Register Machines

« Connecting evaluators to low level machine code



Plan

« Design a central processing unit (CPU) from:
* wires
* logic  (networks of AND gates, OR gates, etc)
* registers
 control sequencer

« Our CPU will interpret Scheme as its machine language

« Today: lterative algorithms in hardware
. Recursive algorithms in hardware
* Then: Scheme in hardware (EC-EVAL)

 EC-EVAL exposes more details of scheme than M-EVAL
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A universal machine

« Existence of a universal machine has major implications for
what “computation” means

e Insight due to Alan Turing (1912-1954)

* “On computable numbers with an application to the
Entscheidungsproblem, A.M. Turing, Proc. London Math.
Society, 2:42, 1937

 Hilbert's Entscheidungsproblem (decision problem) 1900:
Is mathematics decidable? That is, is there a definite
method guaranteed to produce a correct decision about all
assertions in mathematics?

e Church-Turing thesis: Any procedure that could
reasonably be considered to be an effective procedure can
be carried out by a universal machine (and thus by any
universal machine)



Euclid's algorithm to compute GCD

(define (gcd a b)
(1f (= b 0)
a
(gcd b (remainder a b))))

» Given some numbers aand b

* If bis O, done (the answer is a)

 If b is not O:
* the new value of a is the old value of b
» the new value of b is the remainder of a + b
* start again



Example register machine: datapaths
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Example register machine: instructions

(controller

test-b

((test (op =) (reg b) (const 0))

(branch (label gcd-done))

label (assign t (op rem) (reg a) (reg b))
'<(assign a (reg b))

(assign b (reg t))
\(goto (label test-b))
gcd-done)

[operations




Complete register machine
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Datapath components

e Button

* when pressed, value on input wire flows to output
» Register

 output the stored value continuously

« change value when button on input wire is pressed
e Operation

 output wire value = some function of input wire values
* Test

e an operation

 output is one bit (true or false)

* output wire goes to condition register



Incrementing a register
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Euclid's algorithm to compute GCD

(define (gcd a b)
(1f (= b 0)
a
(gcd b (remainder a b))))

» Given some numbers aand b

* If bis O, done (the answer is a)

 If b is not O:
* the new value of a is the old value of b
» the new value of b is the remainder of a + b
* start again
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Datapath for GCD (partial)

* What sequence of button presses will
result in:

the registera  containing GCD(a,b)

the register b  containing O

* The operation rem computes
the remainder of a + b

press
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Example register machine: instructions

(controller

test-b
(test (op =) (reg b) (const 0))
(branch (label gcd-done))
(assign t (op rem) (reg a) (reg b))
(assign a (reg b))
(assign b (reg t))
(goto (label test-b))

gcd-done)
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Instructions

« Controller: generates a sequence of button presses
« sequencer
* Instructions

« Sequencer: activates instructions sequentially
e program counter remembers which one is next

« Each instruction:
« commands a button press, OR
« changes the program counter
— called a branch instruction
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Button-press instructions: the sum example

125& j%@—* sum

(controller
(assign sum (const 0)) <X>
(assign sum (op +) (reg sum) (const 1)) <¥Y>

(assign sum (op +) (reg sum) (const 1)))
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Unconditional branch

sequencer:
X nextPC <- PC + 1
X activate instruction at PC
1 PC <- nextPC
Y start again
—Q—{ sum
y PC nextPC press
\+/ 0o 1 X
1 2 Y
2 A1 -
1 2 Y
(controller 2 A1 -
0 (assign sum (const 0))
increment
1 (assign sum (op +) (reg sum) (const 1))

2 (goto (label increment)))
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Conditional branch/?

condition

1 a

program counter

| |

insts
(controller

test-b
(test (op =) (reg b) (const 0))
(branch (label gcd-done))
(assign t (op rem) (reg a) (reg b))
(assign a (reg b))
(assign b (reg t))
(goto (label test-b))

gcd-done)

[ sequencer J —
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Conditional branch detalls

(test (op =) (reg b) (const 0))

 push the button which loads the condition register
from this operation's output

(branch (label gcd-done))

» Overwrite nextPC register with value if condition register
Is TRUE

* No effect if condition register is FALSE
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Datapaths are redundant

« We can always draw the data path required for an
Instruction sequence

* Therefore, we can leave out the data path when describing
a register machine
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Abstract operations

« Every operation shown so far is abstract:
 abstract = consists of multiple lower-level operations

« Lower-level operations might be:
« AND gates, OR gates, etc (hardware building-blocks)

e seguences of register machine instructions

« Example: GCD machine uses
(assign t (op rem) (reg a) (reg b))

« Rewrite this using lower-level operations
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Less-abstract GCD machine
(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))
; (assign t (op rem) (reg a)
(assign t (reg a))

rem-loop
(test (op <) (reg t) (reg b))
(branch (label rem-done))

(reg b))

(assign t (op -) (reg t) (reg b))

(goto (label rem-loop))
rem-done

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))
gcd-done)
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Importance of register machine abstraction

« A CPU is a very complicated device
« We will study only the core of the CPU
« eval, apply, etc.

« We will use abstract register-machine operations for all the
other instruction sequences and circuits:

(test (op self-evaluating?) (reg exp))

* remember, (op +) Is abstract, (op <) Is abstract, etc.
* N0 magic in (op self-evaluating?)

22



Review of register machines

« Registers hold data values

« Controller specifies sequence of instructions, order of
execution controlled by program counter

 Assign puts value into register
— Constants
— Contents of register
— Result of primitive operation

« Goto changes value of program counter, and jumps to
label

 Test examines value of a condition, setting a flag

* Branch resets program counter to new value, if flag is
true

« Data paths are redundant
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Machines for recursive algorithms

e GCD, odd?, increment

e Iterative, constant space
« factorial, EC-EVAL

* recursive, non-constant space
« Extend register machines with subroutines and stack

« Main points
« Every subroutine has a contract

» Stacks are THE implementation mechanism for
recursive algorithms
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Part 1: Subroutines

« Subroutine: a sequence of instructions that
« starts with a label and ends with an indirect branch
 can be called from multiple places

* New register machine instructions
* (assign continue (label after-call-1))

— store the instruction number corresponding to label
after-call-1 inregister continue

—this instruction number is called the return point

e (goto (reg continue))
— an indirect branch

— change the PC to the value stored in register
continue

25



Example subroutine: increment

« set sumto O, then increment, then increment again

* dotted line: subroutine
blue: call green: label red: indirect jump

(controller
(assign (reg sum) (const 0))
(assign continue (label after-call-1))
(goto (label increment))

after-call-1
(assign continue (label after-call-2))
(goto (label increment))

after-call-2
(goto (label done))

" inecrement

(assign sum (op +) (reg sum) (const 1))

(goto (reg continue))



Subroutines have contracts

 Follow the contract or register machine will fail:
* registers containing input values and return point
* registers in which output is produced
* registers that will be overwritten
— In addition to the output registers

| 1ncrement

|
: (assign sum (op +) (reg sum) (const 1)) :
|

| (goto (reg continue))

e subroutine increment
* Input: sum, continue
* output: sum
e Wwrites: none
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End of part 1

« Why subroutines?
* reuse instructions
* reuse data path components
* make instruction sequence more readable
— just like using helper functions in scheme
 support recursion

e Contracts

 specify inputs, outputs, and registers used by
subroutine
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Part 2: Stacks

- Stack: a memory device
« save a register:
« restore a register:

*\When this machine halts, b
contains O:

(controller
(assign a (const 0))
(assign b (const 5))
(save a)
(restore Db)

send its value to the stack
get a value from the stack

:’» R

=

>

stack

—&
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Stacks: hold many values, last-in first-out

* This machine halts with
5iInhaand0inb

(controller

0 (assign a (const 0))
1 (assign b (const 5))
2 (save a)

3 (save b)

4 (restore a)

5 (restore b))

5 iIs the top of stack after step 3

contents of stack

after step
3 4

5 0
0

e save: put a new value on top of the stack
restore: remove the value at top of stack

empty
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Check your understanding

» Draw the stack after step 5. What is the top of stack value?
 Add restores so final state is a: 3, b: 5, c¢: 8, and stack is empty

(controller

(assign a (const 8))
(assign b (const 3))
(assign ¢ (const 5))
(save b) 3
(save c)
(save a)
(restore c)

(restore b)
(restore a)

O

o WDNhDEFLO

)
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Things to know about stacks

« stack depth
e stacks and subroutine contracts
« tail-call optimization
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Stack depth

 depth of the stack = number of values it contains

« At any point while the machine is executing
« stack depth = (total # of saves) - (total # of restores)

« stack depth limits:
* low: 0 (machine fails if restore when stack empty)

* high: amount of memory available

* max stack depth:
* measures the space required by an algorithm
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Stacks and subroutine contracts
e Standard contract: subroutine increment

* Input:
* Ooutput:
e Writes:
 stack:

sum, continue
sum

none

unchanged

e Rare contract:;

strange

(assign val (op *) (reg val) (const 2))
(restore continue)
(goto (reg continue))

* input:
 Ooutput:
* Writes:
 stack:

val, return point on top of stack
val

continue

top element removed
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Optimizing tail calls
no work after call except (goto (reg continue))

setup Unoptimized version
(assign sum (const 15))
(save continue)
(assign continue (label after-call))
(goto (label increment))

after-call
(restore continue)
(goto (reg continue))

setup Optimized version
(assign sum (const 15))
(goto (label increment))

This optimization is important in EC-EVAL

* Iterative algorithms expressed as recursive procedures would use
non-constant space without it
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End of part 2

* stack
e a LIFO memory device
« save: put data on top of the stack
« restore: remove data from top of the stack
* things to know
« concept of stack depth
« expectations and effect on stack is part of the contract
« tail call optimization

37



Part 3: recursion

(define (fact n)
(if (=n 1) 1
(* n (fact (- n 1)))))

(fact 3)

(* 3 (fact 2))

(* 3 (* 2 (fact 1)))
(* 3 (* 2 1))

(* 3 2)

6

*The stack is the key mechanism for recursion
eremembers return point of each recursive call
‘remembers intermediate values (eg., n)
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(controller

fact

r-done

b-case

halt)

(assign continue (label halt))

(test (op =) (reg n) (const 1))
(branch (label b-case))

(save continue)

(save n)

(assign n (op -) (reg n) (const 1))
(assign continue (label r-done))
(goto (label fact))

(restore n)

(restore continue)

(assign val (op *) (reg n) (reg val))
(goto (reg continue))

(assign val (const 1))
(goto (reg continue))
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Code: base case

(define (fact n)
(if (=n 1) 1
...))

fact (test (op =) (reg n) (const 1))
(branch (label b-case))

b-case (assign val (const 1))
(goto (reg continue))

« fact expects its input in which register? n
« fact expects its return point in which register? continue
« fact produces its output in which register? val
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Code: recursive call

(define (fact n)

..(fact (- n 1))
-)

(assign n (op -) (reg n) (const 1))
(assign continue (label r-done))
(goto (label fact))

r-done

* At r-done, which register will contain the return value of the recursive
call?

val
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Code: after recursive call

(define (fact n)

(* n <return-value> )

-)

(assign val (op *) (reg n) (reg val))
(goto (reg continue))

Problem!

*Overwrote register n as part of recursive call
*Also overwrote continue
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Code: complete recursive case

r-done

(save continue)

(save n)

(assign n (op -) (reg n) (const 1))
(assign continue (label r-done))
(goto (label fact))

(restore n)

(restore continue)

(assign val (op *) (reg n) (reg val))
(goto (reg continue))

e Save a register If:
* value is used after call AND
* register is not output of subroutine AND

* (register written as partof call OR
register written by subroutine) »



Check your understanding

* Write down the contract for subroutine fact

* Input: n, continue
* output: val

* Writes: none

« stack: unchanged

e \Writes none?
 writes n and continue

 but saves them before writing, restores after
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Execution trace

« Contents of registers and stack at each label
« Top of stack at left

label continue n val stack

fact halt 3 2?7 empty

fact r-done 2 2?2?27 3 halt

fact r-done 1 2727 2 r-done 3 halt
b-case r-done 1 222 ﬁ r-done| 3 halt
r-done r-done 1 1 r-done 3 halt
r-done r-done 2 2 3 halt

halt halt 3 6 empty

« Contents of stack represents pending operations

(* 3 (* 2 (fact 1)))

at base case
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End of part 3

* To Implement recursion, use a stack
 stack records pending work and return points
* max stack depth = space required
— (for most algorithms)
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Where we are headed

* Next time will use register machine idea to implement an
evaluator

« This will allow us to capture high level abstractions of
Scheme while connecting to low level machine
architecture
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