Register Machines

« Connecting evaluators to low level machine code

Plan

« Design a central processing unit (CPU) from:
* wires
* logic (networks of AND gates, OR gates, etc)
* registers
 control sequencer

« Our CPU will interpret Scheme as its machine language

« Today: lterative algorithms in hardware
. Recursive algorithms in hardware
* Then: Scheme in hardware (EC-EVAL)

 EC-EVAL exposes more details of scheme than M-EVAL

2

The ultimate goal

GCD
48 . 6
30
Circuit
diagram
48 Ultimate
30 machine

(define (gcd a b)
.es)

Procedure
description

48
30

Universal
machine

A universal machine

« Existence of a universal machine has major implications for
what “computation” means

e Insight due to Alan Turing (1912-1954)

* “On computable numbers with an application to the
Entscheidungsproblem, A.M. Turing, Proc. London Math.
Society, 2:42, 1937

 Hilbert's Entscheidungsproblem (decision problem) 1900:
Is mathematics decidable? That is, is there a definite
method guaranteed to produce a correct decision about all
assertions in mathematics?

e Church-Turing thesis: Any procedure that could
reasonably be considered to be an effective procedure can
be carried out by a universal machine (and thus by any
universal machine)

Euclid's algorithm to compute GCD

(define (gcd a b)
(1f (= b 0)
a
(gcd b (remainder a b))))

» Given some numbers aand b

* If bis O, done (the answer is a)

 If b is not O:
* the new value of a is the old value of b
» the new value of b is the remainder of a + b
* start again

Example register machine: datapaths

register

|-

[operation

[button

X

rem

(X) test

constant

s

Example register machine: instructions

(controller

test-b

((test (op =) (reg b) (const 0))

(branch (label gcd-done))

label (assign t (op rem) (reg a) (reg b))
'<(assign a (reg b))

(assign b (reg t))
\(goto (label test-b))
gcd-done)

[operations

Complete register machine

///////”4%7
condition

l a

(sequencer h

program counter

»

()

_ J

instructions

G J

Datapath components

e Button

* when pressed, value on input wire flows to output
» Register

 output the stored value continuously

« change value when button on input wire is pressed
e Operation

 output wire value = some function of input wire values
* Test

e an operation

 output is one bit (true or false)

* output wire goes to condition register

Incrementing a register

an op that
S

adds its input

X
o]
Y sum 1
Q| fg ¥ 2
y y
\ * /
AXZ3
press
« What sequence of button presses
will result in the register sum X
containing the value 27 Y
Y

sum

N - O

X Y Y

10

Euclid's algorithm to compute GCD

(define (gcd a b)
(1f (= b 0)
a
(gcd b (remainder a b))))

» Given some numbers aand b

* If bis O, done (the answer is a)

 If b is not O:
* the new value of a is the old value of b
» the new value of b is the remainder of a + b
* start again

11

Datapath for GCD (partial)

* What sequence of button presses will
result in:

the registera containing GCD(a,b)

the register b containing O

* The operation rem computes
the remainder of a + b

press

OCWWWOoO OO O o

a
9
9
6
6
6
3
3

< XN < XN

OCOOWWW NV~

X b
)
rem
Z
t

12

Example register machine: instructions

(controller

test-b
(test (op =) (reg b) (const 0))
(branch (label gcd-done))
(assign t (op rem) (reg a) (reg b))
(assign a (reg b))
(assign b (reg t))
(goto (label test-b))

gcd-done)

13

Instructions

« Controller: generates a sequence of button presses
« sequencer
* Instructions

« Sequencer: activates instructions sequentially
e program counter remembers which one is next

« Each instruction:
« commands a button press, OR
« changes the program counter
— called a branch instruction

14

Button-press instructions: the sum example

125& j%@—* sum

(controller
(assign sum (const 0)) <X>
(assign sum (op +) (reg sum) (const 1)) <¥Y>

(assign sum (op +) (reg sum) (const 1)))

15

Unconditional branch

sequencer:
X nextPC <- PC + 1
X activate instruction at PC
1 PC <- nextPC
Y start again
—Q—{ sum
y PC nextPC press
\+/ 0o 1 X
1 2 Y
2 A1 -
1 2 Y
(controller 2 A1 -
0 (assign sum (const 0))
increment
1 (assign sum (op +) (reg sum) (const 1))

2 (goto (label increment)))

16

Conditional branch/?

condition

1 a

program counter

| |

insts
(controller

test-b
(test (op =) (reg b) (const 0))
(branch (label gcd-done))
(assign t (op rem) (reg a) (reg b))
(assign a (reg b))
(assign b (reg t))
(goto (label test-b))

gcd-done)

[sequencer J —

>

Conditional branch detalls

(test (op =) (reg b) (const 0))

 push the button which loads the condition register
from this operation's output

(branch (label gcd-done))

» Overwrite nextPC register with value if condition register
Is TRUE

* No effect if condition register is FALSE

18

Datapaths are redundant

« We can always draw the data path required for an
Instruction sequence

* Therefore, we can leave out the data path when describing
a register machine

19

Abstract operations

« Every operation shown so far is abstract:
 abstract = consists of multiple lower-level operations

« Lower-level operations might be:
« AND gates, OR gates, etc (hardware building-blocks)

e seguences of register machine instructions

« Example: GCD machine uses
(assign t (op rem) (reg a) (reg b))

« Rewrite this using lower-level operations

20

Less-abstract GCD machine
(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))
; (assign t (op rem) (reg a)
(assign t (reg a))

rem-loop
(test (op <) (reg t) (reg b))
(branch (label rem-done))

(reg b))

(assign t (op -) (reg t) (reg b))

(goto (label rem-loop))
rem-done

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))
gcd-done)

21

Importance of register machine abstraction

« A CPU is a very complicated device
« We will study only the core of the CPU
« eval, apply, etc.

« We will use abstract register-machine operations for all the
other instruction sequences and circuits:

(test (op self-evaluating?) (reg exp))

* remember, (op +) Is abstract, (op <) Is abstract, etc.
* N0 magic in (op self-evaluating?)

22

Review of register machines

« Registers hold data values

« Controller specifies sequence of instructions, order of
execution controlled by program counter

 Assign puts value into register
— Constants
— Contents of register
— Result of primitive operation

« Goto changes value of program counter, and jumps to
label

 Test examines value of a condition, setting a flag

* Branch resets program counter to new value, if flag is
true

« Data paths are redundant

23

Machines for recursive algorithms

e GCD, odd?, increment

e Iterative, constant space
« factorial, EC-EVAL

* recursive, non-constant space
« Extend register machines with subroutines and stack

« Main points
« Every subroutine has a contract

» Stacks are THE implementation mechanism for
recursive algorithms

24

Part 1: Subroutines

« Subroutine: a sequence of instructions that
« starts with a label and ends with an indirect branch
 can be called from multiple places

* New register machine instructions
* (assign continue (label after-call-1))

— store the instruction number corresponding to label
after-call-1 inregister continue

—this instruction number is called the return point

e (goto (reg continue))
— an indirect branch

— change the PC to the value stored in register
continue

25

Example subroutine: increment

« set sumto O, then increment, then increment again

* dotted line: subroutine
blue: call green: label red: indirect jump

(controller
(assign (reg sum) (const 0))
(assign continue (label after-call-1))
(goto (label increment))

after-call-1
(assign continue (label after-call-2))
(goto (label increment))

after-call-2
(goto (label done))

" inecrement

(assign sum (op +) (reg sum) (const 1))

(goto (reg continue))

Subroutines have contracts

 Follow the contract or register machine will fail:
* registers containing input values and return point
* registers in which output is produced
* registers that will be overwritten
— In addition to the output registers

| 1ncrement

|
: (assign sum (op +) (reg sum) (const 1)) :
|

| (goto (reg continue))

e subroutine increment
* Input: sum, continue
* output: sum
e Wwrites: none

27

End of part 1

« Why subroutines?
* reuse instructions
* reuse data path components
* make instruction sequence more readable
— just like using helper functions in scheme
 support recursion

e Contracts

 specify inputs, outputs, and registers used by
subroutine

28

Part 2: Stacks

- Stack: a memory device
« save a register:
« restore a register:

*\When this machine halts, b
contains O:

(controller
(assign a (const 0))
(assign b (const 5))
(save a)
(restore Db)

send its value to the stack
get a value from the stack

:’» R

=

>

stack

—&

29

Stacks: hold many values, last-in first-out

* This machine halts with
5iInhaand0inb

(controller

0 (assign a (const 0))
1 (assign b (const 5))
2 (save a)

3 (save b)

4 (restore a)

5 (restore b))

5 iIs the top of stack after step 3

contents of stack

after step
3 4

5 0
0

e save: put a new value on top of the stack
restore: remove the value at top of stack

empty

30

Check your understanding

» Draw the stack after step 5. What is the top of stack value?
 Add restores so final state is a: 3, b: 5, c¢: 8, and stack is empty

(controller

(assign a (const 8))
(assign b (const 3))
(assign ¢ (const 5))
(save b) 3
(save c)
(save a)
(restore c)

(restore b)
(restore a)

O

o WDNhDEFLO

)

32

Things to know about stacks

« stack depth
e stacks and subroutine contracts
« tail-call optimization

33

Stack depth

 depth of the stack = number of values it contains

« At any point while the machine is executing
« stack depth = (total # of saves) - (total # of restores)

« stack depth limits:
* low: 0 (machine fails if restore when stack empty)

* high: amount of memory available

* max stack depth:
* measures the space required by an algorithm

34

Stacks and subroutine contracts
e Standard contract: subroutine increment

* Input:
* Ooutput:
e Writes:
 stack:

sum, continue
sum

none

unchanged

e Rare contract:;

strange

(assign val (op *) (reg val) (const 2))
(restore continue)
(goto (reg continue))

* input:
 Ooutput:
* Writes:
 stack:

val, return point on top of stack
val

continue

top element removed

35

Optimizing tail calls
no work after call except (goto (reg continue))

setup Unoptimized version
(assign sum (const 15))
(save continue)
(assign continue (label after-call))
(goto (label increment))

after-call
(restore continue)
(goto (reg continue))

setup Optimized version
(assign sum (const 15))
(goto (label increment))

This optimization is important in EC-EVAL

* Iterative algorithms expressed as recursive procedures would use
non-constant space without it

36

End of part 2

* stack
e a LIFO memory device
« save: put data on top of the stack
« restore: remove data from top of the stack
* things to know
« concept of stack depth
« expectations and effect on stack is part of the contract
« tail call optimization

37

Part 3: recursion

(define (fact n)
(if (=n 1) 1
(* n (fact (- n 1)))))

(fact 3)

(* 3 (fact 2))

(* 3 (* 2 (fact 1)))
(* 3 (* 2 1))

(* 3 2)

6

*The stack is the key mechanism for recursion
eremembers return point of each recursive call
‘remembers intermediate values (eg., n)

38

(controller

fact

r-done

b-case

halt)

(assign continue (label halt))

(test (op =) (reg n) (const 1))
(branch (label b-case))

(save continue)

(save n)

(assign n (op -) (reg n) (const 1))
(assign continue (label r-done))
(goto (label fact))

(restore n)

(restore continue)

(assign val (op *) (reg n) (reg val))
(goto (reg continue))

(assign val (const 1))
(goto (reg continue))

39

Code: base case

(define (fact n)
(if (=n 1) 1
...))

fact (test (op =) (reg n) (const 1))
(branch (label b-case))

b-case (assign val (const 1))
(goto (reg continue))

« fact expects its input in which register? n
« fact expects its return point in which register? continue
« fact produces its output in which register? val

40

Code: recursive call

(define (fact n)

..(fact (- n 1))
-)

(assign n (op -) (reg n) (const 1))
(assign continue (label r-done))
(goto (label fact))

r-done

* At r-done, which register will contain the return value of the recursive
call?

val

41

Code: after recursive call

(define (fact n)

(* n <return-value>)

-)

(assign val (op *) (reg n) (reg val))
(goto (reg continue))

Problem!

*Overwrote register n as part of recursive call
*Also overwrote continue

42

Code: complete recursive case

r-done

(save continue)

(save n)

(assign n (op -) (reg n) (const 1))
(assign continue (label r-done))
(goto (label fact))

(restore n)

(restore continue)

(assign val (op *) (reg n) (reg val))
(goto (reg continue))

e Save a register If:
* value is used after call AND
* register is not output of subroutine AND

* (register written as partof call OR
register written by subroutine) »

Check your understanding

* Write down the contract for subroutine fact

* Input: n, continue
* output: val

* Writes: none

« stack: unchanged

e \Writes none?
 writes n and continue

 but saves them before writing, restores after

45

Execution trace

« Contents of registers and stack at each label
« Top of stack at left

label continue n val stack

fact halt 3 2?7 empty

fact r-done 2 2?2?27 3 halt

fact r-done 1 2727 2 r-done 3 halt
b-case r-done 1 222 ﬁ r-done| 3 halt
r-done r-done 1 1 r-done 3 halt
r-done r-done 2 2 3 halt

halt halt 3 6 empty

« Contents of stack represents pending operations

(* 3 (* 2 (fact 1)))

at base case

46

End of part 3

* To Implement recursion, use a stack
 stack records pending work and return points
* max stack depth = space required
— (for most algorithms)

47

Where we are headed

* Next time will use register machine idea to implement an
evaluator

« This will allow us to capture high level abstractions of
Scheme while connecting to low level machine
architecture

48

