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Class Structure

TR, 7-9PM, through the Feb 2nd

http://web.mit.edu/alexmv/6.037/

E-mail: 6.001-zombies@mit.edu

Five projects: due on the 12th, 17th, 19st, 26th, and 3rd.

Graded P/D/F

Taking the class for credit is zero-risk!

E-mail list sign-up on the website
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Goals of the Class

This is not a class to teach Scheme

Nor really a class about programming at all

This is a course about Computer Science

...which isn’t about computers

...nor actually a science

This is actually a class in computation
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Prerequisites

High confusion threshold

Some programming clue

A copy of Racket (Formerly PLT Scheme / DrScheme)
http://www.racket-lang.org/

Free time
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Project 0

Project 0 is out today

Due on Thursday!

Mail to 6.037-psets@mit.edu

Collaboration is fine, as long as you note it
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Some History

Lisp invented in 1959 by John McCarthy (R.I.P. 2010)

Scheme invented in 1975 by Guy Steele and Gerald
Sussman

Hardware Lisp machines, around 1978

6.001 first taught in 1980

SICP published in 1984 and 1996

R6RS in 2007

6.001 last taught in 2007

6.037 first taught in 2009
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The Book (“SICP”)

Structure and Interpretation of Computer Programs
by Harold Abelson and Gerald Jay Sussman
http://mitpress.mit.edu/sicp/

Not required reading

Useful as study aid and reference

Roughly one lecture per chapter
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Key ideas

Procedural and data abstraction
Conventional interfaces & programming paradigms

Type systems
Streams
Object-oriented programming

Metalinguistic abstraction
Creating new languages
Evaluators

Mike Phillips (MIT) Procedural abstraction and recursion Lecture 1 8 / 65

http://web.mit.edu/alexmv/6.037/
mailto:6.037-psets@mit.edu
http://mitpress.mit.edu/sicp/


Lectures

1 Syntax of Scheme, procedural abstraction, and recursion
2 Data abstractions, higher order procedures, symbols, and quotation
3 Mutation, and the environment model
4 Interpretation and evaluation
5 Debugging
6 Language design and implementation
7 Continuations, concurrency, lazy evaluation, and streams
8 6.001 in perspective, and the Lambda Calculus
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Projects

0 Basic Scheme warm-up Thursday 1/12
1 Higher-order procedures and symbols Tuesday 1/17
2 Mutable objects and procedures with state Thursday 1/19
3 Meta-circular evaluator Thursday 1/26
4 OOP evaluator (The Adventure Game) Thursday 2/3*
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Computation is Imperative Knowledge

“How to” knowledge

To approximate
√

x (Heron’s Method):
Make a guess G
Improve the guess by averaging G and x

G
Keep improving until it is good enough

x = 2 G = 1

x
G = 2 G = (1+2)

2 = 1.5

x
G = 4

3 G =
( 3

2 +
4
3 )

2 = 1.4166

x
G = 24

17 G =
( 17

12 +
24
17 )

2 = 1.4142
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“How to” knowledge

Could just store tons of “what is” information

Much more useful to capture “how to” knowledge – a
series of steps to be followed to deduce a value – a
procedure.
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Describing “How to” knowledge

Need a language for describing processes:

Vocabulary – basic primitives

Rules for writing compound expressions – syntax

Rules for assigning meaning to constructs – semantics

Rules for capturing process of evaluation – procedures
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Representing basic information

Numbers
As floating point values
In IEEE 754 format
Stored in binary
In registers
Made up of bits
Stored in flip-flops
Made of logic gates
Implemented by transistors
In silicon wells
With electrical potential
Of individual electrons
With mass, charge, spin, and chirality
Whose mass is imparted by interaction with the Higgs field
. . .
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Assuming a basic level of abstraction

We assume that our language provides us with a basic set of data elements:
Numbers
Characters
Booleans

It also provides a basic set of operations on these primitive elements

We can then focus on using these basic elements to construct more complex processes
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Rules for describing processes in Scheme

Legal expressions have rules for constructing from simpler pieces – the syntax.

(Almost) every expression has a value, which is “returned” when an expression is “evaluated.”

Every value has a type.

The latter two are the semantics of the language.
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Language elements – primitives

Self-evaluating primitives – value of expression is just object itself:

Numbers 29, −35, 1.34, 1.2e5

Strings “this is a string” “odd #$@%#$ thing number 35”

Booleans #t, #f
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Language elements – primitives

Built-in procedures to manipulate primitive objects:

Numbers +, -, *, /, >, <, >=, <=, =

Strings string-length, string=?

Booleans and, or, not
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Language elements – primitives

Names for built-in procedures

+, -, *, /, =, . . .

What is the value of them?

+ → #<procedure:+>

Evaluate by looking up value associated with the name in a special table – the environment.
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Language elements – combinations

How to we create expressions using these procedures?
(+ 2 3)

Open paren
Expression whose value is a procedure
Other expressions
Close paren

This type of expression is called a combination

Evaluate it by getting values of sub-expressions, then applying operator to values of
arguments.

You now know all there is to know about Scheme syntax! (almost)
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Language elements – combinations

Note the recursive definition – can use combinations as expressions to other combinations:

(+ (* 2 3) 4)
(* (+ 3 4) (- 8 2))

→
→

10
42
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Language elements – abstractions

In order to abstract an expression, need a way to give it a name
(define score 23)

This is a special form
Does not evaluate the second expression
Rather, it pairs the name with the value of the third expression

The return value is unspecified
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Language elements – abstractions

To get the value of a name, just look up pairing in the environment

(define score 23)
score
(define total (+ 12 13))
(* 100 (/ score total))

→
→
→
→

undefined
23
undefined
92
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Language elements – common errors

(5 + 6)
=> procedure application: expected procedure,

given: 5; arguments were: #<procedure:+> 6

((+ 5 6))
=> procedure application: expected procedure,

given: 11 (no arguments)

(* 100 (/ score totla))
=> reference to undefined identifier: totla

Mike Phillips (MIT) Procedural abstraction and recursion Lecture 1 24 / 65



Scheme basics

Rules for evaluation:

If self-evaluating, return value

If a name, return value associated with name in environment

If a special form, do something special
If a combination, then

Evaluate all of the sub-expressions, in any order
Apply the operator to the values of the operands and return the result
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Mathematical operators are just names

(+ 3 5)
(define fred +)
(fred 3 6)

→
→
→

8
undefined
9

+ is just a name

+ is bound to a value which is a procedure

line 2 binds the name fred to that same value
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All names are names

(+ 3 5)
(define + *)
(+ 3 5)

→
→
→

8
undefined
15

There’s nothing “special” about the operators you take for granted, either!

Their values can be changed using define just as well

Of course, this is generally a horrible idea
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Making our own procedures

To capture a way of doing things, create a procedure:
(lambda (x) (* x x))

(x) is the list of parameters

(* x x) is the body

lambda is a special form: create a procedure and returns it

Mike Phillips (MIT) Procedural abstraction and recursion Lecture 1 28 / 65



Substitution

Use this anywhere you would use a built-in procedure like +:
( (lambda (x) (* x x)) 5 )

Substitute the value of the provided arguments into the body:
(* 5 5)

Can also give it a name:
(define square (lambda(x) (* x x)))
(square 5)→ 25

This creates a loop in our system, where we can create a complex thing, name it, and treat it
as a primitive like +
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Scheme basics

Rules for evaluation:

If self-evaluating, return value

If a name, return value associated with name in environment

If a special form, do something special.
If a combination, then

Evaluate all of the sub-expressions, in any order
Apply the operator to the values of the operands and return the result

Rules for applying:

If primitive, just do it

If a compound procedure, then substitute each formal parameter with the corresponding
argument value, and evaluate the body
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Interaction of define and lambda

(lambda (x) (* x x))
=> #<procedure>

(define square (lambda (x) (* x x)))
=> undefined

(square 4)
=> (* 4 4)
=> 16

“Syntactic sugar”:

(define (square x) (* x x))
=> undefined
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Lambda special form

Syntax: (lambda (x y) (/ (+ x y) 2))

1st operand is the parameter list: (x y)
a list of names (perhaps empty)
determines the number of operands required

2nd operand is the body: (/ (+ x y) 2)
may be any expression
not evaluated when the lambda is evaluated
evaluated when the procedure is applied

Mike Phillips (MIT) Procedural abstraction and recursion Lecture 1 32 / 65



Meaning of a lambda

(define x (lambda () (+ 3 2)))
x
(x)

→
→
→

undefined
#<procedure>
5

The value of a lambda expression is a procedure
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What does a procedure describe?

Capturing a common pattern:

(* 3 3)

(* 25 25)

(* foobar foobar)

(lambda (x) (* x x))
Name for the thing that changes Common pattern to capture
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Modularity of common patterns

Here is a common pattern:

(sqrt (+ (* 3 3) (* 4 4)))

(sqrt (+ (* 9 9) (* 16 16)))

(sqrt (+ (* 4 4) (* 4 4)))

Here is one way to capture this pattern:

(define square (lambda (x) (* x x)))
(define pythagoras

(lambda (x y)
(sqrt (+ (* x x) (* y y)))))
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Why?

Breaking computation into modules that capture commonality

Enables reuse in other places (e.g. square)

Isolates (abstracts away) details of computation within a procedure from use of the procedure

May be many ways to divide up:

(define square (lambda (x) (* x x)))

(define pythagoras
(lambda (x y)

(sqrt (+ (square x) (square y)))))

(define square (lambda (x) (* x x)))
(define sum-squares

(lambda (x y) (+ (square x) (square y))))
(define pythagoras

(lambda (x y)
(sqrt (sum-squares x y))))

Mike Phillips (MIT) Procedural abstraction and recursion Lecture 1 36 / 65



A more complex example

To approximate
√

x :
1 Make a guess G
2 Improve the guess by averaging G and x

G :

3 Keep improving until it is good enough

Sub-problems:

When is “close enough”?

How do we create a new guess?

How do we control the process of using the new guess in place of the old one?
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Procedural abstractions

“When the square of the guess is within 0.001 of the value”

(define close-enough?
(lambda (guess x)

(< (abs (- (square guess) x))
0.001)))

Note the use of the square procedural abstraction from earlier!
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Procedural abstractions

(define average
(lambda (a b) (/ (+ a b) 2)))

(define improve
(lambda (guess x)

(average guess (/ x guess))))
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Why this modularity?

average is something we are likely to want to use again
Abstraction lets us separate implementation details from use

Originally:
(define average

(lambda (a b) (/ (+ a b) 2)))

Could redefine as:
(define average

(lambda (x y) (* (+ x y) 0.5)))

There’s actually a difference between those in Racket (exact vs inexact numbers)
No other changes needed to procedures that use average
Also note that parameters are internal to the procedure – cannot be referred to by name outside of
the lambda
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Controlling the process

Given x and guess, want (improve guess x) as new guess

But only if the guess isn’t good enough already

We need to make a decision – for this, we need a new special form

(if predicate consequent alternative)
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The if special form

(if predicate consequent alternative)

Evaluator first evaluates the predicate expression

If it returns a true value (#t), then the evaluator evaluates and returns the value of the
consequent expression

Otherwise, it evaluates and returns the value of the alternative expression

Why must this be a special form? Why can’t it be implemented as a regular lambda
procedure?
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Using if

So the heart of the process should be:

(define (sqrt-loop guess x)
(if (close-enough? guess x)

guess
(sqrt-loop (improve guess x) x)))

But somehow we need to use the value returned by improve as the new guess, keep the
same x, and repeat the process

Call the sqrt-loop function again and reuse it!
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Putting it together

Now we just need to kick the process off with an initial guess:

(define sqrt
(lambda (x)

(sqrt-loop 1.0 x)))

(define (sqrt-loop guess x)
(if (close-enough? guess x)

guess
(sqrt-loop (improve guess x) x)))
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Testing the code

How do we know it works?

Fall back to rules for evaluation from earlier
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Substitution model

Rules for evaluation:

If self-evaluating, return value

If a name, return value associated with name in environment

If a special form, do something special.
If a combination, then

Evaluate all of the sub-expressions, in any order
Apply the operator to the values of the operands and return the result

Rules for applying:

If primitive, just do it

If a compound procedure, then substitute each formal parameter with the corresponding
argument value, and evaluate the body

The substitution model of evaluation
. . . is a lie and a simplification, but a useful one!
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(sqrt 2)
((lambda (x) (sqrt-loop 1.0 x)) 2)
(sqrt-loop 1.0 2)
((lambda (guess x)

(if (close-enough? guess x)
guess
(sqrt-loop (improve guess x) x))) 1.0 2)

(if (close-enough? 1.0 2)
1.0
(sqrt-loop (improve 1.0 2) 2))

(sqrt-loop (improve 1.0 2) 2)
(sqrt-loop ((lambda (a b) (/ (+ a b) 2)) 1.0 2) 2)
(sqrt-loop (/ (+ 1.0 2) 2) 2)
(sqrt-loop 1.5 2)
...
(sqrt-loop 1.4166 2)
...
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A canonical example

Compute n factorial, defined as:
n! = n(n − 1)(n − 2)(n − 3) . . . 1

How can we capture this in a procedure, using the idea of finding a common pattern?
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Recursive algorithms

1 Wishful thinking
2 Decompose the problem
3 Identify non-decomposable (smallest) problems

Wishful thinking
Assume the desired procedure exists
Want to implement factorial? Assume it exists.
But, it only solves a smaller version of the problem
This is just finding the common pattern; but here, solving the bigger
problem involves the same pattern in a smaller problem

Decompose the problem
Solve a smaller instance
Convert that solution into desired solution
n! = n(n − 1)(n − 2) . . . = n[(n − 1)(n − 2) . . .] = n ∗ (n − 1)!

(define fact (lambda (n) (* n (fact (- n 1)))))

Identify non-decomposable problems
Must identify the “smallest” problems and solve explicitly
Define 1! to be 1
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Minor difficulty

(define fact
(lambda (n) (* n (fact (- n 1)))))

(fact 2)
(* 2 (fact 1))
(* 2 (* 1 (fact 0)))
(* 2 (* 1 (* 0 (fact -1))))
(* 2 (* 1 (* 0 (* -1 (fact -2)))))
...
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Recursive algorithms

1 Wishful thinking
2 Decompose the problem
3 Identify non-decomposable (smallest) problems

Wishful thinking
Assume the desired procedure exists
Want to implement factorial? Assume it exists.
But, it only solves a smaller version of the problem
This is just finding the common pattern; but here, solving the bigger
problem involves the same pattern in a smaller problem

Decompose the problem
Solve a smaller instance
Convert that solution into desired solution
n! = n(n − 1)(n − 2) . . . = n[(n − 1)(n − 2) . . .] = n ∗ (n − 1)!

(define fact (lambda (n) (* n (fact (- n 1)))))

Identify non-decomposable problems
Must identify the “smallest” problems and solve explicitly
Define 1! to be 1
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Recursive algorithms

Have a test, a base case, and a recursive case

(define fact
(lambda (n)

(if (= n 1)
1
(* n (fact (- n 1))))))

More complex algorithms may have multiple base cases or multiple recursive cases
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(define fact (lambda (n)
(if (= n 1) 1 (* n (fact (- n 1))))))

(fact 3)
(if (= 3 1) 1 (* 3 (fact (- 3 1))))
(if #f 1 (* 3 (fact (- 3 1))))
(* 3 (fact (- 3 1)))
(* 3 (fact 2))
(* 3 (if (= 2 1) 1 (* 2 (fact (- 2 1)))))
(* 3 (if #f 1 (* 2 (fact (- 2 1)))))
(* 3 (* 2 (fact (- 2 1))))
(* 3 (* 2 (fact 1)))
(* 3 (* 2 (if (= 1 1) 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 (if #t 1 (* 1 (fact (- 1 1))))))
(* 3 (* 2 1))
(* 3 2)
6
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Effects of recursive algorithms

Recursive algorithms consume more space with bigger operands!

(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2)))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 1)))
...
24(fact 8)
(* 8 (fact 7))
(* 8 (* 7 (fact 6)))
(* 8 (* 7 (* 6 (fact 5))))
...
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (fact 1))))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1)))))))
(* 8 (* 7 (* 6 (* 5 (* 4 (* 3 2))))))
...
40320
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An alternative

Try computing 101!
101 ∗ 100 ∗ 99 ∗ 98 ∗ 97 ∗ 96 ∗ . . . ∗ 2 ∗ 1

How much space do we consume with pending operations?
Better idea: count up, doing one multiplication at a time

Start with 1 as the answer
Multiply by 2, store 2 as the current answer, remember we’ve done up to 2
Multiply by 3, store 6, remember we’re done up to 3
Multiply by 4, store 24, remember we’re done up to 4
. . .
Multiply by 101, get 9425947759838359420851623124482936749562
312794702543768327889353416977599316221476503087
861591808346911623490003549599583369706302603264 000000000000000000000000
Realize we’re done up to the number we want, and stop

This is an iterative algorithm – it uses constant space
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Iterative algorithms as tables

product done max
1 1 5
2 2 5
6 3 5
24 4 5

120 5 5

First row handles 1! cleanly

product becomes
product * (done + 1)

done becomes done + 1

The answer is product when
done = max
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(define (ifact n) (ifact-helper 1 1 n))

(define (ifact-helper product done max)
(if (= done max)

product
(ifact-helper (* product (+ done 1))

(+ done 1)
max)))

The helper has one argument per column

Which is called by ifact

Which provides the values for the first row

The recursive call to ifact-helper computes the next row

And the if statement checks the end condition and output value
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(define (ifact-helper product done max)
(if (= done max)

product
(ifact-helper (* product (+ done 1))

(+ done 1)
max)))

(ifact 4)
(ifact-helper 1 1 4)
(if (= 1 4) 1 (ifact-helper (* 1 (+ 1 1)) (+ 1 1) 4))
(ifact-helper 2 2 4)
(if (= 2 4) 2 (ifact-helper (* 2 (+ 2 1)) (+ 2 1) 4))
(ifact-helper 6 3 4)
(if (= 3 4) 6 (ifact-helper (* 6 (+ 3 1)) (+ 3 1) 4))
(ifact-helper 24 4 4)
(if (= 4 4) 24 (ifact-helper (* 24 (+ 4 1)) (+ 4 1) 4))
24
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Recursive algorithms have pending operations

Recursive factorial:

(define (fact n)
(if (= n 1) 1

(* n (fact (- n 1)) ) ))

(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2))
(* 4 (* 3 (* 2 (fact 1))))

Pending operations make the expression grow continuously.
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Iterative algorithms have no pending operations

Iterative factorial:

(define (ifact n) (ifact-helper 1 1 n))
(define (ifact-helper product done max)

(if (= done max)
product
(ifact-helper (* product (+ done 1))

(+ done 1)
max)))

(ifact-helper 1 1 4)
(ifact-helper 2 2 4)
(ifact-helper 6 3 4)
(ifact-helper 24 4 4)

Fixed space because no pending operations
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Iterative processes

Iterative algorithms have constant space
To develop an iterative algorithm:

1 Figure out a way to accumulate partial answers
2 Write out a table to analyze:

initialization of first row
update rules for other rows
how to know when to stop

3 Translate rules into Scheme

Iterative algorithms have no pending operations
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Summary

Lambdas allow us to create procedures which capture processes

Procedural abstraction creates building blocks for complex processes

Recursive algorithms capitalize on “wishful thinking” to reduce problems to smaller
subproblems

Iterative algorithms similarly reduce problems, but based on data you can express in tabular
form
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Project 0

Project 0 is due Thursday

Submit to 6.037-psets@mit.edu

http://web.mit.edu/alexmv/6.037/

E-mail: 6.001-zombies@mit.edu
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