Lists, higher order procedures, and symbols

6.037 - Structure and Interpretation of Computer Programs

@ Project 0 was due today

@ Reminder: Project 1 due at 7pm on Tuesday
@ Mailto 6.037-psets@mit.edu

@ If you didn’t sign up on Tuesday, let us know

Alex Vandiver (alexmv)

Massachusetts Institute of Technology

Lecture 2
Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 1/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2

(+ 5 10) => 15 ,
Everything has a type:
(+ "hi™ 15) => @ Number
+: expects type <number> as lst argument, @ String
given: "hi"; other arguments were: 15
@ Boolean

@ Procedures?

° e . .
Addition is not defined for strings o Is the type of not the same type as + ?

@ Only works for things of type number
@ Scheme checks types for simple built-in functions

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 3/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 4/65

http://web.mit.edu/alexmv/6.037/
http://web.mit.edu/alexmv/6.037/
mailto:6.037-psets@mit.edu

What about procedures? Type examples

(+ 5 10) => 15
. (+ "hi"™ 15) =>
@ Procedures have their own types, based on arguments and return value +: expects type <number> as lst argument,
@ number — number means “takes one number, returns a number” given: "hi"; other arguments were: 15

@ What is the type of +?

@ number, number — number
(mostly)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 5/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 6/65

Type examples More complicated examples

(lambda (a b <)

Expression: ...is of type: (3f (>a0) (+bc) (-bc)))
15 number
"hi" string number, number, number — number
square number — number
> number, number — boolean (lambda (p)

@ Type of a procedure is a contract (if p "hi" "bye"))

@ If the operands have the specified types, the procedure will result in a value of the specified boolean — string

type

(lambda (x)

@ Otherwise, its behavior is undefined
(x 3.14 (% 2 5)))

any — number

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 7165 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 8/65

Patterns across procedures Summation

Procedural abstraction is finding patterns, and making procedures of them:

@ (« 17 17) @e1+4+2+4+...4+100

@ (+ 42 42) @ 14+44+9+...4+1002

@ (x x x) 1 1 1, m?
. O1+3j+5j+...+@~%
@ (lambda (x) (* x x))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 9/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 10/65

(define (sum-integers a b)

(if (> a b) 0 (define (sum term a next b)
(+ a (sum-integers (+ 1 a) b)))) (if (> a b) 0
(define (sum-squares a b) (+ (term a)
(if (> a b) O (sum term (next a) next b))))
+ - + 1 b
(define((;i?:i;eaaf)) (sumsquares 22 What is the type of this procedure?

(if (> a b) 0
(+ (/ 1 (square a))
(pi-sum (+ 2 a) b))))

(number—number) , number , (humber—number) , number — number

@ What type is the output?
(define (sum term a next b) @ How many arguments does it have?

(if (> a b) 0 @ What is the type of each argument?
(+ (term a)

(sum term (next a) next b)))) Higher-order procedures take a procedure as an argument, or return one as a value

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 11/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 12/65

Higher-order procedures Higher-order procedures

b
>k
k=a

(define (sum-integers a b)
(if (> ab) 0
(+ a
(sum-integers (+ 1 a) b))))
(define (sum term a next b)
(if (> ab) 0
(+ (term a)
(sum term (next a) next b))))
new-sum-integers a b)

(define (
lambda (x) x)

(sum

(

a

(lambda (x) (+ x 1))
b))

Alex Vandiver (MIT)

Lecture 2

13/65

(define (sum-squares a b)
(if (> a b) 0
(+ (square a)
(sum-squares (+ 1 a) b))))
(define (sum term a next b)
(if (> a b) 0
(+ (term a)
(sum term (next a) next b))))
(define (new-sum-squares a b)
(sum square
a
(lambda (x) (+ x 1))
b))

Lists, higher order procedures, and symbols

Higher-order procedures Returning procedures

(define (pi-sum a b)
(if (> a b) 0
(+ (/ 1 (square a))
(pi-sum (+ 2 a) b))))
(define (sum term a next b)
(if (> a b) O
(+ (term a)
(sum term (next a) next b))))
new-pi-sum a b)

(define (
lambda (x) (/ 1 (square x)))

(sum

(

a

(lambda (x) (+ x 2))
b))

Alex Vandiver (MIT)

Lecture 2

15/65

Alex Vandiver (MIT) Lists, higher order procedures, and symbols

...takes a procedure as an argument or returns one as a value

(define (new-sum-integers a b)
(sum (lambda (x) x) a (lambda (x) (+ x 1)) b))
(define (new-sum-squares a b)
(sum square a (lambda (x) (+ x 1)) b))
(define (addl x) (+ x 1))
(define (new-sum-squares a b) (sum square a addl b))

(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x))) a
(lambda (x) (+ x 2)) b))
(define (add2 x) (+ x 2))
(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x))) a add2 b))

Lecture 2

14/65

Lists, higher order procedures, and symbols

Alex Vandiver (MIT) Lists, higher order procedures, and symbols

Lecture 2

16/65

Returning procedures Returning procedures

(define incrementby
(define (addl x) (+ x 1)) ; type: num -> (num->num)
(define (add2 x) (+ x 2)) (lambda (n) (lambda (x) (+ x n))))

(define incrementby (lambda (n) ...)) (incrementby 2)
((lambda (n) (lambda (x) (+ x n))) 2)
(define addl (incrementby 1)) (lambda (x) (+ x 2))

(define add2 (incrementby 2))

(define add37.5 (incrementby 37.5)) ((incrementby 2) 4)

((lambda (x) (+ x 2)) 4)
type of incrementby: (+ 4 2)
number — (number — number) 6

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols Lecture 2 17 /65

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 18/65

Procedural abstraction Procedural abstraction

(define sgrt (lambda (x) (try 1 x)) (define sgrt (lambda (x)
(define try (lambda (guess x) (define try (lambda (guess x)
(if (good—-enough? guess x) (if (good—-enough? guess x)

guess
(try (improve guess x) x))))

guess
(try (improve guess x) x))))

(define good-enough? (lambda (guess x) (define good-enough? (lambda (guess x)
(< (abs (- (square guess) (< (abs (- (square guess)
X)) X))
0.001))) 0.001)))

(define

(define

Alex Vandiver (MIT)

improve (lambda (guess x)
(average guess (/ x guess))))

average (lambda (a b)
(/ (+ ab) 2)))

Lists, higher order procedures, and symbols Lecture 2

(define improve (lambda (guess x)
(average guess (/ x guess))))
(try 1 x))

(define average (lambda (a b)
(/ (+ ab) 2)))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols

Lecture 2

20/65

Summary of types Compound data

Atype is a set of values

Every value has a type
Procedure types (types which include) indicate:
@ Number of arguments required

@ Need a way of (procedure for) gluing data elements together into a unit that can be treated as
a simple data element

@ Need ways of (procedures for) getting the pieces back out

o Type of each argument @ Need a contract between “glue” and “unglue”
e Type of the return value . .
i)) o @ Ideally want this “gluing” to have the property of closure:
@ They provide a mathematical theory for reasoning efficiently about programs “The result obtained by creating a compound data structure can itself be treated as a primitive
@ Useful for preventing some common types of errors object and thus be input to the creation of another compound object.”

@ Basis for many analysis and optimization algorithms

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 21/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 22/65

Pairs (cons cells) Pairs are tasty

@ (cons <a>) — <p>)
. (define pl (cons 4 (+ 3 2)))
@ Where <a> and are expressions that map to <a-val> and <b-val>
@ Returns a pair <p> whose car-part is <a-val> and whose cdr-part is <b-val> (car pl) ;o> 4
@ (car <p>) — <a-val>
(cdr pl) ; —> 5
@ (cdr <p>) — <b-val>

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 23/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 24 /65

Pairs are a data abstraction Pair abstraction

@ Constructor
(cons A B) — Pair<A,B>

@ Accessors

(car Pair<a,B>) —A @ Once we build a pair, we can treat it as if it were a primitive

(cdr Pair<A,B>) — B . .
@ Pairs have the property of closure — we can use a pair anywhere we would expect to use a

@ Contract primitive data element:
(car (cons A B)) — A (cons (cons 1 2) 3)
(cdr (cons A B)) —B

@ Operations
(pair? Q) returns #t if Q evaluates to a pair, # £ otherwise

@ Abstraction barrier

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 25/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 26 /65

Building data abstractions Building data abstractions
(define (make-point x y) (cons x y)) (define make-point cons)
(define (point-x point) (car point)) (define point-x car)

(define (point-y point) (cdr point)) (define point-y cdr)

(define pl (make-point 2 3)) (define pl (make-point 2 3))
(define p2 (make-point 4 1)) (define p2 (make-point 4 1))

What type is make-point?

number, number — Point

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 27/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 28/65

Building on earlier abstraction Using data abstractions

;7 Point abstraction (define pl (make-point 2 3))

(define (make-point x y) (cons x y)) (define p2 (make-point 4 1))

(define (point-x point) (car point)) (define sl (make-seg pl p2))

(define (point-y point) (cdr point))

(define pl (make-point 2 3)) (define (stretch-point pt scale)
(define p2 (make-point 4 1)) (make-point (x scale (point-x pt))

(x scale (point-y pt))))
; 7+ Segment abstraction

(define (make-seg ptl pt2) (stretch-point pl 2) -> (4 . 6)
(cons ptl pt2)) pl —> (2 . 3)

(define (start-point seq)
(car seq))

(define (end-point segq)
(cdr seq))

(define sl (make-seg pl p2))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 29/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 30/65

Using data abstractions Using data abstractions
(define pl (make-point 2 3)) (define pl (make-point 2 3))
(define p2 (make-point 4 1)) (define p2 (make-point 4 1))
(define sl (make-seg pl p2)) (define sl (make-seg pl p2))
(define (stretch-point pt scale) (define (stretch-seg seg scale)
(make-point (% scale (point-x pt)) (make-seg (stretch-point (start-point seg) scale)
(* scale (point-y pt)))) (stretch-point (end-point seg) scale)))

(define (seg-length segq)
(sgrt (+ (square
(-= (point-x (start-point seg))
(point-x (end-point seqg))))
(square
(= (point-y (start-point seq))
(point-y (end-point seg)))))))

What type is stretch-point?

Point, number — Point

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 31/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 32/65

Using data abstractions Abstractions have two communities

(define pl (make-point 2 3))
(define p2 (make-point 4 1))
(define sl (make-seg pl p2))

(define (stretch-point pt scale)
(make-point (x scale (point-x pt))

(+ scale (point-y pt))))

(stretch-point pl 2) -> (4 . 6)
pl —> (2 . 3)

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols Lecture 2

33/65

@ Builders
(define (make-point x y) (cons x y))
(define (point-x point) (car point))
@ Users
(x scale (point-x pt))

@ Frequently the same person

Pairs are a data abstraction

@ Constructor
(cons A B) +— Pair<A,B>
@ Accessors
(car Pair<A,B>) — A
(cdr Pair<A,B>) — B
@ Contract
(car (cons A B)) — A
(cdr (cons A B)) —B
@ Operations
(pair? Q) returns #t if O evaluates to a pair, #£ otherwise
@ Abstraction barrier

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2

35/65

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 34 /65

Rational number abstraction

@ A rational number is a ratio g

@ Addition:
§+Eiad+bc
b d~ bd
2,1 _2:4+3.1 1
3 4 12 12
@ Multiplication:
ac_za
b d bd
2 1_2
33 9

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 36/65

Rational number abstraction Rational number abstraction

@ Constructor
; make-rat: integer, integer -> Rat

@ Constructor
(make-rat <n> <d>) -> <r>
@ Accessors
@ Accessors
; numer, denom: Rat —> integer @ Contract
(numer <r>) @ Operations
(denom <x>) @ Abstraction barrier

e Contract |

(numer (make-rat <n> <d>)) — <n>

(denom (make-rat <n> <d>)) =— <d> ° hnMemenqun))
. ; Rat = Pair<integer, integer>

° Opmahons (define (make-rat n d) (cons n d))

(+rat x y) (define (numer r) (car r))

(xrat x y) (define (denom r) (cdr r))
@ Abstraction barrier

.

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 37/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 38/65

Additional operators Using our system

; What is the type of +rat? Rat, Rat -> Rat

(define (+rat x vy) (define one-half (make-rat 1 2))

(define three-fourths (make-rat 3 4))

(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(» (denom x) (denom y)))) (define new (+rat one-half three-fourths))
; The type of *rat: Rat, Rat —-> Rat (numer new) ;
(define (*rat x y) (denom new) ;
(make-rat (% (numer x) (numer y))
(* (denom x) (denom y))))

We get 2, not the simplified 3

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 39/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 40/65

Rationalizing implementation Rationalizing implementation

(define (gcd a b) (define (gcd a b)
(if (= b 0) (if (= b 0)
a a
(gcd b (remainder a b)))) (gcd b (remainder a b))))
(define (make-rat n d) (define (make-rat n d)

(cons n d)) (cons (/ n (gcd n d))

/ d (ged n d))))

(define (numer r) (define (numer r)
(/ (car r) (gcd (car r) (cdr r)))) (car r))
(define (denom r) (define (denom r)
(/ (cdr r) (gcd (car r) (cdr r)))) (cdr r))
Remove common factors when accessed Remove common factors when created

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 41/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 42/65

Grouping together larger collections Conventional interfaces — lists

We want to group a set of rational numbers

(cons rl r2)

@ Alistis a type that can hold an arbitrary number of ordered items.
@ Formally, a list is a sequence of pairs with the following properties:

@ The car-part of a pair holds an item
@ The cdr-part of a pair holds the rest of the list
@ The list is terminated by the empty list: * ()

@ Lists are closed under cons and cdr

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 43/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 44/ 65

Lists and pairs as pictures

Lists
(cons <ell> <el2>)

el2

@ Sequences of cons cells
@ Better, and safer, to abstract:

(define first car)
‘ o ‘ .. (define rest cdr)
I I (define adjoin cons)
ell el2

(list <ell> <el2> <eln>)

@ ... but we don't for lists and pairs
(list 1 2 3 4)

;o —> (1 2 3 4)
(null? <z>)

-> #t if <z> evaluates to empty list

’

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols

Lecture 2 45/65 Alex Vandiver (MIT)

Lists, higher order procedures, and symbols Lecture 2 46 /65

cons’ing up lists cdr’ing down lists

(define (length 1st)
if (null? 1st
(define 1thru4 (list 1 2 3 4)) (é)
(define 2thru7 (list 2 3 4 5 6 7)) (+ 1 (length (cdr 1st)))))
(deflne (enumerate from to) (define (append listl 1ist2)
(if }T)from to) (i1f (null? listl)
list2
(cons from (enumerate (+ 1 from) to))))

(cons (car listl)
(append (cdr listl)
1ist2))))

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols

Lecture 2 47 /65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 48/65

Transforming lists Map

(define (square-list 1lst)
(if (null? 1st)
")

(cons (square (car lst)) (define (map proc lst)
(square-list (cdr 1lst))))) (1f (null? 1st)
(define (double-list 1st) ")
(1f (null? 1st) (cons (proc (car 1lst))
") (map proc (cdr 1lst)))))
(cons (* 2 (car 1lst))
(double-list (cdr 1lst))))) What is the type of map?
(define (map proc lst) (A — B), List<A> — List
(if (null? 1lst)
"0

(cons (proc (car 1lst))
(map proc (cdr 1lst)))))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 49 /65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 50/ 65

Choosing just part of a list Data Types in Scheme

(define (filter pred 1lst)

(cond ((null? 1st) ' ()) @ Conventional
((pred (car lst)) o Numbers: 29, —35, 1.34, 1.265
(cons (car lst) o Characters and Strings: #\a "this is a string"
(filter pred (cdr 1lst)))) @ Booleans: #t, #f
(else (filter pred (cdr 1lst))))) e Vectors: # (1 2 3 "hi" 3.7)
@ Scheme-specific

(filter even? (list 1 2 3 4 5 6)) @ Procedures: value of +, result of evaluating (lambda (x) x)
;—> (2 4 6) o Pairsandlists: (42 . 8),(1 1 2 3 5 8 13)

e Symbols: pi, +, x, foo, hello-world

What is the type of filter?
(A — Boolean), List<A> — List<A>

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 51/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 52/65

Symbols How do we refer to Symbols?

@ So far, we've seen them as the names of variables
@ (define foo (+ bar 2))
@ But, in Scheme, all data types are first class, so we should be able to:

@ Evaluation rule for symbols
@ Pass symbols as arguments to procedures

o Value of a symbol is the value it is associated with in the environment.

@ Return them as values of procedures . . ; h ;
@ Associate them as values of variables o We associate symbols with values using the special form define
o Store them in data structures @ (define pi 3.1451926535)

@ (» pi 2 r)
@ But how do we get to the symbol itself?

@ (define baz pi) ??
[o— > @ baz — 3.1451926535

Y Y Y

chocolate caffeine sugar

@ For example: (chocolate caffeine sugar)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 53/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 54 /65

Referring to Symbols New special form: quote

@ We want a way to tell the evaluator: “l want the following object as whatever it is, not as an

@ +: expects type <number> as 2nd argument, given: pi; other arguments were: 3.1415926535

@ Say your favorite color expression to be evaluated”
@ Say “your favorite color” (quote foo)— foo , .
])))) (define baz (quote pi)) — undefined
@ In the first case, we want the meaning associated with the expression baz— pi
@ In the second, we want the expression itself (+ pi baz)— ERROR
o

We use the concept of quotation in Scheme to distinguish between these two cases
(list (quote foo) (quote bar) (quote baz))

— (foo bar baz)

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 55/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 56 /65

Syntactic sugar

@ The Reader (part of the Read-Eval-Print Loop, REPL) knows a short-cut
@ When it sees " pi it acts just like it had read (quote pi)
@ The latter is what is actually evaluated

@ Examples:
"pi — pi
r17 — 17
""Hello world" — "Hello world"
(1L 2 3) = (1 2 3)

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols Lecture 2

Making list structures with symbols

(list (quote brains) (quote caffeine) (quote sugar))
; —> (brains caffeine sugar)
(list ’'brains ’caffeine ’sugar)
; —> (brains caffeine sugar)
' (brains caffeine sugar)
; —> (brains caffeine sugar)
(define x 42) (define y " (x y z))
(list (list "foo ’bar) (list x vy)
(list ’'baz ’'quux ’squee))
; —> ((foo bar) (42 (x vy z))
(baz quux squee))
" ((foo bar) (x y) (bar gquux squee))
; —> ((foo bar) (x y) (bar quux squee))

Confusing examples Operations on symbols

(define x 20)

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols Lecture 2 58 /65

@ symbol? hastype anytype — boolean, returns #t for symbols

(+ x 3) -> 23

"(+ x 3) > (+ x 3)

(list (quote +) x ’3) —> (+ 20 3)

(list "+ x 3) —> (+ 20 3)

(list + x 3) —> (#<procedure:+> 20 3)

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols Lecture 2

(symbol? (quote foo)) — #t

(symbol? ' foo) — #t

(symbol? 4) — #f

(symbol? ' (1 2 3)) — #f

(symbol? foo) — It depends on what value foo is bound to

@ eg? tests the equality of symbols

Alex Vandiver (MIT)

Lists, higher order procedures, and symbols Lecture 2 60/65

An aside: Testing for equality

(= 4 10) ;o> #f
(= 4 4) ;o> #t
(equal? 4 4) ; —> #t
(equal? (/ 1 2) 0.5) i > #f
(eq? 4 4) ;o> #t
(eq? (expt 2 70) (expt 2 70)) ; -> #f
@ eq? tests if two things are exactly the same object in memory. Not for strings or numbers. (= "foo" "foo") ; —> Error!
@ = tests the equality of numbers (eq? "foo" "foo") o> #f

@ equalv tests if two things print the same— symbols, numbers, strings, lists of those, lists of (equal? "foo" "foo") P> #t

lists
eq? (1 2) "(1 2)) ;o> #f

(

(equal? " (1 2) (1 2)) ; —> #t
(define a ' (1 2))
(define b " (1 2))
(eg? a b) ; > #f
(define a b)

(eq? a b) ;> #t

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 61/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 62/65

Tagged data Benefits of tagged data

@ Attaching a symbol to all data values that indicates the type _ . .
o Can now determine if something is the type you expect @ Data-directed programming - decide what to do based on type

(define
(if

stretch thing scale)

point? thing)

stretch-point thing scale)
stretch-seg thing scale)))

(define (make-point x y)
(list ’"point x y))

(define (make-rat n d)
(list ’"rat x y))
@ Defensive programming - Determine if something is the type you expect, give a better error
(define (point? thing)

(and (pair? thing) (define (stretch-point pt)
(egq? (car thing) ’point))) (if (not (point? pt))
(error "stretch-point passed a non-point:" pt)
(define (rat? thing) ;7 ...carry on
(and (pair? thing)))

(eg? (car thing) ’rat)))

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 63/65 Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 64 /65

Recitation time!

Alex Vandiver (MIT) Lists, higher order procedures, and symbols Lecture 2 65/65

	Administrivia
	Basic types
	Procedural abstraction
	Higher-order procedures
	Summation of series
	Returning procedures
	Scoping

	Data abstraction
	Cons and friends
	Rational numbers
	Lists
	HOP with lists

	Symbols
	Quotation
	Equality
	Tagged data

	Recitation

