Administrivia

Lists, higher order procedures, and symbols
6.037 - Structure and Interpretation of Computer Programs

Alex Vandiver (alexmv)

Massachusetts Institute of Technology

- Project 0 was due today
- Reminder: Project 1 due at 7 pm on Tuesday
- Mail to 6.037-psets@mit.edu
- If you didn't sign up on Tuesday, let us know

Lecture 2
$(+510) \quad=>15$
(+ "hi" 15) =>
+: expects type <number> as 1st argument given: "hi"; other arguments were: 15

- Addition is not defined for strings
- Only works for things of type number
- Scheme checks types for simple built-in functions

Everything has a type:

- Number
- String
- Boolean
- Procedures?
- Is the type of not the same type as + ?
- Procedures have their own types, based on arguments and return value
- number \mapsto number means "takes one number, returns a number"
$(+510) \quad=>15$
(+ "hi" 15) =>
+: expects type <number> as 1st argument, given: "hi"; other arguments were: 15
- What is the type of + ?
- number, number \mapsto number
(mostly)

Type examples

Expression:	\ldots is of type:
15	number
"hi"	string
square	number \mapsto number
$>$	number, number \mapsto boolean

- Type of a procedure is a contract
- If the operands have the specified types, the procedure will result in a value of the specified type
- Otherwise, its behavior is undefined

```
(lambda (a b c)
    (if (> a 0) (+ b c) (- b c)))
                number, number, number }\mapsto\mathrm{ number
(lambda (p)
    (if p "hi" "bye"))
                                    boolean }\mapsto\mathrm{ string
(lambda (x)
    (* 3.14 (* 2 5)))
```

 any \(\mapsto\) number

Patterns across procedures

Summation

Procedural abstraction is finding patterns, and making procedures of them:

- (* 17 17)
- (* 42 42)
- (* x x)
- ...
- (lambda (x) (* x x))
- $1+2+\ldots+100$
- $1+4+9+\ldots+100^{2}$
- $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots+\frac{1}{99^{2}} \approx \frac{\pi^{2}}{8}$

Summation

Complex types

```
```

(define (sum-integers a b)

```
```

(define (sum-integers a b)
(if (> a b) 0
(if (> a b) 0
(+ a (sum-integers (+ 1 a) b))))
(+ a (sum-integers (+ 1 a) b))))
(define (sum-squares a b)
(define (sum-squares a b)
(if (> a b) 0
(if (> a b) 0
(+ (square a) (sum-squares (+ 1 a) b))))
(+ (square a) (sum-squares (+ 1 a) b))))
(define (pi-sum a b)
(define (pi-sum a b)
(if (> a b) 0
(if (> a b) 0
(+ (/ 1 (square a))
(+ (/ 1 (square a))
(pi-sum (+ 2 a) b))))
(pi-sum (+ 2 a) b))))
(define (sum term a next b)
(define (sum term a next b)
(if (> a b) 0
(if (> a b) 0
(+ (term a)
(+ (term a)
(sum term (next a) next b))))

```
```

 (sum term (next a) next b))))
    ```
```

 (define (sum term a next b)
 (if (> a b) 0
 (+ (term a)
 (sum term (next a) next b))))
 What is the type of this procedure?
(number \mapsto number), number, (number \mapsto number) , number \mapsto number
- What type is the output?
- How many arguments does it have?
- What is the type of each argument?

Higher-order procedures take a procedure as an argument, or return one as a value

(define (sum-integers a b)
(if (> a b) 0
(+ a
(sum-integers (+ 1 a) b))))
(define (sum term a next b)
(if (> a b) 0

+ (term a)
(sum term (next a) next b))))
(define (new-sum-integers a b)
(sum (lambda (x) x)
a
(lambda (x) (+ x 1))
b))
$\sum_{k=a}^{b} k^{2}$
(define (sum-squares a b) (if (> a b) 0
(+ (square a) (sum-squares (+ 1 a) b))))
(define (sum term a next b)
(if (> a b) 0
(+ (term a)
(sum term (next a) next b))))
(define (new-sum-squares a b)
(sum square
a
(lambda (x) (+ x 1))
b))

Higher-order procedures

$$
\sum_{\substack{k=a \\ k o d d}}^{b} \frac{1}{k^{2}} \approx \frac{\pi^{2}}{8}
$$

(define (pi-sum a b)
(if (> a b) 0
(+ (/ 1 (square a))
(pi-sum (+ 2 a) b))))
(define (sum term a next b)
(if (> a b) 0
(+ (term a)
(sum term (next a) next b))))
(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x)))
a
(lambda (x) (+ x 2))
b))

Returning procedures

...takes a procedure as an argument or returns one as a value

(define (new-sum-integers $a \operatorname{b}$)
(sum (lambda (x) x) a (lambda (x) (+ x 1)) b)) (define (new-sum-squares a b)
(sum square a (lambda (x) (+ x l)) b))
(define (add1 x) (+ x 1))
(define (new-sum-squares a b) (sum square a add1 b))
(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x))) a (lambda (x) (+ x 2)) b))
(define (add2 x) (+ x 2))
(define (new-pi-sum a b)
(sum (lambda (x) (/ 1 (square x))) a add2 b))


```
(define incrementby
    ; type: num -> (num->num)
    (lambda (n) (lambda (x) (+ x n))))
( incrementby 2 )
( (lambda (n) (lambda (x) (+ x n))) 2
    (lambda (x) (+ x 2))
( (incrementby 2) 4)
((lambda (x) (+ x 2)) 4)
    (+ 4 2)
    (+
```


Procedural abstraction

```
(define sqrt (lambda (x) (try 1 x))
```

(define try (lambda (guess x)
(if (good-enough? guess x)
guess
(try (improve guess x) x))))
(define good-enough? (lambda (guess x)
(< (abs (- (square guess)
$0.001))^{x}$
(define improve (lambda (guess x)
(average guess (/ x guess))))
(define average (lambda (a b)
(/ (+ a b) 2)))

Procedural abstraction

```
(define sqrt (lambda (x)
    (define try (lambda (guess x
            (if (good-enough? guess x)
                                    guess
                                    (try (improve guess x) x))))
    (define good-enough? (lambda (guess x)
                (< (abs (- (square guess)
            0.001)))
    (define improve (lambda (guess x)
    (try 1 x))
(define average (lambda (a b)
    (/ (+ a b) 2)))
```


Summary of types

Compound data

- A type is a set of values
- Every value has a type
- Procedure types (types which include \mapsto) indicate:
- Number of arguments required
- Type of each argument
- Type of the return value
- They provide a mathematical theory for reasoning efficiently about programs
- Useful for preventing some common types of errors
- Basis for many analysis and optimization algorithms
- Need a way of (procedure for) gluing data elements together into a unit that can be treated as a simple data element
- Need ways of (procedures for) getting the pieces back out
- Need a contract between "glue" and "unglue"
- Ideally want this "gluing" to have the property of closure:
"The result obtained by creating a compound data structure can itself be treated as a primitive object and thus be input to the creation of another compound object."

Pairs (cons cells)

Pairs are tasty

- (cons <a>) \rightarrow <p>
- Where <a> and are expressions that map to <a-val> and <b-val>
- Returns a pair <p> whose car-part is <a-val> and whose cdr-part is <b-val>
- (car $\langle p>$) \rightarrow <a-val>
- (cdr $\langle\mathrm{p}\rangle$) \rightarrow <b-val>

```
(define p1 (cons 4 (+ 3 2)))
(car p1) ; -> 4
(cdr p1) ; -> 5
```

(car p1) ; -> 4
(cdr pl) ; -> 5

- Constructor
(cons A B) \mapsto Pair $\langle A, B>$
- Accessors
(car Pair $\langle\mathrm{A}, \mathrm{B}>$) $\mapsto \mathrm{A}$
(cdr Pair<A,B>) $\mapsto B$
- Contract
(car (cons A B)) $\mapsto A$
(cdr (cons A B)) $\mapsto B$
- Operations
(pair? Q) returns \#t if Q evaluates to a pair, \#f otherwise
- Abstraction barrier
- Once we build a pair, we can treat it as if it were a primitive
- Pairs have the property of closure - we can use a pair anywhere we would expect to use a primitive data element:
(cons (cons 12) 3)

Building data abstractions

Building data abstractions

(define (make-point x y) (cons $x y)$)
(define (point-x point) (car point)) (define (point-y point) (cdr point))
(define p1 (make-point 2 3))
(define p2 (make-point 4 1))
What type is make-point?

Building on earlier abstraction

Using data abstractions

;; P Point abstraction
(define (make-point x y) (cons $x y)$)
(define (point-x point) (car point)
(define (point-y point) (cdr point))
(define p1 (make-point 2 3))
(define p2 (make-point 4 1)
;; Segment abstraction
(define (make-seg pt1 pt2)
(cons pt1 pt2))
(define (start-point seg)
(car seg))
(define (end-point seg) (cdr seg))
(define s1 (make-seg p1 p2))

```
(define p1 (make-point 2 3)
(define p2 (make-point 4 1)
(define s1 (make-seg p1 p2))
(define (stretch-point pt scale)
    (make-point (* scale (point-x pt))
                                    * scale (point-y pt))))
(stretch-point pl 2) -> (4 . 6)
p1 -> (2 . 3)
```


Using data abstractions

(define p1 (make-point 2 3))
(define p2 (make-point 4 1)
(define s1 (make-seg p1 p2)
(define (stretch-point pt scale)
(make-point (* scale (point-x pt))
(* scale (point-y pt))))

What type is stretch-point?
Point, number \mapsto Point

Using data abstractions

```
(define p1 (make-point 2 3))
(define p2 (make-point 4 1)
(define s1 (make-seg p1 p2)
(define (stretch-seg seg scale)
    (make-seg (stretch-point (start-point seg) scale)
                (stretch-point (end-point seg) scale)))
(define (seg-length seg)
    (sqrt (+ (square
        (- (point-x (start-point seg))
        (point-x (end-point seg))))
        square
                            (- (point-y (start-point seg))
                            (point-y (end-point seg)))))))
```

(define p1 (make-point 2 3))
(define p2 (make-point 4 1))
(define s1 (make-seg p1 p2))
(define (stretch-point pt scale)
(make-point (* scale (point-x pt))
(* scale (point-y pt))))
(stretch-point p1 2) -> (4 . 6)
p1 -> (2 . 3)

- Builders
(define (make-point x y) (cons x y))
(define (point-x point) (car point))
- Users
(* scale (point-x pt))
- Frequently the same person

Pairs are a data abstraction

- Constructor
(cons A B) \mapsto Pair<A, B>
- Accessors
(car Pair $\langle\mathrm{A}, \mathrm{B}>$) $\mapsto \mathrm{A}$
(cdr Pair $<A, B>$) $\mapsto B$
- Contract
$(\operatorname{car}(\operatorname{cons} A B)) \mapsto A$
(cdr (cons A B)) $\mapsto B$
- Operations
(pair? Q) returns \#t if Q evaluates to a pair, \#f otherwise
- Abstraction barrier

Rational number abstraction

- A rational number is a ratio $\frac{n}{d}$
- Addition:

$$
\begin{gathered}
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \\
\frac{2}{3}+\frac{1}{4}=\frac{2 \cdot 4+3 \cdot 1}{12}=\frac{11}{12}
\end{gathered}
$$

- Multiplication:
$\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$
$\frac{2}{3} \cdot \frac{1}{3}=\frac{2}{9}$

Rational number abstraction

Rational number abstraction

- Constructor
; make-rat: integer, integer -> Rat
(make-rat <n> <d>) -> <r>
- Accessors
; numer, denom: Rat -> integer
(numer $\langle r>$)
(denom <r>)
- Contract
(numer (make-rat <n> <d>)) $\Longrightarrow<n>$
(denom (make-rat <n> <d>)) $\Longrightarrow<d>$
- Operations
(+rat x y)
(*rat x y)
- Abstraction barrier
- Constructor
- Accessors
- Contract
- Operations
- Abstraction barrier
- Implementation
; Rat = Pair<integer, integer> (define (make-rat n d) (cons n d)) (define (numer r) (car r) (define (denom r) (cdr r))

Additional operators

Using our system

```
; What is the type of +rat? Rat, Rat -> Rat
(define (+rat x y)
                    (* (numer y) (denom x)))
            (* (denom x) (denom y))))
; The type of *rat: Rat, Rat -> Rat
(define (*rat x y)
    (make-rat (* (numer x) (numer y))
        (* (denom x) (denom y))))
```

(define one-half (make-rat 12))
(define three-fourths (make-rat 3 4))
(define new (+rat one-half three-fourths))
(numer new) \quad; ?
(denom new) \quad ? ?
We get $\frac{10}{8}$, not the simplified $\frac{5}{4}$

```
(define (gcd a b)
    (if (= b 0)
        a
        (gcd b (remainder a b))))
(define (make-rat n d)
    (cons n d))
(define (numer r)
    (/ (car r) (gcd (car r) (cdr r))))
(define (denom r)
    (/ (cdr r) (gcd (car r) (cdr r))))
```

Remove common factors when accessed

```
(define (gcd a b)
    (if (= b 0)
        a
        (gcd b (remainder a b))))
(define (make-rat n d)
    (cons (/ n (gcd n d))
        (/ d (gcd n d))))
    (define (numer r)
    (car r))
(define (denom r)
    (cdr r))
```

Remove common factors when created

Grouping together larger collections

Conventional interfaces - lists

We want to group a set of rational numbers
(cons r1 r2)

- A list is a type that can hold an arbitrary number of ordered items.
- Formally, a list is a sequence of pairs with the following properties:
- The car-part of a pair holds an item
- The cdr-part of a pair holds the rest of the list
- The list is terminated by the empty list: ' ()
- Lists are closed under cons and cdr
(cons <el1> <el2>)

- Sequences of cons cells
- Better, and safer, to abstract: (define first car) (define rest cdr) (define adjoin cons)
- ... but we don't for lists and pairs
(list 1234$)$; -> (1 2 2 3 4)
(null? <z>) ; -> \#t if <z> evaluates to empty list
cons'ing up lists
cdr'ing down lists

```
(define 1thru4 (list 1 2 3 4))
(define 2thru7 (list 2 3 4 5 6 7))
(define (enumerate from to)
    (if (> from to)
    '()
    (cons from (enumerate (+ 1 from) to))))
```

```
(define (length lst)
    (if (null? lst)
        0
        (+ 1 (length (cdr lst)))))
(define (append list1 list2)
    (if (null? list1)
        list2
        (cons (car list1)
        (append (cdr list1)
        list2))))
```

```
(define (square-list lst)
    (if (null? lst)
        '()
        (cons (square (car lst))
            (square-list (cdr lst)))))
(define (double-list lst)
    (if (null? lst)
            '()
            (cons (* 2 (car lst))
                (double-list (cdr lst)))))
(define (map proc lst)
    (if (null? lst)
        '()
        (cons (proc (car lst))
                (map proc (cdr lst)))))
```


Choosing just part of a list

```
(define (map proc lst)
    (if (null? lst)
        '()
        (cons (proc (car lst))
        (map proc (cdr lst)))))
What is the type of map?
(A\mapstoB), List<A>\mapsto List<B>
```

```
(define (filter pred lst)
    (cond ((null? lst)'())
        ((pred (car lst))
        (cons (car lst)
            (filter pred (cdr lst))))
        (else (filter pred (cdr lst)))))
(filter even? (list 1 2 3 4 5 6))
;-> (2 4 6)
```

What is the type of filter?
($A \mapsto$ Boolean), List $<A>\mapsto$ List $<A>$

- So far, we've seen them as the names of variables
- (define foo (+ bar 2))
- But, in Scheme, all data types are first class, so we should be able to:
- Pass symbols as arguments to procedures
- Return them as values of procedures
- Associate them as values of variables
- Store them in data structures
- For example: (chocolate caffeine sugar)

- Evaluation rule for symbols
- Value of a symbol is the value it is associated with in the environment.
- We associate symbols with values using the special form define
- (define pi 3.1451926535)
- (* pi 2 r)
- But how do we get to the symbol itself?
- (define baz pi) ??
- baz $\rightarrow 3.1451926535$

Referring to Symbols

New special form: quote

- Say your favorite color
- Say "your favorite color"
- In the first case, we want the meaning associated with the expression
- In the second, we want the expression itself
- We use the concept of quotation in Scheme to distinguish between these two cases
- We want a way to tell the evaluator: "I want the following object as whatever it is, not as an expression to be evaluated"
(quote foo) \rightarrow foo
(define baz (quote pi)) \rightarrow undefined
$b a z \rightarrow$ pi
$(+\mathrm{pi}$ baz $) \rightarrow$ ERROR
- +: expects type <number> as 2nd argument, given: pi; other arguments were: 3.1415926535 (list (quote foo) (quote bar) (quote baz))
\rightarrow (foo bar baz)
- The Reader (part of the Read-Eval-Print Loop, REPL) knows a short-cut
- When it sees ' pi it acts just like it had read (quote pi)
- The latter is what is actually evaluated
- Examples:
'pi \rightarrow pi
${ }^{\prime} 17 \rightarrow 17$
, "Hello world" \rightarrow "Hello world"
${ }^{\prime}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
(list (quote brains) (quote caffeine) (quote sugar)) ; -> (brains caffeine sugar)
(list 'brains 'caffeine 'sugar) ; -> (brains caffeine sugar)
' (brains caffeine sugar) ; -> (brains caffeine sugar)
(define x 42) (define y '(x y z))
(list (list 'foo 'bar) (list x y) (list 'baz 'quux 'squee)) ; -> ((foo bar) (42 (x y z))
(baz quux squee))
'((foo bar) (x y) (bar quux squee)) ; -> ((foo bar) (x y) (bar quux squee))

Confusing examples

Operations on symbols

- symbol? has type anytype \rightarrow boolean, returns \#t for symbols (symbol? (quote foo)) \rightarrow \#t
(symbol? 'foo) \rightarrow \#t
(symbol? 4) \rightarrow \#f
(symbol? '(1 2 3)) \rightarrow \#f
(symbol? foo) \rightarrow It depends on what value foo is bound to
- eq? tests the equality of symbols

An aside: Testing for equality

- eq? tests if two things are exactly the same object in memory. Not for strings or numbers.
- = tests the equality of numbers
- equal? tests if two things print the same- symbols, numbers, strings, lists of those, lists of lists

| $(=410)$ | | | ; | -> | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(\begin{array}{ll}= & 4\end{array}\right)$ | | | ; | -> | \# | |
| (equal? 4 4) | | | ; | -> | \# | |
| (equal? (/ 1 2) 0.5) | | | ; | -> | \# | |
| (eq? 4 4) | | | ; | -> | \# | |
| (eq? (expt 2 70) (expt | 2 | 70)) | ; | -> | | |
| (= "foo" "foo") | | | ; | -> | | rror |
| (eq? "foo" "foo") | | | ; | -> | \# | |
| (equal? "foo" "foo") | | | ; | -> | \# | |
| (eq? '(1 2) '(1 2)) | | | ; | - | \# | |
| (equal? '(1 2) '(1 2)) | | | ; | -> | | |
| (define a '(1 2)) | | | | | | |
| (define b '(1 2)) | | | | | | |
| (eq? a b) | ; | -> | \#f | | | |
| (define a b) | | | | | | |
| (eq? a b) | ; | -> | \#t | | | |

Tagged data

Benefits of tagged data

- Attaching a symbol to all data values that indicates the type
- Can now determine if something is the type you expect

```
(define (make-point x y)
    (list 'point x y))
(define (make-rat n d)
    (list 'rat x y))
(define (point? thing)
    (and (pair? thing)
            (eq? (car thing) 'point)))
(define (rat? thing)
    (and (pair? thing)
        (eq? (car thing) 'rat)))
```

- Data-directed programming - decide what to do based on type

```
define (stretch thing scale)
    (if (point? thing)
        (stretch-point thing scale)
        (stretch-seg thing scale))
```

- Defensive programming - Determine if something is the type you expect, give a better error
(define (stretch-point pt)
(if (not (point? pt))
(error "stretch-point passed a non-point:" pt)
; ; ...carry on

Recitation time!

