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6.001 SICP

Explicit-control evaluator

• Big ideas:  how to connect evaluator to machine instructions

how to achieve tail recursion

• Obfuscation:     tightly optimized instruction sequence

• Background

• eval-dispatch & helpers

• define, if, begin

• Applications



2

Code example: sfact

(define sfact (lambda (n prod)

(display prod)

(if (= n 1) prod

(sfact (- n 1) (* n prod)))))

• What is displayed when (sfact 4 1) executes?

• What is returned as the value?

• Does sfact describe an iterative or recursive process?

1 4 12 24 

24

iterative
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Goal: a tail-recursive evaluator

• The stack should not grow if the procedure being evaluated is 
iterative

• Most Java, Pascal systems are not tail-recursive, so they 

cannot use recursive procedures as loops

• Key technique: tail-call optimization

• If optimization not used, stack grows each time

around the loop:

(eval-application '(sfact 4 1) GE)  BOTTOM

(eval-sequence '((display n) (if ...)) E1)

(eval '(if (= n 1) ...) E1)

(eval-if '(if (= n 1) ...) E1)

(eval '(sfact 3 4) E1)

(eval-application '(sfact 3 4) E1) TOP

Value needed at 

start is the same as 

value returned here
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Example register machine: instructions

(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

label

operations
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Register machine

a b =

0rem

tinstructions

sequencer

program counter

condition

sequencer:

nextPC <- PC + 1

activate instruction at PC

PC <- nextPC

start again
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Machine for EC-EVAL

• 7 registers

• exp expression to be evaluated

• env current environment

• continue return point

• val resulting value

• unev list of unevaluated expressions
(operand lists, sequences)

temporary register (elsewhere)

• proc operator value (apply only)

• argl argument values (apply only)

• Many abstract operations

• syntax, environment model, primitive procedures

Eval

Apply
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Main entry point:  eval-dispatch

; inputs:   exp       expression to evaluate

;           env       environment

;           continue  return point

; output:   val       value of expression

; writes:   all       (except continue)

; stack:    unchanged

eval-dispatch

(test (op self-evaluating?) (reg exp))

(branch (label ev-self-eval))

(test (op variable?) (reg exp))

(branch (label ev-variable))

...

(goto (label unknown-expression-type))
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Eval helpers: same contract as eval-dispatch

ev-self-eval

(assign val (reg exp))

(goto (reg continue))

• return value is expression itself

ev-variable

(assign val (op lookup-variable-value) 

(reg exp) (reg env))

(goto (reg continue))

• uses abstract op which is part of environment model
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Eval helpers

ev-lambda

(assign unev (op lambda-parameters)

(reg exp))

(assign exp (op lambda-body) (reg exp))

(assign val (op make-procedure)

(reg unev) (reg exp) (reg env))

(goto (reg continue))

• remember our Scheme code for this:
(define (eval-lambda exp env)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

•exp and unev both used as temporary registers
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Recursive call to eval: ev-definition

ev-definition

(assign unev (op definition-variable) (reg exp))

(save unev)

(save env)

(save continue)

(assign exp (op definition-value) (reg exp))

(assign continue (label ev-definition-1))

(goto (label eval-dispatch))

ev-definition-1

(restore continue)

(restore env)

(restore unev)

(perform (op define-variable!) 

(reg unev) (reg val) (reg env))

(assign val (const ok))

(goto (reg continue))
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Ev-definition

• Why are unev, env, and continue saved?

• Used after recursive call, written by eval-dispatch

• Why is exp used in the recursive call?

• Specified as input register by eval-dispatch contract

•env is also specified as an input register, but not assigned

• Expression of define is evaluated in current 

environment

• Why is unev used in line 1?

• Temporary storage.  Could use any other register.
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Optimized recursive call to eval: ev-if
ev-if

(save exp)

(save env)

(save continue)

(assign continue (label ev-if-decide))

(assign exp (op if-predicate) (reg exp))

(goto (label eval-dispatch))

ev-if-decide

(restore continue)

(restore env)

(restore exp)

(test (op true?) (reg val))

(branch (label ev-if-consequent))

ev-if-alternative

(assign exp (op if-alternative) (reg exp))

(goto (label eval-dispatch))

ev-if-consequent

(assign exp (op if-consequent) (reg exp))

(goto (label eval-dispatch))

Note – no stack 

usage for 

alternative or 

consequent
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ev-if

• Normal recursive call to eval for predicate

• Tail-call optimization in both consequent and alternative

• no saves or restores

• this is necessary to make loops like sfact iterative

• Alternative case without the optimization:

ev-if-alternative

(save continue)

(assign continue (label alternative1))

(assign exp (op if-alternative) (reg exp))

(goto (label eval-dispatch))

alternative1

(restore continue)

(goto (reg continue))
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Sequences (1)

; an eval helper, same contract as eval-dispatch

ev-begin

(save continue)

(assign unev (op begin-actions) (reg exp))

(goto (label ev-sequence))

; ev-sequence:  used by begin and apply (lambda bodies)

;

; inputs:    unev    list of expressions

;            env     environment in which to evaluate

;            stack   top value is return point

; writes:    all     (calls eval without saving)

; output:    val

; stack:     top value removed
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Sequences (2)

ev-sequence

(assign exp (op first-exp) (reg unev))

(test (op last-exp?) (reg unev))

(branch (label ev-sequence-last-exp))

(save unev)

(save env)

(assign continue (label ev-sequence-continue))

(goto (label eval-dispatch))

ev-sequence-continue

(restore env)

(restore unev)

(assign unev (op rest-exps) (reg unev))

(goto (label ev-sequence))

ev-sequence-last-exp

(restore continue)

(goto (label eval-dispatch))
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ev-sequence

• Tail-call optimization on eval of last expression in sequence

• necessary so loops like sfact are iterative 

• Result should be in val, but never use val

• tail call to eval puts final result in val

• results of earlier calls to eval are ignored

• Why have return point on top of stack?

• avoid saving and restoring every time around loop

• purely a performance optimization

• can't do the same with unev and env because they

are used inside the loop

aka – a HACK!
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Applications

ev-application eval helper

ev-appl-operator

ev-appl-operand-loop

apply-dispatch apply

(eval (operator exp) env)

(map (lambda (e) 

(eval e env))

(operands exp))
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apply-dispatch

; inputs:   proc    procedure to be applied

;           argl    list of arguments

;           stack   top value is return point

; writes:   all     (calls ev-sequence)  

; output:   val

; stack:    top value removed

apply-dispatch

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-apply))

(test (op compound-procedure?) (reg proc))  

(branch (label compound-apply))

(goto (label unknown-procedure-type))
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Apply helpers

primitive-apply

(assign val (op apply-primitive-procedure) (reg proc)

(reg argl))

(restore continue)

(goto (reg continue))

compound-apply

(assign unev (op procedure-parameters) (reg proc))

(assign env (op procedure-environment) (reg proc))

(assign env (op extend-environment)

(reg unev) (reg argl) (reg env))

(assign unev (op procedure-body) (reg proc))

(goto (label ev-sequence))
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apply-dispatch

• Why have return point on top of stack?

•ev-sequence needs it on top of stack

• has to be saved on stack to do ev-appl-operator

• performance optimization: leave it on stack if possible

compound-apply

• Calls ev-sequence rather than eval-dispatch

• Body of procedure might be a sequence

• Tail-call optimization 

• Necessary for tail recursion

•Env and unev used as part of call

• required by ev-sequence contract

•Env and unev used in first two lines

• Local temporaries.  Could use any register.
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ev-application

ev-application

(save continue)

ev-appl-operator

(assign unev (op operands) (reg exp))

(save env)

(save unev)

(assign exp (op operator) (reg exp))

(assign continue (label ev-appl-did-operator))

(goto (label eval-dispatch))

ev-appl-did-operator

(restore unev)

(restore env)

(assign proc (reg val))
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ev-application

ev-application

• Leave continue on the stack, untouched, until

–primitive-apply, OR

– end of ev-sequence of body in compound-apply

ev-appl-operator

• Normal call to eval-dispatch

•unev: save the list of operand expressions

•env:   will be needed to evaluate operand expressions

• At end:

• Put operator in proc.  Why use proc? 

• Answer: If there are no arguments, will call apply-

dispatch immediately (next slide)
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Map over list of operand expressions

(assign argl (op empty-arglist))

(test (op no-operands?) (reg unev))

(branch (label apply-dispatch))

(save proc)

ev-appl-operand-loop

(save argl)

(assign exp (op first-operand) (reg unev))

(test (op last-operand?) (reg unev))

(branch (label ev-appl-last-arg))

;; eval one operand (next slide)

ev-appl-last-arg

(assign continue (label ev-appl-accum-last-arg))

(goto (label eval-dispatch))

ev-appl-accum-last-arg

(restore argl)

(assign argl (op adjoin-arg) (reg val) (reg argl))

(restore proc)

(goto (label apply-dispatch))
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Eval one operand

(save env)

(save unev)

(assign continue (label ev-appl-accumulate-arg))

(goto (label eval-dispatch))

ev-appl-accumulate-arg

(restore unev)

(restore env)

(restore argl)

(assign argl (op adjoin-arg) (reg val) (reg argl))

(assign unev (op rest-operands) (reg unev))

(goto (label ev-appl-operand-loop))
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ev-appl-operand-loop

• First three lines:

• check for no operands (avoid first-operand on empty)

• Why save proc at beginning, restore at very end?

• call eval in loop, its contract says it writes proc

• one of the operand expressions might be an application

• Same reasoning applies to argl

• Why save argl inside the loop, proc outside it?

• need to change argl every time around the loop

• Why is (save argl) before the branch to ev-appl-last-arg?

• logically goes with the saves in eval one operand

• a needless optimization that saves one instruction
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Trial simulation

Label Exp     Env  Val     Proc  Argl Unev  Cont      Stack

Eval  (fact 3) GE                            REP

Eval  fact GE                     (3)    didop     REP GE (3)

Didop fact     GE  [proc] (3)    didop     REP GE (3)

Oploop fact    GE [proc] [proc] ()   (3)    didop     REP [proc]

Lastarg 3      GE  [proc] [proc] ()   (3)    didop     REP [proc] ()

Eval   3       GE  [proc] [proc] ()   (3)    a-l-a REP [proc] ()

A-l-a  3       GE  3   [proc] ()   (3)    a-l-a     REP [proc] ()

Apply  3       GE  3      [proc] (3)  (3)    a-l-a     REP

Seq    3       E1  3      [proc] (3) ((if.)) a-l-a     REP

Seqlst (if..)  E1  3      [proc] (3) ((if.)) a-l-a     REP

Eval   (if..)  E1  3      [proc] (3) ((if.)) REP
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Trial simulation

Label Exp     Env  Val     Proc  Argl Unev  Cont      Stack

Eval  (fact 3) GE                            REP

…skip some steps…

Eval  (if..)   E1  3      [proc] (3) ((if.)) REP 

Eval  (= n 1) E1  3      [proc] (3) ((if.)) dec      (if.) E1 REP

…skip some steps – contract says that when get to decide we have…

Dec   (= n 1)  E1  #f [proc] (3) ((if.)) dec      (if.) E1 REP

Eval  (* n (f.)) E1 #f    [proc] (3) ((if.)) REP

Eval  *   E1  #f     [proc] (3) (n (f.)) did     REP E1 (n (f.))

Did   *        E1 [mul] [proc] (3) (n (f.)) did     REP E1 (n (f.))

Oploop *       E1 [mul]   [mul]  ()  (n (f.)) did     REP [mul]

…skip some steps – just look up value of n, then get to…

Eval  (f..) E1         [mul]  (3) ((f.))  a-l-a    REP [mul] (3)



28

Trial simulation

Label Exp     Env  Val     Proc  Argl Unev  Cont     Stack

Eval  (fact 3) GE                            REP

…skip some steps…

Eval  (fact    E1                            a-l-a    REP [mul] (3)

(- n 1))

…skip some steps – by contract, know that we get to…

Eval  (fact    E2                            a-l-a    REP [mul] (3)

(- n 1))                                       a-l-a [mul] (2)
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Summary

• Have seen details of EC-EVAL

• Differentiated

• necessary optimizations for tail recursion

• performance optimizations

• Key idea is that we can connect evaluation through a 

machine model to support idea of universal evaluation


