Procedural abstraction and recursion 6.037 - Structure and Interpretation of Computer Programs

Mike Phillips, Alex Vandiver, Ben Vandiver, Chelsea Voss, Benjamin Barenblat, Zev Benjamin, Leon Shen

Massachusetts Institute of Technology

Lecture 1

http://web.mit.edu/alexmv/6.037/

• TR, 7-9PM, through the Feb 2nd

- http://web.mit.edu/alexmv/6.037/
- E-mail: 6.001-zombies@mit.edu
- Five projects: due on the 12th, 17th, 19st, 26th, and 3rd.
- Graded P/D/F
- Taking the class for credit is zero-risk!
- E-mail list sign-up on the website

• This is not a class to teach Scheme

- This is not a class to teach Scheme
- Nor really a class about programming at all

- This is not a class to teach Scheme
- Nor really a class about programming at all
- This is a course about Computer Science

- This is not a class to teach Scheme
- Nor really a class about programming at all
- This is a course about Computer Science
- ...which isn't about computers

- This is not a class to teach Scheme
- Nor really a class about programming at all
- This is a course about Computer Science
- ...which isn't about computers
- ...nor actually a science

- This is not a class to teach Scheme
- Nor really a class about programming at all
- This is a course about Computer Science
- ...which isn't about computers
- ...nor actually a science
- This is actually a class in computation

- High confusion threshold
- Some programming clue
- A copy of Racket (Formerly PLT Scheme / DrScheme) http://www.racket-lang.org/
- Free time

- Project 0 is out today
- Due on Thursday!
- Mail to 6.037-psets@mit.edu
- Collaboration is fine, as long as you note it

• Lisp invented in 1959 by John McCarthy (R.I.P. 2010)

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978
- 6.001 first taught in 1980

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978
- 6.001 first taught in 1980
- SICP published in 1984 and 1996

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978
- 6.001 first taught in 1980
- SICP published in 1984 and 1996
- R⁶RS in 2007

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978
- 6.001 first taught in 1980
- SICP published in 1984 and 1996
- R⁶RS in 2007
- 6.001 last taught in 2007

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978
- 6.001 first taught in 1980
- SICP published in 1984 and 1996
- R⁶RS in 2007
- 6.001 last taught in 2007
- 6.037 first taught in 2009

The Book ("SICP")

- Structure and Interpretation of Computer Programs
 by Harold Abelson and Gerald Jay Sussman
- http://mitpress.mit.edu/sicp/
- Not required reading
- Useful as study aid and reference
- Roughly one lecture per chapter

- Procedural and data abstraction
- Conventional interfaces & programming paradigms
 - Type systems
 - Streams
 - Object-oriented programming
- Metalinguistic abstraction
 - Creating new languages
 - Evaluators

Procedural and data abstraction

- Conventional interfaces & programming paradigms
 - Type systems
 - Streams
 - Object-oriented programming
- Metalinguistic abstraction
 - Creating new languages
 - Evaluators

- Syntax of Scheme, procedural abstraction, and recursion
- 2 Data abstractions, higher order procedures, symbols, and quotation
- Mutation, and the environment model
- Interpretation and evaluation
- Debugging
- Language design and implementation
- Ocontinuations, concurrency, lazy evaluation, and streams
- 6.001 in perspective, and the Lambda Calculus

- 0 Basic Scheme warm-up
- 1 Higher-order procedures and symbols
- 2 Mutable objects and procedures with state
- 3 Meta-circular evaluator
- 4 OOP evaluator (The Adventure Game)

Thursday 1/12 Tuesday 1/17 Thursday 1/19 Thursday 1/26 Thursday 2/3*

- "How to" knowledge
- To approximate \sqrt{x} (Heron's Method):
 - Make a guess G
 - Improve the guess by averaging G and $\frac{x}{G}$
 - Keep improving until it is good enough

- "How to" knowledge
- To approximate \sqrt{x} (Heron's Method):
 - Make a guess G
 - Improve the guess by averaging G and $\frac{x}{G}$
 - Keep improving until it is good enough

$$x = 2$$
 $G = 1$

- "How to" knowledge
- To approximate \sqrt{x} (Heron's Method):
 - Make a guess G
 - Improve the guess by averaging G and $\frac{x}{G}$
 - Keep improving until it is good enough

$$x = 2 \qquad \qquad G \qquad = 1$$

$$\frac{x}{G} = 2$$
 $G = \frac{(1+2)}{2} = 1.5$

- "How to" knowledge
- To approximate \sqrt{x} (Heron's Method):
 - Make a guess G
 - Improve the guess by averaging G and $\frac{x}{G}$
 - Keep improving until it is good enough

$$x = 2 \qquad G = 1$$

$$\frac{x}{G} = 2 \qquad G = \frac{(1+2)}{2} = 1.5$$

$$\frac{x}{G} = \frac{4}{3} \qquad G = \frac{(\frac{3}{2} + \frac{4}{3})}{2} = 1.4166$$

- "How to" knowledge
- To approximate \sqrt{x} (Heron's Method):
 - Make a guess G
 - Improve the guess by averaging G and $\frac{x}{G}$
 - Keep improving until it is good enough

$$x = 2$$
 $G = 1$
 $\frac{x}{G} = 2$
 $G = \frac{(1+2)}{2} = 1.5$
 $\frac{x}{G} = \frac{4}{3}$
 $G = \frac{(\frac{3}{2} + \frac{4}{3})}{2} = 1.4166$
 $\frac{x}{G} = \frac{24}{17}$
 $G = \frac{(\frac{17}{12} + \frac{24}{17})}{2} = 1.4142$

"How to" knowledge

 Could just store tons of "what is" information

"How to" knowledge

- Could just store tons of "what is" information
- Much more useful to capture "how to" knowledge – a series of steps to be followed to deduce a value – a procedure.

Vocabulary – basic primitives

- Vocabulary basic primitives
- Rules for writing compound expressions syntax

- Vocabulary basic primitives
- Rules for writing compound expressions syntax
- Rules for assigning meaning to constructs semantics

- Vocabulary basic primitives
- Rules for writing compound expressions syntax
- Rules for assigning meaning to constructs semantics
- Rules for capturing process of evaluation procedures

Representing basic information

Numbers

Representing basic information

Numbers

As floating point values
- As floating point values
- In IEEE 754 format

- As floating point values
- In IEEE 754 format
- Stored in binary

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates
- Implemented by transistors

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates
- Implemented by transistors
- In silicon wells

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates
- Implemented by transistors
- In silicon wells
- With electrical potential

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates
- Implemented by transistors
- In silicon wells
- With electrical potential
- Of individual electrons

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates
- Implemented by transistors
- In silicon wells
- With electrical potential
- Of individual electrons
- With mass, charge, spin, and chirality

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates
- Implemented by transistors
- In silicon wells
- With electrical potential
- Of individual electrons
- With mass, charge, spin, and chirality
- Whose mass is imparted by interaction with the Higgs field

Numbers

- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Stored in flip-flops
- Made of logic gates
- Implemented by transistors
- In silicon wells
- With electrical potential
- Of individual electrons
- With mass, charge, spin, and chirality
- Whose mass is imparted by interaction with the Higgs field

• ...

- We assume that our language provides us with a basic set of data elements:
 - Numbers

- We assume that our language provides us with a basic set of data elements:
 - Numbers
 - Characters

- We assume that our language provides us with a basic set of data elements:
 - Numbers
 - Characters
 - Booleans

- We assume that our language provides us with a basic set of data elements:
 - Numbers
 - Characters
 - Booleans
- It also provides a basic set of operations on these primitive elements

- We assume that our language provides us with a basic set of data elements:
 - Numbers
 - Characters
 - Booleans
- It also provides a basic set of operations on these primitive elements
- We can then focus on using these basic elements to construct more complex processes

 Legal expressions have rules for constructing from simpler pieces – the syntax.

- Legal expressions have rules for constructing from simpler pieces – the syntax.
- (Almost) every <u>expression</u> has a <u>value</u>, which is "returned" when an expression is "<u>evaluated</u>."

- Legal expressions have rules for constructing from simpler pieces – the syntax.
- (Almost) every <u>expression</u> has a <u>value</u>, which is "returned" when an expression is "<u>evaluated</u>."
- Every value has a type.

- Legal expressions have rules for constructing from simpler pieces – the syntax.
- (Almost) every <u>expression</u> has a <u>value</u>, which is "returned" when an expression is "<u>evaluated</u>."
- Every value has a type.
- The latter two are the semantics of the language.

Self-evaluating primitives – value of expression is just object itself: Numbers 29, -35, 1.34, 1.2*e*5

Self-evaluating primitives – value of expression is just object itself: Numbers 29, -35, 1.34, 1.2*e*5 Strings "this is a string" "odd #\$@%#\$ thing number 35" Self-evaluating primitives – value of expression is just object itself: Numbers 29, -35, 1.34, 1.2*e*5 Strings "this is a string" "odd #\$@%#\$ thing number 35" Booleans #t, #f Built-in procedures to manipulate primitive objects:

Numbers +, -, *, /, >, <, >=, <=, =
Strings string-length, string=?
Booleans and, or, not</pre>

Names for built-in procedures

- +, -, *, /, =, ...
- What is the value of them?

Names for built-in procedures

- +, -, *, /, =, ...
- What is the value of them?
- + \rightarrow #<procedure:+>

Names for built-in procedures

- +, -, *, /, =, ...
- What is the value of them?
- + → #<procedure:+>
- Evaluate by looking up value associated with the name in a special table the environment.

- How to we create expressions using these procedures?
- (+ 2 3)

- How to we create expressions using these procedures?
- (+ 2 3)
 - Open paren

- How to we create expressions using these procedures?
- (+ 2 3)
 - Open paren
 - Expression whose value is a procedure

• How to we create expressions using these procedures?

• (+ 2 3)

- Open paren
- Expression whose value is a procedure
- Other expressions

• How to we create expressions using these procedures?

• (+ 2 3)

- Open paren
- Expression whose value is a procedure
- Other expressions
- Close paren

- How to we create expressions using these procedures?
- (+ 2 3)
 - Open paren
 - Expression whose value is a procedure
 - Other expressions
 - Close paren
- This type of expression is called a combination
- Evaluate it by getting values of sub-expressions, then applying operator to values of arguments.

- How to we create expressions using these procedures?
- (+ 2 3)
 - Open paren
 - Expression whose value is a procedure
 - Other expressions
 - Close paren
- This type of expression is called a combination
- Evaluate it by getting values of sub-expressions, then applying operator to values of arguments.
- You now know all there is to know about Scheme syntax!
- How to we create expressions using these procedures?
- (+ 2 3)
 - Open paren
 - Expression whose value is a procedure
 - Other expressions
 - Close paren
- This type of expression is called a <u>combination</u>
- Evaluate it by getting values of sub-expressions, then applying operator to values of arguments.
- You now know all there is to know about Scheme syntax! (almost)

• Note the recursive definition – can use combinations as expressions to other combinations:

 $(+ (* 2 3) 4) \rightarrow$

• Note the recursive definition – can use combinations as expressions to other combinations:

 $(+ (* 2 3) 4) \rightarrow 10$

- Note the recursive definition can use combinations as expressions to other combinations:
- $(+ (* 2 3) 4) \rightarrow 10$

 $(\star (+ 3 4) (- 8 2)) \rightarrow$

- Note the recursive definition can use combinations as expressions to other combinations:
- $(+ (* 2 3) 4) \longrightarrow 10$
- $(\star (+ 3 4) (- 8 2)) \rightarrow 42$

In order to abstract an expression, need a way to give it a name

 In order to abstract an expression, need a way to give it a name (define score 23)

- In order to abstract an expression, need a way to give it a name (define score 23)
- This is a special form
 - Does not evaluate the second expression
 - Rather, it pairs the name with the value of the third expression

- In order to abstract an expression, need a way to give it a name (define score 23)
- This is a special form
 - Does not evaluate the second expression
 - Rather, it pairs the name with the value of the third expression
- The return value is unspecified

• To get the value of a name, just look up pairing in the environment (define score 23) \longrightarrow

• To get the value of a name, just look up pairing in the environment (define score 23) \rightarrow undefined

• To get the value of a name, just look up pairing in the environment (define score 23) \rightarrow undefined score \rightarrow

• To get the value of a name, just look up pairing in the environment (define score 23) \rightarrow undefined score \rightarrow 23

To get the value of a name, just look up pairing in the environment
 (define score 23) → undefined
 score → 23
 (define total (+ 12 13)) →

To get the value of a name, just look up pairing in the environment
 (define score 23) → undefined
 score → 23
 (define total (+ 12 13)) → undefined

 To get the value of a name, just look up pairing in the environment (define score 23) → undefined score → 23 (define total (+ 12 13)) → undefined (* 100 (/ score total)) → To get the value of a name, just look up pairing in the environment
 (define score 23) → undefined
 score → 23
 (define total (+ 12 13)) → undefined
 (* 100 (/ score total)) → 92

Language elements – common errors

(5 + 6)

- (5 + 6)
 - => procedure application: expected procedure, given: 5; arguments were: #<procedure:+> 6

=> procedure application: expected procedure, given: 5; arguments were: #<procedure:+> 6

((+ 5 6))

- => procedure application: expected procedure, given: 5; arguments were: #<procedure:+> 6
- ((+ 5 6))
 => procedure application: expected procedure,
 given: 11 (no arguments)

=> procedure application: expected procedure, given: 5; arguments were: #<procedure:+> 6

((+ 5 6)) => procedure application: expected procedure, given: 11 (no arguments)

(* 100 (/ score totla))

=> procedure application: expected procedure, given: 5; arguments were: #<procedure:+> 6

((+ 5 6)) => procedure application: expected procedure, given: 11 (no arguments)

(* 100 (/ score totla)) => reference to undefined identifier: totla

• If self-evaluating, return value

- If self-evaluating, return value
- If a name, return value associated with name in environment

- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special

- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special
- If a combination, then
 - Evaluate all of the sub-expressions, in any order

- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special
- If a combination, then
 - Evaluate all of the sub-expressions, in any order
 - <u>Apply</u> the operator to the values of the operands and return the result

Mathematical operators are just names

(+ 3 5)

 \rightarrow

8

 $\begin{array}{cccc} (+ & 3 & 5) & & \rightarrow & 8 \\ (\text{define fred } +) & & \rightarrow & \text{undefined} \\ (\text{fred } 3 & 6) & & \rightarrow & 9 \end{array}$

(+ 3 5)		\rightarrow	8
(define :	fred +)	\rightarrow	undefined
(fred 3 (6)	\rightarrow	9

- + is just a name
- + is bound to a value which is a procedure
- line 2 binds the name fred to that same value

All names are names

$(+ 3 5) \rightarrow 8$

 $\begin{array}{cccc} (+ & 3 & 5) & & \rightarrow & \mathbf{8} \\ (\text{define} & + & \star) & & \rightarrow & \textbf{undefined} \end{array}$

(+ 3 5) (define + *) (+ 3 5) \rightarrow \rightarrow \rightarrow 8

undefined

(+ 3 5) (define + *) (+ 3 5) $\begin{array}{ll} \rightarrow & 8 \\ \rightarrow & \text{undefined} \\ \rightarrow & 15 \end{array}$
$\begin{array}{cccc} (+ & 3 & 5) & & \rightarrow & 8 \\ (\text{define } + & *) & & \rightarrow & \text{undefined} \\ (+ & 3 & 5) & & \rightarrow & 15 \end{array}$

• There's nothing "special" about the operators you take for granted, either!

$\begin{array}{cccc} (+ & 3 & 5) & & \rightarrow & 8 \\ (\text{define } + & *) & & \rightarrow & \text{undefined} \\ (+ & 3 & 5) & & \rightarrow & 15 \end{array}$

- There's nothing "special" about the operators you take for granted, either!
- Their values can be changed using define just as well

$\begin{array}{ccccc} (+ & 3 & 5) & & \rightarrow & 8 \\ (\text{define} & + & *) & & \rightarrow & \text{undefined} \\ (+ & 3 & 5) & & \rightarrow & 15 \end{array}$

- There's nothing "special" about the operators you take for granted, either!
- Their values can be changed using define just as well
- Of course, this is generally a horrible idea

• To capture a way of doing things, create a procedure:

• To capture a way of doing things, create a procedure: (lambda (x) (* x x))

- To capture a way of doing things, create a procedure: (lambda (x) (* x x))
- (x) is the list of parameters

- To capture a way of doing things, create a procedure: (lambda (x) (* x x))
- (x) is the list of parameters
- (* x x) is the body

- To capture a way of doing things, create a procedure: (lambda (x) (* x x))
- (x) is the list of parameters
- (* x x) is the body
- lambda is a special form: create a procedure and returns it

• Use this anywhere you would use a built-in procedure like +: ((lambda (x) (* x x)) 5)

- Use this anywhere you would use a built-in procedure like +: ((lambda (x) (* x x)) 5)
- Substitute the value of the provided arguments into the body:
 (* 5 5)

- Use this anywhere you would use a built-in procedure like +: ((lambda (x) (* x x)) 5)
- Substitute the value of the provided arguments into the body:
 (* 5 5)
- Can also give it a name:

```
(define square (lambda(x) (* x x)))
(square 5) \rightarrow 25
```

- Use this anywhere you would use a built-in procedure like +: ((lambda (x) (* x x)) 5)
- Substitute the value of the provided arguments into the body: (* 5 5)
- Can also give it a name:

```
(define square (lambda(x) (* x x)))
(square 5) \rightarrow 25
```

 This creates a loop in our system, where we can create a complex thing, name it, and treat it as a primitive like + Rules for evaluation:

- If self-evaluating, return value
- If a <u>name</u>, return value associated with name in environment
- If a special form, do something special.
- If a <u>combination</u>, then
 - Evaluate all of the sub-expressions, in any order
 - <u>Apply</u> the operator to the values of the operands and return the result

Rules for applying:

- If primitive, just do it
- If a <u>compound procedure</u>, then substitute each formal parameter with the corresponding argument value, and <u>evaluate</u> the body

```
(lambda (x) (* x x))
    => #procedure>
```

```
(lambda (x) (* x x))
 => #<procedure>
(define square (lambda (x) (* x x)))
 => undefined
```

```
(lambda (x) (* x x))
 => #<procedure>
(define square (lambda (x) (* x x)))
 => undefined
(square 4)
```

```
(lambda (x) (* x x))
   => #<procedure>
(define square (lambda (x) (* x x)))
   => undefined
(square 4)
   => (* 4 4)
```

```
(lambda (x) (* x x))
  => #<procedure>
(define square (lambda (x) (* x x)))
  => undefined
(square 4)
  => (* 4 4)
  => 16
```

```
(lambda (x) (* x x))
  => #<procedure>
(define square (lambda (x) (* x x)))
  => undefined
(square 4)
  => (* 4 4)
  => 16
```

"Syntactic sugar":

```
(define (square x) (* x x))
  => undefined
```

• Syntax: (lambda (x y) (/ (+ x y) 2))

- Syntax: (lambda (x y) (/ (+ x y) 2))
- 1st operand is the parameter list: (x y)
 - a list of names (perhaps empty)
 - determines the number of operands required

- Syntax: (lambda (x y) (/ (+ x y) 2))
- 1st operand is the parameter list: (x y)
 - a list of names (perhaps empty)
 - determines the number of operands required
- 2nd operand is the body: (/ (+ x y) 2)
 - may be any expression
 - not evaluated when the lambda is evaluated
 - evaluated when the procedure is applied

(define x (lambda () (+ 3 2))) \rightarrow

(define x (lambda () (+ 3 2))) \rightarrow undefined

$\begin{array}{ccc} (\text{define x (lambda () (+ 3 2))}) & \rightarrow & \text{undefined} \\ \text{x} & & \rightarrow & \end{array}$

$\begin{array}{cccc} (\text{define x (lambda () (+ 3 2))}) & \rightarrow & \text{undefined} \\ \text{x} & & \rightarrow & \# < \texttt{procedure} > \end{array}$

$\begin{array}{cccc} (\text{define x (lambda () (+ 3 2)))} & \rightarrow & \text{undefined} \\ \texttt{x} & & & \Rightarrow & \texttt{\#<procedure>} \\ \texttt{(x)} & & & & \Rightarrow & \end{array}$

$\begin{array}{ccc} (\text{define x (lambda () (+ 3 2)))} & \rightarrow \\ \text{x} & & \rightarrow \\ (\text{x}) & & & \rightarrow \end{array}$

 $\begin{array}{ll} \rightarrow & \text{undefined} \\ \rightarrow & \#{<}\texttt{procedure}{>} \\ \rightarrow & 5 \end{array}$

The value of a lambda expression is a procedure

Capturing a common pattern:

- (* 3 3)
- (* 25 25)
- (* foobar foobar)

Capturing a common pattern:

- (* 3 3)
- (* 25 25)
- (* foobar foobar)

(lambda (x) (* x x)) Name for the thing that changes

Capturing a common pattern:

- (* 3 3)
- (* 25 25)
- (* foobar foobar)

(lambda (x) (* x x)) Common pattern to capture

Modularity of common patterns

Here is a common pattern:

Here is a common pattern:

• (sqrt (+ (* 3 3) (* 4 4)))

Here is a common pattern:

- (sqrt (+ (* 3 3) (* 4 4)))
- (sqrt (+ (* 9 9) (* 16 16)))

Here is a common pattern:

- (sqrt (+ (* 3 3) (* 4 4)))
- (sqrt (+ (* 9 9) (* 16 16)))
- (sqrt (+ (* 4 4) (* 4 4)))
- (sqrt (+ (* 3 3) (* 4 4)))
- (sqrt (+ (* 9 9) (* 16 16)))
- (sqrt (+ (* 4 4) (* 4 4)))

- (sqrt (+ (* 3 3) (* 4 4)))
- (sqrt (+ (* 9 9) (* 16 16)))
- (sqrt (+ (* 4 4) (* 4 4)))

- (sqrt (+ (* 3 3) (* 4 4)))
- (sqrt (+ (* 9 9) (* 16 16)))
- (sqrt (+ (* 4 4) (* 4 4)))

Here is one way to capture this pattern:

```
(define pythagoras
   (lambda (x y)
        (sqrt (+ (* x x) (* y y)))))
```

- (sqrt (+ (* 3 3) (* 4 4)))
- (sqrt (+ (* 9 9) (* 16 16)))
- (sqrt (+ (* 4 4) (* 4 4)))

Here is a better way to capture this pattern:

```
(define square (lambda (x) (* x x)))
(define pythagoras
        (lambda (x y)
            (sqrt (+ (square x) (square y)))))
```

• Breaking computation into modules that capture commonality

- Breaking computation into modules that capture commonality
- Enables reuse in other places (e.g. square)

- Breaking computation into modules that capture commonality
- Enables reuse in other places (e.g. square)
- Isolates (abstracts away) details of computation within a procedure from use of the procedure

- Breaking computation into modules that capture commonality
- Enables reuse in other places (e.g. square)
- Isolates (abstracts away) details of computation within a procedure from use of the procedure
- May be many ways to divide up:

```
(define square (lambda (x) (* x x)))
(define pythagoras
    (lambda (x y)
        (sqrt (+ (square x) (square y)))))
```

- Breaking computation into modules that capture commonality
- Enables reuse in other places (e.g. square)
- Isolates (abstracts away) details of computation within a procedure from use of the procedure
- May be many ways to divide up:

```
(define square (lambda (x) (* x x)))
(define sum-squares
    (lambda (x y) (+ (square x) (square y))))
(define pythagoras
    (lambda (x y)
        (sqrt (sum-squares x y))))
```

Recitation time!

Make a guess G

- Make a guess G
- 2 Improve the guess by averaging G and $\frac{x}{G}$:

- Make a guess G
- 2 Improve the guess by averaging G and $\frac{x}{G}$:
- Keep improving until it is good enough

- Make a guess G
- 2 Improve the guess by averaging G and $\frac{x}{G}$:
- Keep improving until it is good enough

Sub-problems:

• When is "close enough"?

- Make a guess G
- 2 Improve the guess by averaging G and $\frac{x}{G}$:
- Keep improving until it is good enough

Sub-problems:

- When is "close enough"?
- How do we create a new guess?

- Make a guess G
- 2 Improve the guess by averaging G and $\frac{x}{G}$:
- Keep improving until it is good enough

Sub-problems:

- When is "close enough"?
- How do we create a new guess?
- How do we control the process of using the new guess in place of the old one?

"When the square of the guess is within 0.001 of the value"

"When the square of the guess is within 0.001 of the value"

"When the square of the guess is within 0.001 of the value"

Note the use of the square procedural abstraction from earlier!

(define average (lambda (a b) (/ (+ a b) 2)))

```
(define average
   (lambda (a b) (/ (+ a b) 2)))
(define improve
   (lambda (guess x)
        (average guess (/ x guess))))
```

- average is something we are likely to want to use again
- Abstraction lets us separate implementation details from use
 - Originally:

```
(define average
    (lambda (a b) (/ (+ a b) 2)))
```

- average is something we are likely to want to use again
- Abstraction lets us separate implementation details from use
 - Originally:

```
(define average
    (lambda (a b) (/ (+ a b) 2)))
```

Could redefine as:

```
(define average
(lambda (x y) (* (+ x y) 0.5)))
```

- average is something we are likely to want to use again
- Abstraction lets us separate implementation details from use
 - Originally:

```
(define average
    (lambda (a b) (/ (+ a b) 2)))
```

Could redefine as:

```
(define average
      (lambda (x y) (* (+ x y) 0.5)))
```

There's actually a difference between those in Racket (exact vs inexact numbers)

- average is something we are likely to want to use again
- Abstraction lets us separate implementation details from use
 - Originally:

```
(define average
    (lambda (a b) (/ (+ a b) 2)))
```

Could redefine as:

```
(define average
(lambda (x y) (* (+ x y) 0.5)))
```

- There's actually a difference between those in Racket (exact vs inexact numbers)
- No other changes needed to procedures that use average

- average is something we are likely to want to use again
- Abstraction lets us separate implementation details from use
 - Originally:

```
(define average
    (lambda (a b) (/ (+ a b) 2)))
```

Could redefine as:

```
(define average
(lambda (x y) (* (+ x y) 0.5)))
```

- There's actually a difference between those in Racket (exact vs inexact numbers)
- No other changes needed to procedures that use average
- Also note that parameters are internal to the procedure cannot be referred to by name outside of the lambda

• Given x and guess, want (improve guess x) as new guess

- Given x and guess, want (improve guess x) as new guess
- But only if the guess isn't good enough already

- Given x and guess, want (improve guess x) as new guess
- But only if the guess isn't good enough already
- We need to make a decision for this, we need a new special form
 - (if predicate consequent alternative)

(if predicate consequent alternative)

- Evaluator first evaluates the predicate expression
- If it returns a true value (#t), then the evaluator evaluates and returns the value of the <u>consequent</u> expression
- Otherwise, it evaluates and returns the value of the <u>alternative</u> expression

(if predicate consequent alternative)

- Evaluator first evaluates the predicate expression
- If it returns a true value (#t), then the evaluator evaluates and returns the value of the <u>consequent</u> expression
- Otherwise, it evaluates and returns the value of the <u>alternative</u> expression
- Why must this be a special form? Why can't it be implemented as a regular lambda procedure?

• So the heart of the process should be:

```
(define (sqrt-loop guess x)
  (if (close-enough? guess x)
     guess
          (improve guess x) ))
```

• But somehow we need to use the value returned by improve as the new guess, keep the same x, and repeat the process

• So the heart of the process should be:

```
(define (sqrt-loop guess x)
  (if (close-enough? guess x)
     guess
          (improve guess x) ))
```

- But somehow we need to use the value returned by improve as the new guess, keep the same x, and repeat the process
- Call the sqrt-loop function again and reuse it!

• So the heart of the process should be:

```
(define (sqrt-loop guess x)
  (if (close-enough? guess x)
     guess
       (sqrt-loop (improve guess x) x)))
```

- But somehow we need to use the value returned by improve as the new guess, keep the same x, and repeat the process
- Call the sqrt-loop function again and reuse it!

Now we just need to kick the process off with an initial guess:

```
(define sqrt
   (lambda (x)
        (sqrt-loop 1.0 x)))
(define (sqrt-loop guess x)
   (if (close-enough? guess x)
       guess
        (sqrt-loop (improve guess x) x)))
```

How do we know it works?
- How do we know it works?
- Fall back to rules for evaluation from earlier

Rules for evaluation:

- If <u>self-evaluating</u>, return value
- If a <u>name</u>, return value associated with name in environment
- If a <u>special form</u>, do something special.
- If a <u>combination</u>, then
 - Evaluate all of the sub-expressions, in any order
 - <u>Apply</u> the operator to the values of the operands and return the result

Rules for applying:

- If <u>primitive</u>, just do it
- If a <u>compound procedure</u>, then substitute each formal parameter with the corresponding argument value, and <u>evaluate</u> the body

Rules for evaluation:

- If <u>self-evaluating</u>, return value
- If a <u>name</u>, return value associated with name in environment
- If a <u>special form</u>, do something special.
- If a <u>combination</u>, then
 - Evaluate all of the sub-expressions, in any order
 - <u>Apply</u> the operator to the values of the operands and return the result

Rules for applying:

- If <u>primitive</u>, just do it
- If a <u>compound procedure</u>, then <u>substitute</u> each formal parameter with the corresponding argument value, and <u>evaluate</u> the body

The substitution model of evaluation

Rules for evaluation:

- If self-evaluating, return value
- If a <u>name</u>, return value associated with name in environment
- If a <u>special form</u>, do something special.
- If a <u>combination</u>, then
 - Evaluate all of the sub-expressions, in any order
 - <u>Apply</u> the operator to the values of the operands and return the result

Rules for applying:

- If <u>primitive</u>, just do it
- If a <u>compound procedure</u>, then <u>substitute</u> each formal parameter with the corresponding argument value, and <u>evaluate</u> the body

The substitution model of evaluation

... is a lie and a simplification, but a useful one!

(sqrt 2)

(sqrt 2)

((lambda (x) (sqrt-loop 1.0 x)) 2)

(sqrt 2)

((lambda (x) (sqrt-loop 1.0 x)) 2)

(sqrt 2) ((lambda (x) (sqrt-loop 1.0 x)) 2) (sqrt-loop 1.0 2)

```
(sqrt 2)
((lambda (x) (sqrt-loop 1.0 x)) 2)
(sqrt-loop 1.0 2)
((lambda (guess x)
      (if (close-enough? guess x)
        guess
        (sqrt-loop (improve guess x) x))) 1.0 2)
```

```
(sqrt 2)
((lambda (x) (sqrt-loop 1.0 x)) 2)
(sqrt-loop 1.0 2)
((lambda (guess x)
        (if (close-enough? guess x)
            guess
            (sqrt-loop (improve guess x) x))) 1.0 2)
```

```
(if (close-enough? 1.0 2)
   1.0
    (sqrt-loop (improve 1.0 2) 2))
```

```
(sqrt-loop (improve 1.0 2) 2)
```

```
(sqrt-loop ((lambda (a b) (/ (+ a b) 2)) 1.0 2) 2)
```

```
(sqrt-loop ((lambda (a b) (/ (+ a b) 2)) 1.0 2) 2)
```

```
(sqrt-loop (/ (+ 1.0 2) 2) 2)
```

```
(sgrt-loop 1.5 2)
```

```
. . .
(sqrt-loop 1.4166 2)
```

- Compute n factorial, defined as: n! = n(n-1)(n-2)(n-3)...1
- How can we capture this in a procedure, using the idea of finding a common pattern?

- Wishful thinking
- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Wishful thinking

Assume the desired procedure exists

- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Wishful thinking

- Assume the desired procedure exists
- Want to implement factorial? Assume it exists.

- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Wishful thinking

- Assume the desired procedure exists
- Want to implement factorial? Assume it exists.
- But, it only solves a smaller version of the problem

- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Wishful thinking

- Assume the desired procedure exists
- Want to implement factorial? Assume it exists.
- But, it only solves a smaller version of the problem
- This is just finding the common pattern; but here, solving the bigger problem involves the same pattern in a smaller problem

- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Decompose the problem

• Solve a smaller instance

- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Decompose the problem

Solve a smaller instance

Convert that solution into desired solution n! = n(n-1)(n-2)... = n[(n-1)(n-2)...] = n ∗ (n-1)!

- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Decompose the problem

- Solve a smaller instance
- Convert that solution into desired solution
 n! = n(n-1)(n-2)... = n[(n-1)(n-2)...] = n ∗ (n-1)!

(define fact (lambda (n) (* n (fact (- n 1)))))

(define fact (lambda (n) (* n (fact (- n 1)))))

```
(define fact
(lambda (n) (* n (fact (- n 1)))))
```

(fact 2)

```
(define fact
        (lambda (n) (* n (fact (- n 1)))))
(fact 2)
(* 2 (fact 1))
```

```
(define fact
        (lambda (n) (* n (fact (- n 1)))))
(fact 2)
(* 2 (fact 1))
(* 2 (* 1 (fact 0)))
```

```
(define fact
        (lambda (n) (* n (fact (- n 1)))))
(fact 2)
(* 2 (fact 1))
(* 2 (* 1 (fact 0)))
(* 2 (* 1 (* 0 (fact -1))))
```

```
(define fact
        (lambda (n) (* n (fact (- n 1)))))
(fact 2)
(* 2 (fact 1))
(* 2 (* 1 (fact 0)))
(* 2 (* 1 (* 0 (fact -1))))
(* 2 (* 1 (* 0 (* -1 (fact -2)))))
```

```
(define fact
        (lambda (n) (* n (fact (- n 1)))))
(fact 2)
(* 2 (fact 1))
(* 2 (* 1 (fact 0)))
(* 2 (* 1 (* 0 (fact -1))))
(* 2 (* 1 (* 0 (* -1 (fact -2)))))
:
```

- Wishful thinking
- 2 Decompose the problem
- Identify non-decomposable (smallest) problems

Identify non-decomposable problems

Must identify the "smallest" problems and solve explicitly

- Wishful thinking
- Occompose the problem
- Identify non-decomposable (smallest) problems

Identify non-decomposable problems

- Must identify the "smallest" problems and solve explicitly
- Define 1! to be 1

Have a test, a base case, and a recursive case
Have a test, a base case, and a recursive case

• Have a test, a base case, and a recursive case

• Have a test, a base case, and a recursive case

• Have a test, a base case, and a recursive case

 More complex algorithms may have multiple base cases or multiple recursive cases (define fact (lambda (n) (if (= n 1) 1 (* n (fact (- n 1))))))

```
(define fact (lambda (n)
  (if (= n 1) 1 (* n (fact (- n 1))))))
```

(fact 3)

(define fact (lambda (n) (if (= n 1) 1 (* n (fact (- n 1)))))) (fact 3)

(if (= 3 1) 1 (* 3 (fact (- 3 1))))

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
(fact 3)
(if (= 3 1) 1 (* 3 (fact (- 3 1))))
(if #f 1 (* 3 (fact (- 3 1))))
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
```

(fact 3) (if (= 3 1) 1 (* 3 (fact (- 3 1)))) (if #f 1 (* 3 (fact (- 3 1)))) (* 3 (fact (- 3 1)))

```
(define fact (lambda (n)
  (if (= n 1) 1 (* n (fact (- n 1))))))
```

```
(if (= 3 1) 1 (* 3 (fact (- 3 1))))
```

```
(if #f 1 (* 3 (fact (- 3 1))))
```

```
(* 3 (fact (- 3 1)))
```

```
(* 3 (fact 2))
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
```

(fact 3) (if (= 3 1) 1 (* 3 (fact (- 3 1)))) (if #f 1 (* 3 (fact (- 3 1)))) (* 3 (fact (- 3 1))) (* 3 (fact 2)) (* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
(fact 3)
(if (= 3 1) 1 (* 3 (fact (- 3 1))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (fact (- 3 1)))
(* 3 (fact 2))
(* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
```

(fact 3)

- (if (= 3 1) 1 (* 3 (fact (- 3 1))))
- (if #f 1 (* 3 (fact (- 3 1))))
- (* 3 (fact (- 3 1)))
- (* 3 (fact 2))
- (* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))
- (* 3 (if #f 1 (* 2 (fact (- 2 1)))))
- (* 3 (* 2 (fact (- 2 1))))

```
(define fact (lambda (n)
  (if (= n 1) 1 (* n (fact (- n 1))))))
```

```
(fact 3)
(if (= 3 1) 1 (* 3 (fact (- 3 1))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (fact (- 3 1)))
(* 3 (fact 2))
(* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1))))
(* 3 (if #f 1 (* 2 (fact (- 2 1))))
(* 3 (* 2 (fact (- 2 1))))
(* 3 (* 2 (fact 1)))
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (if (= 1 1) 1 (* 1 (fact (- 1 1))))))
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (if #t 1 (* 1 (fact (- 1 1))))))
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (if #t 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 1))
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (if #t 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 1))
(* 3 2)
```

```
(define fact (lambda (n)
    (if (= n 1) 1 (* n (fact (- n 1))))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 (if #t 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 1))
(* 3 2)
6
```

(define fact (lambda (n) (if (= n 1) 1 (* n (fact (- n 1)))))) (fact 3) (if #f 1 (* 3 (fact (- 3 1)))) (* 3 (fact 2)) (* 3 (if #f 1 (* 2 (fact (- 2 1)))))(* 3 (* 2 (fact 1))) (* 3 (* 2 (if #t 1 (* 1 (fact (- 1 1)))))) (* 3 (* 2 1))(* 3 2)6

Recursive algorithms consume more space with bigger operands!

(fact 4)

- (fact 4)
- (* 4 (fact 3))

Recursive algorithms consume more space with bigger operands!

(fact 4) (* 4 (fact 3)) (* 4 (* 3 (fact 2)))

```
(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
```


Recursive algorithms consume more space with bigger operands!

```
(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 1)))
...
```

24

Recursive algorithms consume more space with bigger operands!

(fact 8)

- (fact 8)
- (* 8 (fact 7))

Recursive algorithms consume more space with bigger operands!

(fact 8) (* 8 (fact 7)) (* 8 (* 7 (fact 6)))

```
(fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))
```

```
(fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))
...
```


Recursive algorithms consume more space with bigger operands!

```
(fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))
...
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (fact 1)))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1)))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 2))))))
```

. . .

```
(fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))
...
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (fact 1)))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1)))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 2))))))
...
40320
```
- Try computing 101!
 101 * 100 * 99 * 98 * 97 * 96 * ... * 2 * 1
- How much space do we consume with pending operations?

- Try computing 101!
 101 * 100 * 99 * 98 * 97 * 96 * ... * 2 * 1
- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
 - Start with 1 as the answer

• Try computing 101!

 $101 * 100 * 99 * 98 * 97 * 96 * \ldots * 2 * 1$

- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
 - Start with 1 as the answer
 - Multiply by 2, store 2 as the current answer, remember we've done up to 2

Try computing 101!

 $101 * 100 * 99 * 98 * 97 * 96 * \ldots * 2 * 1$

- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
 - Start with 1 as the answer
 - Multiply by 2, store 2 as the current answer, remember we've done up to 2
 - Multiply by 3, store 6, remember we're done up to 3

Try computing 101!

101 * 100 * 99 * 98 * 97 * 96 * . . . * 2 * 1

- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
 - Start with 1 as the answer
 - Multiply by 2, store 2 as the current answer, remember we've done up to 2
 - Multiply by 3, store 6, remember we're done up to 3
 - Multiply by 4, store 24, remember we're done up to 4

Try computing 101!

101 * 100 * 99 * 98 * 97 * 96 * . . . * 2 * 1

- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
 - Start with 1 as the answer
 - Multiply by 2, store 2 as the current answer, remember we've done up to 2
 - Multiply by 3, store 6, remember we're done up to 3
 - Multiply by 4, store 24, remember we're done up to 4

• ...

Try computing 101!

101 * 100 * 99 * 98 * 97 * 96 * ... * 2 * 1

- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
 - Start with 1 as the answer
 - Multiply by 2, store 2 as the current answer, remember we've done up to 2
 - Multiply by 3, store 6, remember we're done up to 3
 - Multiply by 4, store 24, remember we're done up to 4
 - ...

 - Realize we're done up to the number we want, and stop

• Try computing 101!

101 * 100 * 99 * 98 * 97 * 96 * . . . * 2 * 1

- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
 - Start with 1 as the answer
 - Multiply by 2, store 2 as the current answer, remember we've done up to 2
 - Multiply by 3, store 6, remember we're done up to 3
 - Multiply by 4, store 24, remember we're done up to 4
 - ...

 - Realize we're done up to the number we want, and stop
- This is an iterative algorithm it uses constant space

product	done	max
1	1	5
2	2	5

• First row handles 1! cleanly

product	done	max
1	1	5
2	2	5
6	3	5

- First row handles 1! cleanly
- product becomes

product * (done + 1)

product	done	max
1	1	5
2	2	5
6	3	5
24	4	5

- First row handles 1! cleanly
- ${\ensuremath{\bullet}}$ product ${\ensuremath{\mathsf{becomes}}}$
 - product * (done + 1)
- done becomes done + 1

product	done	max
1	1	5
2	2	5
6	3	5
24	4	5
120	5	5

- First row handles 1! cleanly
- product becomes
 product * (done + 1)
- done **becomes** done + 1
- The answer is product when done = max

(define (ifact-helper product done max)

)

• The helper has one argument per column

(define (ifact-helper product done max)

)

- The helper has one argument per column
- Which is called by ifact

(define (ifact-helper product done max)

)

- The helper has one argument per column
- Which is called by ifact
- Which provides the values for the first row

(define (ifact-helper product done max)

- The helper has one argument per column
- Which is called by ifact
- Which provides the values for the first row
- The recursive call to ifact-helper

(define (ifact-helper product done max)

- The helper has one argument per column
- Which is called by ifact
- Which provides the values for the first row
- The recursive call to ifact-helper computes the next row

```
(define (ifact-helper product done max)
  (if (= done max)
```

- The helper has one argument per column
- Which is called by ifact
- Which provides the values for the first row
- The recursive call to ifact-helper computes the next row
- And the if statement checks the end condition

- The helper has one argument per column
- Which is called by ifact
- Which provides the values for the first row
- The recursive call to ifact-helper computes the next row
- And the if statement checks the end condition and output value

(ifact 4)

```
(define (ifact-helper product done max)
    (if (= done max)
        product
        (ifact-helper (* product (+ done 1))
                       (+ done 1)
                      max)))
(if (= 2 4) 2 (ifact-helper (* 2 (+ 2 1)) (+ 2 1) 4))
```

```
(define (ifact-helper product done max)
    (if (= done max)
        product
        (ifact-helper (* product (+ done 1))
                       (+ done 1)
                       max)))
(ifact-helper 6 3 4)
```

```
(define (ifact-helper product done max)
    (if (= done max)
        product
        (ifact-helper (* product (+ done 1))
                       (+ done 1)
                      max)))
(if (= 3 4) 6 (ifact-helper (* 6 (+ 3 1)) (+ 3 1) 4))
```

```
(define (ifact-helper product done max)
    (if (= done max)
       product
        (ifact-helper (* product (+ done 1))
                      (+ done 1)
                      max)))
(if (= 2 4) 2 (ifact-helper (* 2 (+ 2 1)) (+ 2 1) 4))
(if (= 3 4) 6 (ifact-helper (* 6 (+ 3 1)) (+ 3 1) 4))
(ifact-helper 24 4 4)
```

```
(define (ifact-helper product done max)
    (if (= done max)
       product
        (ifact-helper (* product (+ done 1))
                       (+ done 1)
                      max)))
(if (= 4 4) 24 (ifact-helper (* 24 (+ 4 1)) (+ 4 1) 4)
```

```
(define (ifact-helper product done max)
    (if (= done max)
        product
        (ifact-helper (* product (+ done 1))
                       (+ done 1)
                       max)))
(if (= 4 4) 24 (ifact-helper (* 24 (+ 4 1)) (+ 4 1) 4)
2.4
```

```
(define (ifact-helper product done max)
    (if (= done max)
        product
        (ifact-helper (* product (+ done 1))
                       (+ done 1)
                      max)))
(ifact-helper 1 1 4)
(ifact-helper 2 2 4)
(if (= 2 4) 2 (ifact-helper (* 2 (+ 2 1)) (+ 2 1) 4))
(ifact-helper 6 3 4)
(ifact-helper 24 4 4)
```

Recursive factorial:

• Pending operations make the expression grow continuously.

Iterative algorithms have no pending operations

Iterative factorial:

(ifact-helper 1 1 4) (ifact-helper 2 2 4) (ifact-helper 6 3 4) (ifact-helper 24 4 4)

Fixed space because no pending operations

- Iterative algorithms have constant space
- To develop an iterative algorithm:
 - Figure out a way to accumulate partial answers
 - Write out a table to analyze:
 - initialization of first row
 - update rules for other rows
 - how to know when to stop
 - Translate rules into Scheme
- Iterative algorithms have no pending operations

Recitation time!
- Lambdas allow us to create procedures which capture processes
- Procedural abstraction creates building blocks for complex processes
- Recursive algorithms capitalize on "wishful thinking" to reduce problems to smaller subproblems
- Iterative algorithms similarly reduce problems, but based on data you can express in tabular form

- Project 0 is due Thursday
- Submit to 6.037-psets@mit.edu
- http://web.mit.edu/alexmv/6.037/
- E-mail: 6.001-zombies@mit.edu