
Lists, higher order procedures, and symbols
6.037 - Structure and Interpretation of Computer Programs

Alex Vandiver (alexmv)

Massachusetts Institute of Technology

Lecture 2

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 1 / 65

Administrivia

Project 0 was due today

Reminder: Project 1 due at 7pm on Tuesday

Mail to 6.037-psets@mit.edu

If you didn’t sign up on Tuesday, let us know

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 2 / 65

Types

(+ 5 10) => 15

(+ "hi" 15) =>
+: expects type <number> as 1st argument,

given: "hi"; other arguments were: 15

Addition is not defined for strings

Only works for things of type number

Scheme checks types for simple built-in functions

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 3 / 65

Simple data types

Everything has a type:

Number

String

Boolean
Procedures?

Is the type of not the same type as + ?

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 4 / 65

http://web.mit.edu/alexmv/6.037/
http://web.mit.edu/alexmv/6.037/
mailto:6.037-psets@mit.edu

What about procedures?

Procedures have their own types, based on arguments and return value

number 7→ number means “takes one number, returns a number”

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 5 / 65

Type examples

(+ 5 10) => 15

(+ "hi" 15) =>
+: expects type <number> as 1st argument,

given: "hi"; other arguments were: 15

What is the type of +?

number, number 7→ number
(mostly)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 6 / 65

Type examples

Expression:
15
"hi"
square
>

. . . is of type:
number
string
number 7→ number
number, number 7→ boolean

Type of a procedure is a contract

If the operands have the specified types, the procedure will result in a value of the specified
type

Otherwise, its behavior is undefined

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 7 / 65

More complicated examples

(lambda (a b c)
(if (> a 0) (+ b c) (- b c)))

number, number, number 7→ number

(lambda (p)
(if p "hi" "bye"))

boolean 7→ string

(lambda (x)
(* 3.14 (* 2 5)))

any 7→ number

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 8 / 65

Patterns across procedures

Procedural abstraction is finding patterns, and making procedures of them:

(* 17 17)

(* 42 42)

(* x x)

. . .

(lambda (x) (* x x))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 9 / 65

Summation

1 + 2 + . . .+ 100

1 + 4 + 9 + . . .+ 1002

1 + 1
32 + 1

52 + . . .+ 1
992 ≈ π2

8

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 10 / 65

Summation

(define (sum-integers a b)
(if (> a b) 0

(+ a (sum-integers (+ 1 a) b))))
(define (sum-squares a b)
(if (> a b) 0

(+ (square a) (sum-squares (+ 1 a) b))))
(define (pi-sum a b)
(if (> a b) 0

(+ (/ 1 (square a))
(pi-sum (+ 2 a) b))))

(define (sum term a next b)
(if (> a b) 0

(+ (term a)
(sum term (next a) next b))))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 11 / 65

Complex types

(define (sum term a next b)
(if (> a b) 0

(+ (term a)
(sum term (next a) next b))))

What is the type of this procedure?

(number7→number) , number , (number 7→number) , number 7→ number

What type is the output?

How many arguments does it have?

What is the type of each argument?

Higher-order procedures take a procedure as an argument, or return one as a value

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 12 / 65

Higher-order procedures

b∑
k=a

k

(define (sum-integers a b)
(if (> a b) 0

(+ a
(sum-integers (+ 1 a) b))))

(define (sum term a next b)
(if (> a b) 0

(+ (term a)
(sum term (next a) next b))))

(define (new-sum-integers a b)
(sum (lambda (x) x)

a
(lambda (x) (+ x 1))
b))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 13 / 65

Higher-order procedures

b∑
k=a

k2

(define (sum-squares a b)
(if (> a b) 0

(+ (square a)
(sum-squares (+ 1 a) b))))

(define (sum term a next b)
(if (> a b) 0

(+ (term a)
(sum term (next a) next b))))

(define (new-sum-squares a b)
(sum square

a
(lambda (x) (+ x 1))
b))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 14 / 65

Higher-order procedures

b∑
k=a

k odd

1
k2
≈
π2

8

(define (pi-sum a b)
(if (> a b) 0

(+ (/ 1 (square a))
(pi-sum (+ 2 a) b))))

(define (sum term a next b)
(if (> a b) 0

(+ (term a)
(sum term (next a) next b))))

(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x)))

a
(lambda (x) (+ x 2))
b))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 15 / 65

Returning procedures

. . . takes a procedure as an argument or returns one as a value

(define (new-sum-integers a b)
(sum (lambda (x) x) a (lambda (x) (+ x 1)) b))

(define (new-sum-squares a b)
(sum square a (lambda (x) (+ x 1)) b))

(define (add1 x) (+ x 1))
(define (new-sum-squares a b) (sum square a add1 b))

(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x))) a

(lambda (x) (+ x 2)) b))
(define (add2 x) (+ x 2))
(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x))) a add2 b))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 16 / 65

Returning procedures

(define (add1 x) (+ x 1))
(define (add2 x) (+ x 2))

(define incrementby (lambda (n) ...))

(define add1 (incrementby 1))
(define add2 (incrementby 2))
(define add37.5 (incrementby 37.5))

type of incrementby:
number 7→ (number 7→ number)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 17 / 65

Returning procedures

(define incrementby
; type: num -> (num->num)
(lambda (n) (lambda (x) (+ x n))))

(incrementby 2)
((lambda (n) (lambda (x) (+ x n))) 2)

(lambda (x) (+ x 2))

((incrementby 2) 4)
((lambda (x) (+ x 2)) 4)

(+ 4 2)
6

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 18 / 65

Procedural abstraction

(define sqrt (lambda (x) (try 1 x))
(define try (lambda (guess x)

(if (good-enough? guess x)
guess
(try (improve guess x) x))))

(define good-enough? (lambda (guess x)
(< (abs (- (square guess)

x))
0.001)))

(define improve (lambda (guess x)
(average guess (/ x guess))))

(define average (lambda (a b)
(/ (+ a b) 2)))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 19 / 65

Procedural abstraction

(define sqrt (lambda (x)
(define try (lambda (guess x)

(if (good-enough? guess x)
guess
(try (improve guess x) x))))

(define good-enough? (lambda (guess x)
(< (abs (- (square guess)

x))
0.001)))

(define improve (lambda (guess x)
(average guess (/ x guess))))

(try 1 x))

(define average (lambda (a b)
(/ (+ a b) 2)))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 20 / 65

Summary of types

A type is a set of values

Every value has a type
Procedure types (types which include 7→) indicate:

Number of arguments required
Type of each argument
Type of the return value

They provide a mathematical theory for reasoning efficiently about programs

Useful for preventing some common types of errors

Basis for many analysis and optimization algorithms

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 21 / 65

Compound data

Need a way of (procedure for) gluing data elements together into a unit that can be treated as
a simple data element

Need ways of (procedures for) getting the pieces back out

Need a contract between “glue” and “unglue”

Ideally want this “gluing” to have the property of closure:
“The result obtained by creating a compound data structure can itself be treated as a primitive
object and thus be input to the creation of another compound object.”

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 22 / 65

Pairs (cons cells)

(cons <a>)→ <p>

Where <a> and are expressions that map to <a-val> and <b-val>

Returns a pair <p> whose car-part is <a-val> and whose cdr-part is <b-val>

(car <p>)→ <a-val>

(cdr <p>)→ <b-val>

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 23 / 65

Pairs are tasty

(define p1 (cons 4 (+ 3 2)))

(car p1) ; -> 4

(cdr p1) ; -> 5

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 24 / 65

Pairs are a data abstraction

Constructor
(cons A B) 7→ Pair<A,B>

Accessors
(car Pair<A,B>) 7→ A
(cdr Pair<A,B>) 7→ B

Contract
(car (cons A B)) 7→ A
(cdr (cons A B)) 7→ B

Operations
(pair? Q) returns #t if Q evaluates to a pair, #f otherwise

Abstraction barrier

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 25 / 65

Pair abstraction

Once we build a pair, we can treat it as if it were a primitive

Pairs have the property of closure — we can use a pair anywhere we would expect to use a
primitive data element:
(cons (cons 1 2) 3)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 26 / 65

Building data abstractions

(define (make-point x y) (cons x y))
(define (point-x point) (car point))
(define (point-y point) (cdr point))

(define p1 (make-point 2 3))
(define p2 (make-point 4 1))

What type is make-point?

number, number 7→ Point

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 27 / 65

Building data abstractions

(define make-point cons)
(define point-x car)
(define point-y cdr)

(define p1 (make-point 2 3))
(define p2 (make-point 4 1))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 28 / 65

Building on earlier abstraction

;;; Point abstraction
(define (make-point x y) (cons x y))
(define (point-x point) (car point))
(define (point-y point) (cdr point))
(define p1 (make-point 2 3))
(define p2 (make-point 4 1))

;;; Segment abstraction
(define (make-seg pt1 pt2)
(cons pt1 pt2))

(define (start-point seg)
(car seg))

(define (end-point seg)
(cdr seg))

(define s1 (make-seg p1 p2))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 29 / 65

Using data abstractions

(define p1 (make-point 2 3))
(define p2 (make-point 4 1))
(define s1 (make-seg p1 p2))

(define (stretch-point pt scale)
(make-point (* scale (point-x pt))

(* scale (point-y pt))))

(stretch-point p1 2) -> (4 . 6)
p1 -> (2 . 3)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 30 / 65

Using data abstractions

(define p1 (make-point 2 3))
(define p2 (make-point 4 1))
(define s1 (make-seg p1 p2))

(define (stretch-point pt scale)
(make-point (* scale (point-x pt))

(* scale (point-y pt))))

What type is stretch-point?

Point, number 7→ Point

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 31 / 65

Using data abstractions

(define p1 (make-point 2 3))
(define p2 (make-point 4 1))
(define s1 (make-seg p1 p2))

(define (stretch-seg seg scale)
(make-seg (stretch-point (start-point seg) scale)

(stretch-point (end-point seg) scale)))
(define (seg-length seg)
(sqrt (+ (square

(- (point-x (start-point seg))
(point-x (end-point seg))))

(square
(- (point-y (start-point seg))

(point-y (end-point seg)))))))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 32 / 65

Using data abstractions

(define p1 (make-point 2 3))
(define p2 (make-point 4 1))
(define s1 (make-seg p1 p2))

(define (stretch-point pt scale)
(make-point (* scale (point-x pt))

(* scale (point-y pt))))

(stretch-point p1 2) -> (4 . 6)
p1 -> (2 . 3)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 33 / 65

Abstractions have two communities

Builders
(define (make-point x y) (cons x y))
(define (point-x point) (car point))

Users
(* scale (point-x pt))

Frequently the same person

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 34 / 65

Pairs are a data abstraction

Constructor
(cons A B) 7→ Pair<A,B>

Accessors
(car Pair<A,B>) 7→ A
(cdr Pair<A,B>) 7→ B

Contract
(car (cons A B)) 7→ A
(cdr (cons A B)) 7→ B

Operations
(pair? Q) returns #t if Q evaluates to a pair, #f otherwise

Abstraction barrier

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 35 / 65

Rational number abstraction

A rational number is a ratio n
d

Addition:
a
b
+

c
d

=
ad + bc

bd

2
3
+

1
4

=
2 · 4 + 3 · 1

12
=

11
12

Multiplication:
a
b
·

c
d

=
ac
bd

2
3
·

1
3

=
2
9

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 36 / 65

Rational number abstraction

Constructor
; make-rat: integer, integer -> Rat
(make-rat <n> <d>) -> <r>

Accessors
; numer, denom: Rat -> integer
(numer <r>)
(denom <r>)

Contract
(numer (make-rat <n> <d>)) =⇒ <n>
(denom (make-rat <n> <d>)) =⇒ <d>

Operations
(+rat x y)
(*rat x y)

Abstraction barrier

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 37 / 65

Rational number abstraction

Constructor

Accessors

Contract

Operations

Abstraction barrier

Implementation
; Rat = Pair<integer, integer>
(define (make-rat n d) (cons n d))
(define (numer r) (car r))
(define (denom r) (cdr r))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 38 / 65

Additional operators

; What is the type of +rat? Rat, Rat -> Rat
(define (+rat x y)
(make-rat (+ (* (numer x) (denom y))

(* (numer y) (denom x)))
(* (denom x) (denom y))))

; The type of *rat: Rat, Rat -> Rat
(define (*rat x y)
(make-rat (* (numer x) (numer y))

(* (denom x) (denom y))))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 39 / 65

Using our system

(define one-half (make-rat 1 2))
(define three-fourths (make-rat 3 4))

(define new (+rat one-half three-fourths))

(numer new) ; ?
(denom new) ; ?

We get 10
8 , not the simplified 5

4

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 40 / 65

Rationalizing implementation

(define (gcd a b)
(if (= b 0)

a
(gcd b (remainder a b))))

(define (make-rat n d)
(cons n d))

(define (numer r)
(/ (car r) (gcd (car r) (cdr r))))

(define (denom r)
(/ (cdr r) (gcd (car r) (cdr r))))

Remove common factors when accessed

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 41 / 65

Rationalizing implementation

(define (gcd a b)
(if (= b 0)

a
(gcd b (remainder a b))))

(define (make-rat n d)
(cons (/ n (gcd n d))

(/ d (gcd n d))))
(define (numer r)
(car r))

(define (denom r)
(cdr r))

Remove common factors when created

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 42 / 65

Grouping together larger collections

We want to group a set of rational numbers

(cons r1 r2)

. . .

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 43 / 65

Conventional interfaces — lists

A list is a type that can hold an arbitrary number of ordered items.
Formally, a list is a sequence of pairs with the following properties:

The car-part of a pair holds an item
The cdr-part of a pair holds the rest of the list
The list is terminated by the empty list: ’()

Lists are closed under cons and cdr

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 44 / 65

Lists and pairs as pictures

(cons <el1> <el2>)

el1

el2

(list <el1> <el2> ... <eln>)

el1 el2 eln

(list 1 2 3 4) ; -> (1 2 3 4)
(null? <z>) ; -> #t if <z> evaluates to empty list

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 45 / 65

Lists

Sequences of cons cells

Better, and safer, to abstract:

(define first car)
(define rest cdr)
(define adjoin cons)

... but we don’t for lists and pairs

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 46 / 65

cons’ing up lists

(define 1thru4 (list 1 2 3 4))
(define 2thru7 (list 2 3 4 5 6 7))

(define (enumerate from to)
(if (> from to)

’()
(cons from (enumerate (+ 1 from) to))))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 47 / 65

cdr’ing down lists

(define (length lst)
(if (null? lst)

0
(+ 1 (length (cdr lst)))))

(define (append list1 list2)
(if (null? list1)

list2
(cons (car list1)

(append (cdr list1)
list2))))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 48 / 65

Transforming lists

(define (square-list lst)
(if (null? lst)

’()
(cons (square (car lst))

(square-list (cdr lst)))))
(define (double-list lst)
(if (null? lst)

’()
(cons (* 2 (car lst))

(double-list (cdr lst)))))
(define (map proc lst)
(if (null? lst)

’()
(cons (proc (car lst))

(map proc (cdr lst)))))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 49 / 65

Map

(define (map proc lst)
(if (null? lst)

’()
(cons (proc (car lst))

(map proc (cdr lst)))))

What is the type of map?
(A 7→ B), List<A> 7→ List

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 50 / 65

Choosing just part of a list

(define (filter pred lst)
(cond ((null? lst) ’())

((pred (car lst))
(cons (car lst)

(filter pred (cdr lst))))
(else (filter pred (cdr lst)))))

(filter even? (list 1 2 3 4 5 6))
;-> (2 4 6)

What is the type of filter?
(A 7→ Boolean), List<A> 7→ List<A>

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 51 / 65

Data Types in Scheme

Conventional
Numbers: 29, −35, 1.34, 1.2e5
Characters and Strings: #\a "this is a string"
Booleans: #t, #f
Vectors: #(1 2 3 "hi" 3.7)

Scheme-specific
Procedures: value of +, result of evaluating (lambda (x) x)
Pairs and lists: (42 . 8), (1 1 2 3 5 8 13)
Symbols: pi, +, x, foo, hello-world

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 52 / 65

Symbols

So far, we’ve seen them as the names of variables
(define foo (+ bar 2))

But, in Scheme, all data types are first class, so we should be able to:
Pass symbols as arguments to procedures
Return them as values of procedures
Associate them as values of variables
Store them in data structures

For example: (chocolate caffeine sugar)

chocolate caffeine sugar

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 53 / 65

How do we refer to Symbols?

Evaluation rule for symbols
Value of a symbol is the value it is associated with in the environment.
We associate symbols with values using the special form define
(define pi 3.1451926535)
(* pi 2 r)

But how do we get to the symbol itself?
(define baz pi) ??
baz→ 3.1451926535

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 54 / 65

Referring to Symbols

Say your favorite color

Say “your favorite color”

In the first case, we want the meaning associated with the expression

In the second, we want the expression itself

We use the concept of quotation in Scheme to distinguish between these two cases

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 55 / 65

New special form: quote

We want a way to tell the evaluator: “I want the following object as whatever it is, not as an
expression to be evaluated”
(quote foo)→ foo
(define baz (quote pi))→ undefined
baz→ pi
(+ pi baz)→ ERROR

+: expects type <number> as 2nd argument, given: pi; other arguments were: 3.1415926535

(list (quote foo) (quote bar) (quote baz))
→ (foo bar baz)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 56 / 65

Syntactic sugar

The Reader (part of the Read-Eval-Print Loop, REPL) knows a short-cut

When it sees ’pi it acts just like it had read (quote pi)

The latter is what is actually evaluated

Examples:
’pi→ pi
’17→ 17
’"Hello world"→ "Hello world"
’(1 2 3)→ (1 2 3)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 57 / 65

Making list structures with symbols

(list (quote brains) (quote caffeine) (quote sugar))
; -> (brains caffeine sugar)

(list ’brains ’caffeine ’sugar)
; -> (brains caffeine sugar)

’(brains caffeine sugar)
; -> (brains caffeine sugar)

(define x 42) (define y ’(x y z))
(list (list ’foo ’bar) (list x y)

(list ’baz ’quux ’squee))
; -> ((foo bar) (42 (x y z))

(baz quux squee))
’((foo bar) (x y) (bar quux squee))

; -> ((foo bar) (x y) (bar quux squee))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 58 / 65

Confusing examples

(define x 20)
(+ x 3) ; -> 23
’(+ x 3) ; -> (+ x 3)
(list (quote +) x ’3) ; -> (+ 20 3)
(list ’+ x 3) ; -> (+ 20 3)
(list + x 3) ; -> (#<procedure:+> 20 3)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 59 / 65

Operations on symbols

symbol? has type anytype → boolean, returns #t for symbols
(symbol? (quote foo))→ #t
(symbol? ’foo)→ #t
(symbol? 4)→ #f
(symbol? ’(1 2 3))→ #f
(symbol? foo)→ It depends on what value foo is bound to

eq? tests the equality of symbols

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 60 / 65

An aside: Testing for equality

eq? tests if two things are exactly the same object in memory. Not for strings or numbers.

= tests the equality of numbers

equal? tests if two things print the same– symbols, numbers, strings, lists of those, lists of
lists

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 61 / 65

(= 4 10) ; -> #f
(= 4 4) ; -> #t
(equal? 4 4) ; -> #t
(equal? (/ 1 2) 0.5) ; -> #f
(eq? 4 4) ; -> #t
(eq? (expt 2 70) (expt 2 70)) ; -> #f

(= "foo" "foo") ; -> Error!
(eq? "foo" "foo") ; -> #f
(equal? "foo" "foo") ; -> #t

(eq? ’(1 2) ’(1 2)) ; -> #f
(equal? ’(1 2) ’(1 2)) ; -> #t
(define a ’(1 2))
(define b ’(1 2))
(eq? a b) ; -> #f
(define a b)
(eq? a b) ; -> #t

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 62 / 65

Tagged data

Attaching a symbol to all data values that indicates the type

Can now determine if something is the type you expect

(define (make-point x y)
(list ’point x y))

(define (make-rat n d)
(list ’rat x y))

(define (point? thing)
(and (pair? thing)

(eq? (car thing) ’point)))

(define (rat? thing)
(and (pair? thing)

(eq? (car thing) ’rat)))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 63 / 65

Benefits of tagged data

Data-directed programming - decide what to do based on type

(define (stretch thing scale)
(if (point? thing)

(stretch-point thing scale)
(stretch-seg thing scale)))

Defensive programming - Determine if something is the type you expect, give a better error

(define (stretch-point pt)
(if (not (point? pt))

(error "stretch-point passed a non-point:" pt)
;; ...carry on

))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 64 / 65

Recitation time!

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 65 / 65

	Administrivia
	Basic types
	Procedural abstraction
	Higher-order procedures
	Summation of series
	Returning procedures
	Scoping

	Data abstraction
	Cons and friends
	Rational numbers
	Lists
	HOP with lists

	Symbols
	Quotation
	Equality
	Tagged data

	Recitation

