/31

Mapply – the original version

(define (mapply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure

procedure

arguments))

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

arguments

(procedure-environment procedure))))

(else (error "Unknown procedure" procedure))))

Actual values

Actual values

10/31

How can we implement lazy evaluation?

(define (l-apply procedure arguments env) ; changed

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure

procedure

(list-of-arg-values arguments env)))

((compound-procedure? procedure)

(l-eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

(list-of-delayed-args arguments env)

(procedure-environment procedure))))

(else (error "Unknown proc" procedure))))

Delayed

expressions

Delayed

Expressions

Need to convert

to actual values

Need to create

delayed version

of arguments

that will lead to

values

11/31

Lazy Evaluation – l-eval

• Most of the work is in l-apply; need to call it with:

• actual value for the operator

• just expressions for the operands

• the environment...

(define (l-eval exp env)

(cond ((self-evaluating? exp) exp)

...

((application? exp

(l-apply (actual-value (operator exp) env)

(operands exp)

env))

(else (error "Unknown expression" exp))))

Remember – this is just

tree structure!!

12/31

Meval versus L-Eval

(define (meval exp env)

(cond ((self-evaluating? exp) exp)

…

((cond? exp) (meval (cond->if exp) env))

((application? exp)

(mapply (meval (operator exp) env)

(list-of-values (operands exp) env)))

(else (error "Unknown expression type -- EVAL" exp))))

(define (l-eval exp env)

(cond ((self-evaluating? exp) exp)

...

((cond? exp)

((application? exp

(l-apply (actual-value (operator exp) env)

(operands exp)

env))

(else (error "Unknown expression" exp))))

13/31

Actual vs. Delayed Values

(define (actual-value exp env)

(force-it (l-eval exp env)))

(define (list-of-delayed-args exps env)

(if (no-operands? exps)

'()

(cons (delay-it (first-operand exps) env)

(list-of-delayed-args (rest-operands exps)

env))))

(define (list-of-arg-values exps env)

(if (no-operands? exps) '()

(cons (actual-value (first-operand exps) env)

(list-of-arg-values (rest-operands exps)

env))))

Used when applying a

primitive procedure

Used when applying a

compound procedure

14/31

Representing Thunks

• Abstractly – a thunk is a "promise" to return a value when

later needed ("forced")

• Concretely – our

representation:

thunk envexp

15/31

Thunks – delay-it and force-it

(define (delay-it exp env) (list 'thunk exp env))

(define (thunk? obj) (tagged-list? obj 'thunk))

(define (thunk-exp thunk) (cadr thunk))

(define (thunk-env thunk) (caddr thunk))

(define (force-it obj)

(cond ((thunk? obj)

(actual-value (thunk-exp obj)

(thunk-env obj)))

(else obj)))

(define (actual-value exp env)

(force-it (l-eval exp env)))

16/31

Memo-izing evaluation

• In lazy evaluation, if we reuse an argument, have to

reevaluate each time

• In usual (applicative) evaluation, argument is evaluated

once, and just referenced

• Can we keep track of values once we’ve obtained them,

and avoid cost of reevaluation?

17/31

Sidebar on memoization

• Idea of memoization is for a procedure to remember if it has

been called with a particular argument(s) and if so to simply

return the saved value

• Can have problems if mutation is allowed – works best for

functional programming
(define (memoize proc)

(let ((history ‘()))

(lambda (arg)

(let ((already-there (in-history? arg history)))

(if already-there

(value already-there)

(let ((return (proc arg)))

(set! history

(insert-history return history))

return))))))

18/31

Sidebar on memoization

(define (memoize proc)

(let ((history ‘()))

(lambda (arg)

(let ((already-there (in-history? arg history)))

(if already-there

(value already-there)

(let ((return (proc arg)))

(set! history

(insert-history return history))

return))))))

proc:

history: ‘()

foo:

(define (square x) (* x x))

(define foo (memoize square))

square:

Calling foo will create a

frame here which gives

access to the history

Store pairings of

argument values and

associated procedure

values in history, e.g.

an A-list

19/31

Memo-izing Thunks

• Idea: once thunk exp has been evaluated, remember it

• If value is needed again, just return it rather than

recompute

thunk envexp• Concretely – mutate a
thunk into an

evaluated-thunk

evaluated-

thunk
result

Why mutuate? –

because other

names or data

structures may

point to this thunk!

20/31

Thunks – Memoizing Implementation

(define (evaluated-thunk? obj)

(tagged-list? obj 'evaluated-thunk))

(define (thunk-value evaluated-thunk)

(cadr evaluated-thunk))

(define (force-it obj)

(cond ((thunk? obj)

(let ((result (actual-value (thunk-exp obj)

(thunk-env obj))))

(set-car! obj 'evaluated-thunk)

(set-car! (cdr obj) result)

(set-cdr! (cdr obj) '())

result))

((evaluated-thunk? obj) (thunk-value obj))

(else obj)))

21/31

Lazy Evaluation – other changes needed

• Example – need actual predicate value in conditional if...
(define (l-eval-if exp env)

(if (true? (actual-value (if-predicate exp) env))

(l-eval (if-consequent exp) env)

(l-eval (if-alternative exp) env)))

• Example – don't need actual value in assignment...
(define (l-eval-assignment exp env)

(set-variable-value!

(assignment-variable exp)

(l-eval (assignment-value exp) env)

env)

'ok)

22/31

Summary of lazy evaluation

• This completes changes to evaluator

• Apply takes a set of expressions for arguments and an
environment

– Forces evaluation of arguments for primitive
procedure application

– Else defers evaluation and unwinds computation
further

– Need to pass in environment since don’t know when
it will be needed

• Need to force evaluation on branching operations (e.g.
if)

• Otherwise small number of changes make big change
in behavior of language

23/31

Laziness and Language Design

• We have a dilemma with lazy evaluation

• Advantage: only do work when value actually needed

• Disadvantages

– not sure when expression will be evaluated; can be
very big issue in a language with side effects

– may evaluate same expression more than once

• Alternative approach: give programmer control!

• Memoization doesn't fully resolve our dilemma
• Advantage: Evaluate expression at most once
• Disadvantage: What if we want evaluation on each use?

24/31

Variable Declarations: lazy and lazy-memo

• Handle lazy and lazy-memo extensions in an upward-

compatible fashion.;

(lambda (a (b lazy) c (d lazy-memo)) ...)

• "a", "c" are usual variables (evaluated before procedure

application)

• "b" is lazy; it gets (re)-evaluated each time its value is

actually needed

• "d" is lazy-memo; it gets evaluated the first time its

value is needed, and then that value is returned again

any other time it is needed again.

25/31

Syntax Extensions – Parameter Declarations

(define (first-variable var-decls) (car var-decls))

(define (rest-variables var-decls) (cdr var-decls))

(define declaration? pair?)

(define (parameter-name var-decl)

(if (pair? var-decl) (car var-decl) var-decl))

(define (lazy? var-decl)

(and (pair? var-decl) (eq? 'lazy (cadr var-decl))))

(define (memo? var-decl)

(and (pair? var-decl)

(eq? 'lazy-memo (cadr var-decl))))

26/31

Controllably Memo-izing Thunks

•thunk – never gets memoized
•thunk-memo – first eval is remembered

•evaluated-thunk – memoized-thunk that has
already been evaluated

thunk-

memo
envexp

evaluated-

thunk
result

when

forced

27/31

A new version of delay-it

• Look at the variable declaration to do the right thing...

(define (delay-it decl exp env)

(cond ((not (declaration? decl))

(l-eval exp env))

((lazy? decl)

(list 'thunk exp env))

((memo? decl)

(list 'thunk-memo exp env))

(else (error "unknown declaration:" decl))))

28/31

Change to force-it

(define (force-it obj)

(cond ((thunk? obj) ;eval, but don't remember it

(actual-value (thunk-exp obj)

(thunk-env obj)))

((memoized-thunk? obj) ;eval and remember

(let ((result

(actual-value (thunk-exp obj)

(thunk-env obj))))

(set-car! obj 'evaluated-thunk)

(set-car! (cdr obj) result)

(set-cdr! (cdr obj) '())

result))

((evaluated-thunk? obj) (thunk-value obj))

(else obj)))

29/31

Changes to l-apply

• Key: in l-apply, only delay "lazy" or "lazy-memo" params

• make thunks for "lazy" parameters

• make memoized-thunks for "lazy-memo" parameters

(define (l-apply procedure arguments env)

(cond ((primitive-procedure? procedure)

...) ; as before; apply on list-of-arg-values

((compound-procedure? procedure)

(l-eval-sequence

(procedure-body procedure)

(let ((params (procedure-parameters procedure)))

(extend-environment

(map parameter-name params)

(list-of-delayed-args params arguments env)

(procedure-environment procedure)))))

(else (error "Unknown proc" procedure))))

30/31

Deciding when to evaluate an argument...

• Process each variable declaration together with application

subexpressions – delay as necessary:

(define (list-of-delayed-args var-decls exps env)

(if (no-operands? exps)

'()

(cons (delay-it (first-variable var-decls)

(first-operand exps)

env)

(list-of-delayed-args

(rest-variables var-decls)

(rest-operands exps)

env))))

31/31

Summary

• Lazy evaluation – control over evaluation models

• Convert entire language to normal order

• Upward compatible extension

– lazy & lazy-memo parameter declarations

• We have created a new language (with new syntax), using

only relatively small changes to the interpreter.

