
1

Register Machines

• Connecting evaluators to low level machine code

2

Plan

• Design a central processing unit (CPU) from:

• wires

• logic (networks of AND gates, OR gates, etc)

• registers

• control sequencer

• Our CPU will interpret Scheme as its machine language

• Today: Iterative algorithms in hardware

• Recursive algorithms in hardware

• Then: Scheme in hardware (EC-EVAL)

• EC-EVAL exposes more details of scheme than M-EVAL

3

The ultimate goal

GCD
24

4

4
48

30

6

Ultimate

machine

48

30

6

Circuit

diagram

Universal

machine

(define (gcd a b)

….)

48

30

6

Procedure

description

4

A universal machine

• Existence of a universal machine has major implications for

what “computation” means

• Insight due to Alan Turing (1912-1954)

• “On computable numbers with an application to the

Entscheidungsproblem, A.M. Turing, Proc. London Math.

Society, 2:42, 1937

• Hilbert’s Entscheidungsproblem (decision problem) 1900:

Is mathematics decidable? That is, is there a definite

method guaranteed to produce a correct decision about all

assertions in mathematics?

• Church-Turing thesis: Any procedure that could

reasonably be considered to be an effective procedure can

be carried out by a universal machine (and thus by any

universal machine)

5

Euclid's algorithm to compute GCD

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

• Given some numbers a and b

• If b is 0, done (the answer is a)

• If b is not 0:

• the new value of a is the old value of b

• the new value of b is the remainder of a  b

• start again

6

Example register machine: datapaths

a b =

0rem

t

register

operation

button wire

constant

test

7

Example register machine: instructions

(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

label

operations

8

Complete register machine

a b =

0rem

tinstructions

sequencer

program counter

condition

9

Datapath components

• Button

• when pressed, value on input wire flows to output

• Register

• output the stored value continuously

• change value when button on input wire is pressed

• Operation

• output wire value = some function of input wire values

• Test

• an operation

• output is one bit (true or false)

• output wire goes to condition register

10

Incrementing a register

sum

0

+

1

X

Y
? 0 1 2

? 1 2 3

an op that

adds its inputs

press sum
?

X 0
Y 1
Y 2

• What sequence of button presses
will result in the register sum

containing the value 2?

X Y Y

11

Euclid's algorithm to compute GCD

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

• Given some numbers a and b

• If b is 0, done (the answer is a)

• If b is not 0:

• the new value of a is the old value of b

• the new value of b is the remainder of a  b

• start again

12

Datapath for GCD (partial)

• What sequence of button presses will

result in:

the register a containing GCD(a,b)

the register b containing 0

• The operation rem computes

the remainder of a  b

Z 9 6 3

X 6 6 3

Y 6 3 3

Z 6 3 0

X 3 3 0

Y 3 0 0

press a b t

9 6 ?

a b

rem

X

Y

t

Z

13

Example register machine: instructions

(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

14

Instructions

• Controller: generates a sequence of button presses

• sequencer

• instructions

• Sequencer: activates instructions sequentially

• program counter remembers which one is next

• Each instruction:

• commands a button press, OR

• changes the program counter

– called a branch instruction

15

Button-press instructions: the sum example

(controller

(assign sum (const 0)) <X>

(assign sum (op +) (reg sum) (const 1)) <Y>

(assign sum (op +) (reg sum) (const 1)))

sum
0

+

1

X

Y

16

Unconditional branch

(controller

0 (assign sum (const 0))

increment

1 (assign sum (op +) (reg sum) (const 1))

2 (goto (label increment)))

sum
0

+

1

X

Y

PC nextPC press

0 1 X

1 2 Y

2 3 1 --

1 2 Y

2 3 1 --

sequencer:

nextPC <- PC + 1

activate instruction at PC

PC <- nextPC

start again

17

Conditional branch

a b

rem

t

(controller

test-b

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

)

=

0

insts

sequencer

program counter

condition

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

gcd-done

18

Conditional branch details

(test (op =) (reg b) (const 0))

• push the button which loads the condition register

from this operation's output

(branch (label gcd-done))

• Overwrite nextPC register with value if condition register

is TRUE

• No effect if condition register is FALSE

19

Datapaths are redundant

• We can always draw the data path required for an

instruction sequence

• Therefore, we can leave out the data path when describing

a register machine

20

Abstract operations

• Every operation shown so far is abstract:

• abstract = consists of multiple lower-level operations

• Lower-level operations might be:

• AND gates, OR gates, etc (hardware building-blocks)

• sequences of register machine instructions

• Example: GCD machine uses

(assign t (op rem) (reg a) (reg b))

• Rewrite this using lower-level operations

21

Less-abstract GCD machine
(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

; (assign t (op rem) (reg a) (reg b))

(assign t (reg a))

rem-loop

(test (op <) (reg t) (reg b))

(branch (label rem-done))

(assign t (op -) (reg t) (reg b))

(goto (label rem-loop))

rem-done

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

22

Importance of register machine abstraction

• A CPU is a very complicated device

• We will study only the core of the CPU

• eval, apply, etc.

• We will use abstract register-machine operations for all the

other instruction sequences and circuits:

(test (op self-evaluating?) (reg exp))

• remember,(op +) is abstract, (op <) is abstract, etc.

• no magic in (op self-evaluating?)

23

Review of register machines

• Registers hold data values

• Controller specifies sequence of instructions, order of
execution controlled by program counter

• Assign puts value into register

– Constants

– Contents of register

– Result of primitive operation

• Goto changes value of program counter, and jumps to
label

• Test examines value of a condition, setting a flag

• Branch resets program counter to new value, if flag is
true

• Data paths are redundant

24

Machines for recursive algorithms

• GCD, odd?, increment

• iterative, constant space

•factorial, EC-EVAL

• recursive, non-constant space

• Extend register machines with subroutines and stack

• Main points

• Every subroutine has a contract

• Stacks are THE implementation mechanism for

recursive algorithms

25

Part 1: Subroutines

• Subroutine: a sequence of instructions that

• starts with a label and ends with an indirect branch

• can be called from multiple places

• New register machine instructions

•(assign continue (label after-call-1))

– store the instruction number corresponding to label
after-call-1 in register continue

– this instruction number is called the return point

•(goto (reg continue))

– an indirect branch

– change the PC to the value stored in register
continue

26

Example subroutine: increment

(controller

(assign (reg sum) (const 0))

(assign continue (label after-call-1))

(goto (label increment))

after-call-1

(assign continue (label after-call-2))

(goto (label increment))

after-call-2

(goto (label done))

increment

(assign sum (op +) (reg sum) (const 1))

(goto (reg continue))

done)

• set sum to 0, then increment, then increment again

• dotted line: subroutine

blue: call green: label red: indirect jump

27

Subroutines have contracts

• Follow the contract or register machine will fail:

• registers containing input values and return point

• registers in which output is produced

• registers that will be overwritten

– in addition to the output registers

increment

(assign sum (op +) (reg sum) (const 1))

(goto (reg continue))

• subroutine increment

• input: sum, continue

• output: sum

• writes: none

28

End of part 1

• Why subroutines?

• reuse instructions

• reuse data path components

• make instruction sequence more readable

– just like using helper functions in scheme

• support recursion

• Contracts

• specify inputs, outputs, and registers used by

subroutine

29

Part 2: Stacks

• Stack: a memory device

•save a register: send its value to the stack

•restore a register: get a value from the stack

a

0

b

5
stack

•When this machine halts, b

contains 0:

(controller

(assign a (const 0))

(assign b (const 5))

(save a)

(restore b)

)

30

Stacks: hold many values, last-in first-out

• This machine halts with
5 in a and 0 in b

(controller

0 (assign a (const 0))

1 (assign b (const 5))

2 (save a)

3 (save b)

4 (restore a)

5 (restore b))

contents of stack

after step

2 3 4 5

empty0 05

0

•5 is the top of stack after step 3

•save: put a new value on top of the stack

•restore: remove the value at top of stack

32

Check your understanding

• Draw the stack after step 5. What is the top of stack value?

• Add restores so final state is a: 3, b: 5, c: 8, and stack is empty

(controller

0 (assign a (const 8))

1 (assign b (const 3))

2 (assign c (const 5))

3 (save b)

4 (save c)

5 (save a)

)

8

5

3

(restore c)

(restore b)

(restore a)

33

Things to know about stacks

• stack depth

• stacks and subroutine contracts

• tail-call optimization

34

Stack depth

• depth of the stack = number of values it contains

• At any point while the machine is executing

• stack depth = (total # of saves) - (total # of restores)

• stack depth limits:

• low: 0 (machine fails if restore when stack empty)

• high: amount of memory available

• max stack depth:

• measures the space required by an algorithm

35

Stacks and subroutine contracts
• Standard contract: subroutine increment

• input: sum, continue

• output: sum

• writes: none

• stack: unchanged

• Rare contract:
strange

(assign val (op *) (reg val) (const 2))

(restore continue)

(goto (reg continue))

• input: val, return point on top of stack

• output: val

• writes: continue

• stack: top element removed

36

Optimizing tail calls
no work after call except (goto (reg continue))

This optimization is important in EC-EVAL

• Iterative algorithms expressed as recursive procedures would use

non-constant space without it

setup Unoptimized version
(assign sum (const 15))

(save continue)

(assign continue (label after-call))

(goto (label increment))

after-call

(restore continue)

(goto (reg continue))

setup Optimized version
(assign sum (const 15))

(goto (label increment))

37

End of part 2

• stack

• a LIFO memory device

•save: put data on top of the stack

•restore: remove data from top of the stack

• things to know

• concept of stack depth

• expectations and effect on stack is part of the contract

• tail call optimization

38

Part 3: recursion

(define (fact n)

(if (= n 1) 1

(* n (fact (- n 1)))))

•The stack is the key mechanism for recursion

•remembers return point of each recursive call

•remembers intermediate values (eg., n)

(fact 3)

(* 3 (fact 2))

(* 3 (* 2 (fact 1)))

(* 3 (* 2 1))

(* 3 2)

6

39

(controller

(assign continue (label halt))

fact

(test (op =) (reg n) (const 1))

(branch (label b-case))

(save continue)

(save n)

(assign n (op -) (reg n) (const 1))

(assign continue (label r-done))

(goto (label fact))

r-done

(restore n)

(restore continue)

(assign val (op *) (reg n) (reg val))

(goto (reg continue))

b-case

(assign val (const 1))

(goto (reg continue))

halt)

40

Code: base case

(define (fact n)

(if (= n 1) 1

...))

fact (test (op =) (reg n) (const 1))

(branch (label b-case))

...

b-case (assign val (const 1))

(goto (reg continue))

•fact expects its input in which register?

•fact expects its return point in which register?

•fact produces its output in which register?

n

continue

val

41

Code: recursive call

(define (fact n)

...

(fact (- n 1))

...)

...

(assign n (op -) (reg n) (const 1))

(assign continue (label r-done))

(goto (label fact))

r-done

...

• At r-done, which register will contain the return value of the recursive

call?

val

42

Code: after recursive call

(define (fact n)

...

(* n <return-value>)

...)

(assign val (op *) (reg n) (reg val))

(goto (reg continue))

•Problem!

•Overwrote register n as part of recursive call

•Also overwrote continue

43

Code: complete recursive case

(save continue)

(save n)

(assign n (op -) (reg n) (const 1))

(assign continue (label r-done))

(goto (label fact))

r-done (restore n)

(restore continue)

(assign val (op *) (reg n) (reg val))

(goto (reg continue))

• Save a register if:

• value is used after call AND

• register is not output of subroutine AND

• (register written as part of call OR

register written by subroutine)

45

Check your understanding

• Write down the contract for subroutine fact

• input:

• output:

• writes:

• stack:

n, continue

val

none

unchanged

• Writes none?

• writes n and continue

• but saves them before writing, restores after

46

Execution trace

• Contents of registers and stack at each label

• Top of stack at left

label continue n val stack

fact halt 3 ??? empty

fact r-done 2 ??? 3 halt

fact r-done 1 ??? 2 r-done 3 halt

b-case r-done 1 ??? 2 r-done 3 halt

r-done r-done 1 1 2 r-done 3 halt

r-done r-done 2 2 3 halt

halt halt 3 6 empty

• Contents of stack represents pending operations

(* 3 (* 2 (fact 1))) at base case

47

End of part 3

• To implement recursion, use a stack

• stack records pending work and return points

• max stack depth = space required

– (for most algorithms)

48

Where we are headed

• Next time will use register machine idea to implement an

evaluator

• This will allow us to capture high level abstractions of

Scheme while connecting to low level machine

architecture

