
1

6.001 SICP

Explicit-control evaluator

• Big ideas: how to connect evaluator to machine instructions

how to achieve tail recursion

• Obfuscation: tightly optimized instruction sequence

• Background

• eval-dispatch & helpers

• define, if, begin

• Applications

2

Code example: sfact

(define sfact (lambda (n prod)

(display prod)

(if (= n 1) prod

(sfact (- n 1) (* n prod)))))

• What is displayed when (sfact 4 1) executes?

• What is returned as the value?

• Does sfact describe an iterative or recursive process?

1 4 12 24

24

iterative

3

Goal: a tail-recursive evaluator

• The stack should not grow if the procedure being evaluated is
iterative

• Most Java, Pascal systems are not tail-recursive, so they

cannot use recursive procedures as loops

• Key technique: tail-call optimization

• If optimization not used, stack grows each time

around the loop:

(eval-application '(sfact 4 1) GE) BOTTOM

(eval-sequence '((display n) (if ...)) E1)

(eval '(if (= n 1) ...) E1)

(eval-if '(if (= n 1) ...) E1)

(eval '(sfact 3 4) E1)

(eval-application '(sfact 3 4) E1) TOP

Value needed at

start is the same as

value returned here

4

Example register machine: instructions

(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

label

operations

5

Register machine

a b =

0rem

tinstructions

sequencer

program counter

condition

sequencer:

nextPC <- PC + 1

activate instruction at PC

PC <- nextPC

start again

6

Machine for EC-EVAL

• 7 registers

• exp expression to be evaluated

• env current environment

• continue return point

• val resulting value

• unev list of unevaluated expressions
(operand lists, sequences)

temporary register (elsewhere)

• proc operator value (apply only)

• argl argument values (apply only)

• Many abstract operations

• syntax, environment model, primitive procedures

Eval

Apply

7

Main entry point: eval-dispatch

; inputs: exp expression to evaluate

; env environment

; continue return point

; output: val value of expression

; writes: all (except continue)

; stack: unchanged

eval-dispatch

(test (op self-evaluating?) (reg exp))

(branch (label ev-self-eval))

(test (op variable?) (reg exp))

(branch (label ev-variable))

...

(goto (label unknown-expression-type))

8

Eval helpers: same contract as eval-dispatch

ev-self-eval

(assign val (reg exp))

(goto (reg continue))

• return value is expression itself

ev-variable

(assign val (op lookup-variable-value)

(reg exp) (reg env))

(goto (reg continue))

• uses abstract op which is part of environment model

9

Eval helpers

ev-lambda

(assign unev (op lambda-parameters)

(reg exp))

(assign exp (op lambda-body) (reg exp))

(assign val (op make-procedure)

(reg unev) (reg exp) (reg env))

(goto (reg continue))

• remember our Scheme code for this:
(define (eval-lambda exp env)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

•exp and unev both used as temporary registers

10

Recursive call to eval: ev-definition

ev-definition

(assign unev (op definition-variable) (reg exp))

(save unev)

(save env)

(save continue)

(assign exp (op definition-value) (reg exp))

(assign continue (label ev-definition-1))

(goto (label eval-dispatch))

ev-definition-1

(restore continue)

(restore env)

(restore unev)

(perform (op define-variable!)

(reg unev) (reg val) (reg env))

(assign val (const ok))

(goto (reg continue))

11

Ev-definition

• Why are unev, env, and continue saved?

• Used after recursive call, written by eval-dispatch

• Why is exp used in the recursive call?

• Specified as input register by eval-dispatch contract

•env is also specified as an input register, but not assigned

• Expression of define is evaluated in current

environment

• Why is unev used in line 1?

• Temporary storage. Could use any other register.

12

Optimized recursive call to eval: ev-if
ev-if

(save exp)

(save env)

(save continue)

(assign continue (label ev-if-decide))

(assign exp (op if-predicate) (reg exp))

(goto (label eval-dispatch))

ev-if-decide

(restore continue)

(restore env)

(restore exp)

(test (op true?) (reg val))

(branch (label ev-if-consequent))

ev-if-alternative

(assign exp (op if-alternative) (reg exp))

(goto (label eval-dispatch))

ev-if-consequent

(assign exp (op if-consequent) (reg exp))

(goto (label eval-dispatch))

Note – no stack

usage for

alternative or

consequent

13

ev-if

• Normal recursive call to eval for predicate

• Tail-call optimization in both consequent and alternative

• no saves or restores

• this is necessary to make loops like sfact iterative

• Alternative case without the optimization:

ev-if-alternative

(save continue)

(assign continue (label alternative1))

(assign exp (op if-alternative) (reg exp))

(goto (label eval-dispatch))

alternative1

(restore continue)

(goto (reg continue))

14

Sequences (1)

; an eval helper, same contract as eval-dispatch

ev-begin

(save continue)

(assign unev (op begin-actions) (reg exp))

(goto (label ev-sequence))

; ev-sequence: used by begin and apply (lambda bodies)

;

; inputs: unev list of expressions

; env environment in which to evaluate

; stack top value is return point

; writes: all (calls eval without saving)

; output: val

; stack: top value removed

15

Sequences (2)

ev-sequence

(assign exp (op first-exp) (reg unev))

(test (op last-exp?) (reg unev))

(branch (label ev-sequence-last-exp))

(save unev)

(save env)

(assign continue (label ev-sequence-continue))

(goto (label eval-dispatch))

ev-sequence-continue

(restore env)

(restore unev)

(assign unev (op rest-exps) (reg unev))

(goto (label ev-sequence))

ev-sequence-last-exp

(restore continue)

(goto (label eval-dispatch))

16

ev-sequence

• Tail-call optimization on eval of last expression in sequence

• necessary so loops like sfact are iterative

• Result should be in val, but never use val

• tail call to eval puts final result in val

• results of earlier calls to eval are ignored

• Why have return point on top of stack?

• avoid saving and restoring every time around loop

• purely a performance optimization

• can't do the same with unev and env because they

are used inside the loop

aka – a HACK!

17

Applications

ev-application eval helper

ev-appl-operator

ev-appl-operand-loop

apply-dispatch apply

(eval (operator exp) env)

(map (lambda (e)

(eval e env))

(operands exp))

18

apply-dispatch

; inputs: proc procedure to be applied

; argl list of arguments

; stack top value is return point

; writes: all (calls ev-sequence)

; output: val

; stack: top value removed

apply-dispatch

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-apply))

(test (op compound-procedure?) (reg proc))

(branch (label compound-apply))

(goto (label unknown-procedure-type))

19

Apply helpers

primitive-apply

(assign val (op apply-primitive-procedure) (reg proc)

(reg argl))

(restore continue)

(goto (reg continue))

compound-apply

(assign unev (op procedure-parameters) (reg proc))

(assign env (op procedure-environment) (reg proc))

(assign env (op extend-environment)

(reg unev) (reg argl) (reg env))

(assign unev (op procedure-body) (reg proc))

(goto (label ev-sequence))

20

apply-dispatch

• Why have return point on top of stack?

•ev-sequence needs it on top of stack

• has to be saved on stack to do ev-appl-operator

• performance optimization: leave it on stack if possible

compound-apply

• Calls ev-sequence rather than eval-dispatch

• Body of procedure might be a sequence

• Tail-call optimization

• Necessary for tail recursion

•Env and unev used as part of call

• required by ev-sequence contract

•Env and unev used in first two lines

• Local temporaries. Could use any register.

21

ev-application

ev-application

(save continue)

ev-appl-operator

(assign unev (op operands) (reg exp))

(save env)

(save unev)

(assign exp (op operator) (reg exp))

(assign continue (label ev-appl-did-operator))

(goto (label eval-dispatch))

ev-appl-did-operator

(restore unev)

(restore env)

(assign proc (reg val))

22

ev-application

ev-application

• Leave continue on the stack, untouched, until

–primitive-apply, OR

– end of ev-sequence of body in compound-apply

ev-appl-operator

• Normal call to eval-dispatch

•unev: save the list of operand expressions

•env: will be needed to evaluate operand expressions

• At end:

• Put operator in proc. Why use proc?

• Answer: If there are no arguments, will call apply-

dispatch immediately (next slide)

23

Map over list of operand expressions

(assign argl (op empty-arglist))

(test (op no-operands?) (reg unev))

(branch (label apply-dispatch))

(save proc)

ev-appl-operand-loop

(save argl)

(assign exp (op first-operand) (reg unev))

(test (op last-operand?) (reg unev))

(branch (label ev-appl-last-arg))

;; eval one operand (next slide)

ev-appl-last-arg

(assign continue (label ev-appl-accum-last-arg))

(goto (label eval-dispatch))

ev-appl-accum-last-arg

(restore argl)

(assign argl (op adjoin-arg) (reg val) (reg argl))

(restore proc)

(goto (label apply-dispatch))

24

Eval one operand

(save env)

(save unev)

(assign continue (label ev-appl-accumulate-arg))

(goto (label eval-dispatch))

ev-appl-accumulate-arg

(restore unev)

(restore env)

(restore argl)

(assign argl (op adjoin-arg) (reg val) (reg argl))

(assign unev (op rest-operands) (reg unev))

(goto (label ev-appl-operand-loop))

25

ev-appl-operand-loop

• First three lines:

• check for no operands (avoid first-operand on empty)

• Why save proc at beginning, restore at very end?

• call eval in loop, its contract says it writes proc

• one of the operand expressions might be an application

• Same reasoning applies to argl

• Why save argl inside the loop, proc outside it?

• need to change argl every time around the loop

• Why is (save argl) before the branch to ev-appl-last-arg?

• logically goes with the saves in eval one operand

• a needless optimization that saves one instruction

26

Trial simulation

Label Exp Env Val Proc Argl Unev Cont Stack

Eval (fact 3) GE REP

Eval fact GE (3) didop REP GE (3)

Didop fact GE [proc] (3) didop REP GE (3)

Oploop fact GE [proc] [proc] () (3) didop REP [proc]

Lastarg 3 GE [proc] [proc] () (3) didop REP [proc] ()

Eval 3 GE [proc] [proc] () (3) a-l-a REP [proc] ()

A-l-a 3 GE 3 [proc] () (3) a-l-a REP [proc] ()

Apply 3 GE 3 [proc] (3) (3) a-l-a REP

Seq 3 E1 3 [proc] (3) ((if.)) a-l-a REP

Seqlst (if..) E1 3 [proc] (3) ((if.)) a-l-a REP

Eval (if..) E1 3 [proc] (3) ((if.)) REP

27

Trial simulation

Label Exp Env Val Proc Argl Unev Cont Stack

Eval (fact 3) GE REP

…skip some steps…

Eval (if..) E1 3 [proc] (3) ((if.)) REP

Eval (= n 1) E1 3 [proc] (3) ((if.)) dec (if.) E1 REP

…skip some steps – contract says that when get to decide we have…

Dec (= n 1) E1 #f [proc] (3) ((if.)) dec (if.) E1 REP

Eval (* n (f.)) E1 #f [proc] (3) ((if.)) REP

Eval * E1 #f [proc] (3) (n (f.)) did REP E1 (n (f.))

Did * E1 [mul] [proc] (3) (n (f.)) did REP E1 (n (f.))

Oploop * E1 [mul] [mul] () (n (f.)) did REP [mul]

…skip some steps – just look up value of n, then get to…

Eval (f..) E1 [mul] (3) ((f.)) a-l-a REP [mul] (3)

28

Trial simulation

Label Exp Env Val Proc Argl Unev Cont Stack

Eval (fact 3) GE REP

…skip some steps…

Eval (fact E1 a-l-a REP [mul] (3)

(- n 1))

…skip some steps – by contract, know that we get to…

Eval (fact E2 a-l-a REP [mul] (3)

(- n 1)) a-l-a [mul] (2)

29

Summary

• Have seen details of EC-EVAL

• Differentiated

• necessary optimizations for tail recursion

• performance optimizations

• Key idea is that we can connect evaluation through a

machine model to support idea of universal evaluation

