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6.037 Lecture 3

Mutation and
The Environment Model

Edited by 6.001-zombies@mit.edu
Original material by Eric Grimson
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Previously, on 6.037....

• Basics of Scheme
• Substitution Model
• Recursion, plus iterative and recursive processes
• Procedural abstraction
• Abstract data types (cons cells and lists)
• Higher-order procedures
• Symbols and quotation
• Tagged Data
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Data Mutation

• Syntax
•set! for names

•set-car!, set-cdr! for pairs

• Semantics
• Simple case: one global environment
• Complex case: many environments: environment model
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Primitive Data

  (define x 10) creates a new binding for name;

special form

  x  returns value  bound to name 

• To Mutate: 
 (set! x "foo") changes the binding for name;

special form (value is undefined)
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Assignment -- set!

• Substitution model -- functional programming:
(define x 10)
(+ x 5) ==> 15 - expression has same value
...  each time it's evaluated (in
(+ x 5) ==> 15   same scope as binding)

• With mutation:
(define x 10)
(+ x 5) ==> 15 - expression "value" depends
...  on when it is evaluated
(set! x 94)
...
(+ x 5) ==> 99
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Syntax: Expression Sequences
• With side-effects, sometimes you want to do some things 

and then return a value. Use the  begin special form.

• (begin 
(set! x 2)
(set! y 3)
4) ; return value

• lambda, let, and cond  accept sequences 
(define frob 

(lambda ()
(display “frob called”) ; do this 
(set! x (+ x 1))        ; then this
x))
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Mutating Compound Data

• constructor: 
  (cons x y) creates a new pair p

• selectors: 
 (car p) returns car part of pair p

 (cdr p)  returns cdr part of pair p

• mutators:
 (set-car! p new-x) changes car part of pair p

 (set-cdr! p new-y) changes cdr part of pair p

 ; Pair,anytype -> undef   -- side-effect only!
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Example 1: Pair/List Mutation

(define a (list 1 2))
(define b a)

a  (1 2)

b  (1 2) 1 2b

a

(set-car! a 10)

b  (10 2)
10

X

Compare with:

(define a (list 1 2))

(define b (list 1 2))

1 2

a

1 2

b

10

X

(set-car! a 10)

b  (1 2)
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Example 2: Pair/List Mutation

(define x (list 'a 'b))

a b

x
X

21

(set-car! (cdr x)
        (list 1 2))

1. Evaluate (cdr x) to get 
a pair object

2. Change car part of that 
pair object

• How can we use mutation to 
achieve the result at right?
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Sharing, Equivalence, and Identity

• How can we tell if two things are equivalent?
Well, what do you mean by "equivalent"?
● The same object:  test with eq?
(eq? a b) ==> #t

● Objects that "look" the same: test with equal?
  (equal? (list 1 2) (list 1 2)) ==> #t

  (eq?    (list 1 2) (list 1 2)) ==> #f

1 21 2

(1 2)               (1 2)

1 2b

a
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Sharing, Equivalence, and Identity

• How can we tell if two things are equivalent?
Well, what do you mean by "equivalent"?
● The same object:  test with eq?
(eq? a b) ==> #t

● Objects that "look" the same: test with equal?
(equal? (list 1 2) (list 1 2)) ==> #t
(eq?    (list 1 2) (list 1 2)) ==> #f

• If we change an object, is it the same object?
 -- Yes, if we retain the same pointer to the object

• How do we tell if part of an object is shared with another?
 -- If we mutate one, see if the other also changes

• Notice: No way to tell the difference without mutation!



 13

 x ==> (3 4)
 y ==> (1 2)

 (set-car! x y)

 x ==>

followed by
 (set-cdr! y (cdr x))

 x ==>

 (set-car! (cdr x) 5)  
 x ==> 

One last example...

3 4

x

1 2

y

((1 2) 4)

X

((1 5) 5)

X

((1 4) 4)

X 5
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Functional vs Imperative Programming

• Functional programming
• No assignments
• As computing mathematical functions
• No side effects
• Easy to understand: use the substitution model!

• Imperative programming
• A style that relies heavily on assignment
• Introduces new classes of bugs

• This doesn't mean that assignment is evil
• It sure does complicate things, but:
• Being able to modify local state is powerful as we will see
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Stack Data Abstraction (for recitation)
• constructor: 

  (make-stack) returns an empty stack

• selectors: 
 (top-stack s) returns current top element from a stack s

• operations: 
 (push-stack s elt) returns a new stack with the element

added to the top of the stack

  (pop-stack s) returns a new stack with the top
element removed from the stack

  (empty-stack? s) returns #t if no elements, #f otherwise
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Stack Contract

• If s is a stack, created by (make-stack)and subsequent stack 
procedures, where  i is the number of pushes and j is the number of 
pops, then

● If  j>i then it is an error

● If  j=i then (empty-stack? s) is true,
and (top-stack s) is an error.

● If  j<i then (empty-stack? s) is false, and for any val,
 (top-stack 
  (pop-stack 
   (push-stack s val))) = (top-stack s)

● If  j<=i then for any val,
 (top-stack (push-stack s val))) = val
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Stack Implementation Strategy

• Implement a stack as a list

dba

• We will insert and delete items at the front of the list
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Stack Implementation

; Stack<A> = List<A>
(define (make-stack) '())

(define (empty-stack? s) ; Stack<A> -> boolean
  (null? s))

(define (push-stack s elt) ; Stack<A>, A -> Stack<A>
  (cons elt s))

(define (pop-stack s) ; Stack<A> -> Stack<A>
  (if (not (empty-stack? s))
      (cdr s)
      (error "stack underflow – delete"))

(define (top-stack s) ; Stack<A> -> A
  (if (not (empty-stack? s))
      (car s)
      (error "stack underflow – top")))



 26

Queue Data Abstraction (Non-Mutating)

• constructor: 
 (make-queue) returns an empty queue

• accessors: 
 (front-queue q) returns the object at the front of the

queue.  If queue is empty signals error
• operations: 

 (insert-queue q elt) returns a new queue with elt at the 
rear of the queue

  (delete-queue q) returns a new queue with the item at the

front of the queue removed 

  (empty-queue? q) tests if the queue is empty
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Queue Contract

Given q is a queue, created by (make-queue) and 
subsequent queue procedures, where i is the number of 
inserts, and j is the number of deletes

● If  j>i then it is an error

● If  j=i then (empty-queue? q) is true, 
and (front-queue q) is an error

● If  j<i then (empty-queue? q) is false, 
and (front-queue q) is the (j+1)th element
inserted into the queue
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Simple Queue Implementation – pg. 1

• Let the queue simply be a list of queue elements:

c db

• The front of the queue is the first element in the list

• To insert an element at the tail of the queue, we need to 
“copy” the existing queue onto the front of the new element: 

d newcb
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Simple Queue Implementation – pg. 2

(define (make-queue) '())

(define (empty-queue? q) (null? q)); Queue<A> -> boolean

(define (front-queue q) ; Queue<A> -> A 
  (if (not (empty-queue? q))
      (car q)
      (error "front of empty queue:" q)))

(define (delete-queue q) ; Queue<A> -> Queue<A>
  (if (not (empty-queue? q))

(cdr q)
      (error "delete of empty queue:" q)))

(define (insert-queue q elt) ; Queue<A>, A -> Queue<A>
  (if (empty-queue? q)
      (cons elt '())
      (cons (car q) (insert-queue (cdr q) elt))))
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Simple Queue - Efficiency

• How efficient is the simple queue implementation?
• For a queue of length n

– Time required – number of iterations?
– Space required – number of pending operations?
  

• front-queue, delete-queue:

• Time: Constant
• Space: Constant

• insert-queue:

• Time: Linear

• Space: Linear
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Limitations in our Queue

• Queue does not have identity

(define q (make-queue))
q ==> ()

(insert-queue q 'a) ==> (a)
q ==> ()

(set! q (insert-queue q 'b))
q ==> (b)
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Queue Data Abstraction (Mutating)

• constructor: 
  (make-queue) returns an empty queue

• accessors: 
 (front-queue q) returns the object at the front of the

queue.  If queue is empty signals error
• mutators: 

 (insert-queue! q elt) inserts the elt at the rear of the queue
and returns the modified queue

  (delete-queue! q) removes the elt at the front of the queue
and returns the modified queue

• operations:
 (queue? q) tests if the object is a queue

 (empty-queue? q) tests if the queue is empty
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Better Queue Implementation – pg. 1

• We’ll attach a type tag as a defensive measure
• Maintain queue identity
• Build a structure to hold:

• a list of items in the queue
• a pointer to the front of the queue
• a pointer to the rear of the queue         

queue

c dba

front-ptr

rear-ptr
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Queue Helper Procedures

• Hidden inside the abstraction

(define (front-ptr q) (cadr q))
(define (rear-ptr q)  (cddr q))

(define (set-front-ptr! q item)
  (set-car! (cdr q) item))

(define (set-rear-ptr! q item)
  (set-cdr! (cdr q) item))

queue

c dba

front-ptr

rear-ptr
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Better Queue Implementation – pg. 2

(define (make-queue)
  (cons 'queue (cons '() '())))

(define (queue? q) ; anytype -> boolean
  (and (pair? q) (eq? 'queue (car q))))

(define (empty-queue? q) ; Queue<A> -> boolean
  (if (queue? q)
      (null? (front-ptr q))
      (error "object not a queue:" q)))

(define (front-queue q) ; Queue<A> -> A
  (if (not (empty-queue? q))
      (car (front-ptr q))
      (error "front of empty queue:" q)))
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Queue Implementation – pg. 3

(define (insert-queue! q elt); Queue<A>, A -> Queue<A>
  (let ((new-pair (cons elt '())))
   (cond ((empty-queue? q) (set-front-ptr! q new-pair)
                           (set-rear-ptr! q new-pair))
          (else (set-cdr! (rear-ptr q) new-pair)
                (set-rear-ptr! q new-pair)))
   q)))

queue

c dba

front-ptr

rear-ptr

e
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Queue Implementation – pg. 4

(define (delete-queue! q) ; Queue<A> -> Queue<A>
  (if (not (empty-queue? q))
      (set-front-ptr! q (cdr (front-ptr q)))
      (error "delete of empty queue:" q))
  q)

queue

c dba

front-ptr
rear-ptr
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Mutating Queue - Efficiency

• How efficient is the mutating queue implementation?
• For a queue of length n

– Time required  -- number of iterations?
– Space required -- number of pending operations?
  

• front-queue, delete-queue!:

• Time: Constant
• Space: Constant

• insert-queue!:

• Time: T(n) = Constant

• Space: S(n) = Constant
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Summary  - Catch your breath

• Built-in mutators which operate by side-effect
•set! (special form)
•set-car!  ; Pair, anytype -> undef
•set-cdr!  ; Pair, anytype -> undef

• Extend our notion of data abstraction to include mutators

• Mutation is a powerful idea
• enables new and efficient data structures
• can have surprising side effects
• breaks our model of "functional" programming 

(substitution model)
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 (define make-counter 
  (lambda (n)
    (lambda () (set! n (+ n 1))
               n   )))

 (define ca (make-counter 0))
 (ca) ==> 1
 (ca) ==> 2   ; not functional programming!
 (define cb (make-counter 0))
 (cb) ==> 1
 (ca) ==> 3   ; ca and cb are independent

Can you figure out why this code works?

Need a new model of mutation for closures.
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What the Environment Model is:

• A precise, completely mechanical description:
• name-rule looking up the value of a variable
• define-rule creating a new definition of a var
• set!-rule changing the value of a variable
• lambda-rule creating a procedure
• application applying a procedure

● Basis for implementing a scheme interpreter
● for now: draw EM state with boxes and pointers
● later on: implement with code

● Enables analyzing more complex scheme code:
● Example: make-counter 
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A shift in viewpoint

• As we introduce the environment model, we are going to 
shift our viewpoint on computation

• Variable: 
• OLD – name for value
• NEW – place into which one can store things

• Procedure:
• OLD – functional description
• NEW – object with inherited context

• Expressions
• Now only have meaning with respect to an environment
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Frame: a table of bindings

• Binding: a pairing of a name and a value

Example: x is bound to 15 in frame A
                      y is bound to (1 2) in frame A
                      the value of the variable x in frame A is 15

21

x: 15
 

A

y:
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Environment: a sequence of frames

• Environment E1 consists of frames A and B

z: 10

B

E1

E2

x: 15
 

A

21

y:

this arrow is called
the enclosing

environment pointer

• Environment E2 consists of frame B only

• A frame may be shared by multiple environments
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Evaluation in the environment model

• All evaluation occurs with respect to an environment

• The current environment changes when the

interpreter applies a procedure

● To evaluate a combination

● Evaluate the subexpressions in the current environment

● Apply the value of the first to the values of the rest

• The top environment is called the global environment (GE)
● Only the GE has no enclosing environment
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Name-rule

• A name X evaluated in environment E gives
the value of X in the first frame of E where X is bound

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

• In E1, the binding of x in frame A shadows the binding of x in B

•x | GE ==> 3

•z | GE ==> 10    z | E1 ==> 10    x | E1 ==> 15
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Define-rule

• A define special form evaluated in environment E
creates or replaces a binding in the first frame of E

(define z 25) | E1(define z 20) | GE

z: 25

z: 20

x: 15A

21

z: 10
x: 3

B

E1

GE

y:

z | GE ==> 20 

z | E1 ==> 25
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(set! z 25) | E1

Set!-rule

• A set! of variable X evaluated in environment E changes 
the binding of X in the first frame of E where X is bound

(set! z 20) | GE

20 25

x: 15A

21

z: 10
x: 3

B

E1

GE

y:
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Your turn: evaluate the following in order

(+ z 1) | E1                      ==> 

(set! z (+ z 1)) | E1      (modify EM)

(define z (+ z 1)) | E1      (modify EM) 

(set! y (+ z 1)) | GE        (modify EM)

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

11
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Your turn: evaluate the following in order

(+ z 1) | E1                      ==> 

(set! z (+ z 1)) | E1      (modify EM)

(define z (+ z 1)) | E1      (modify EM) 

(set! y (+ z 1)) | GE        (modify EM)

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

11

11

z: 12

Error:
unbound 
variable: y
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Double bubble: how to draw a procedure

(lambda (x) (* x x))eval

lam
bda-rule

A compound proc
that squares its

argument

#<procedure>
pr

in
t

Code pointer

parameters: x
body: (* x x)

Environment
pointer
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Lambda-rule

• A lambda special form evaluated in environment E
creates a procedure whose environment pointer is E

x: 15
A

z: 10
x: 3

B

E1

parameters: x
body: (* x x)

square:

(define square (lambda (x) (* x x))) | E1

environment pointer
points to frame A

because the lambda
was evaluated in E1

and E1  A
Evaluating a lambda returns

 a pointer to the procedure object
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To apply a compound procedure P to arguments:
1. Create a new frame A
2. Make A into an environment E:

 A's enclosing environment pointer goes to the same frame 
 as the environment pointer of P

3. In A, bind the parameters of P to the argument values

4. Evaluate the body of P with E as the current environment
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    (square 4) | GE

x: 10
GE

parameters: x
body: (* x x)

square:

E1 x: 4

(* x x) | E1

*: #[prim]

==> 16

* | E1 ==> #[prim]

x | E1 ==> 4

square | GE ==> #<proc>

A
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Lessons from this example

• EM doesn't show the complete state of the interpreter
• missing the stack of pending operations

• The GE contains all standard bindings (*, cons, etc)

• omitted from EM drawings

• Useful to link environment pointer of each frame 
to the procedure that created it
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(let ((x 15) 
 (z (+ x 5))
(* z 2)) | E1

Let special form

• A let expression evaluated in environment E evaluates the 
values for the new variables, and then drops a new frame 
whose parent frame is E, binding them to the given names

x: 3

x: 15
z: 8

E1

=> 16

• The binding values are evaluated before
 the new frame is created.

• The body is evaluated in 
 the new environment

• Sounds familiar....
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(let ((x 15) 
 (z (+ x 5))
(* z 2)) | E1

Let special form

• A let expression evaluated in environment E evaluates the 
values for the new variables, and then drops a new frame 
whose parent frame is E, binding them to the given names

• Hidden lambda!

x: 3

x: 15
z: 8

E1

=> 16

parameters: x z
body: (* z 2)

( (lambda (x z) (* z 2))  15   (+ x 5)  )
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Example: make-counter

• Counter: something which counts up from a number

(define make-counter 
  (lambda (n)
    (lambda () (set! n (+ n 1))
               n
    )))

(define ca (make-counter 0))
(ca) ==> 1
(ca) ==> 2 ; not functional programming
(define cb (make-counter 0))
(cb) ==> 1
(ca) ==> 3
(cb) ==> 2  ; ca and cb are independent
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(define ca (make-counter 0)) | GE

GE

p: n
b:(lambda ()
   (set! n
    (+ n 1))
   n)

make-counter:

E1
n: 0

(lambda () (set! n (+ n 1)) n) | E1 

p: 
b:(set! n (+ n 1)) n

ca:

environment pointer
points to E1

because the lambda
was evaluated in E1
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(ca) | GE

(set! n (+ n 1)) | E2 

1

n | E2 ==> 1 

E2
empty

GE

p: n
b:(lambda ()
   (set! n
    (+ n 1))
   n)

make-counter:

E1
n: 0

p: 
b:(set! n (+ n 1)) n

ca:

==> 1
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E3

(ca) | GE

(set! n (+ n 1)) | E3 

GE

p: n
b:(lambda ()
   (set! n
    (+ n 1))
   n)

make-counter:

E1
n: 0

p: 
b:(set! n (+ n 1)) n

ca:

1

n | E3 ==> 2 

empty

==> 2

2



 67

(define cb (make-counter 0)) | GE

(lambda () (set! n (+ n 1)) n) | E4 

n: 0
E4

p: 
b:(set! n 
  (+ n 1)) n

cb:GE

p: n
b:(lambda ()
   (set! n
    (+ n 1))
   n)

make-counter:

E1
n: 2

p: 
b:(set! n 
    (+ n 1)) n

ca:

E3
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(cb) | GE

1
n: 0

E4

p: 
b:(set! n 
  (+ n 1)) n

cb:GE

p: n
b:(lambda ()
   (set! n
    (+ n 1))
   n)

make-counter:

E1
n: 2

p: 
b:(set! n 
    (+ n 1)) n

ca:

E2

==> 1

E5
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Capturing state in local frames & procedures

n: 1
E4

p: 
b:(set! n 
  (+ n 1)) n

cb:GE

p: n
b:(lambda ()
   (set! n
    (+ n 1))
   n)

make-counter:

E1
n: 2

p: 
b:(set! n 
    (+ n 1)) n

ca:

E2



 70

Lessons from the make-counter example

• Environment diagrams get complicated very quickly
• Rules are meant for the computer to follow, 

not to help humans
• A lambda inside a procedure body captures the

frame that was active when the lambda was evaluated
• this effect can be used to store local state
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Recitation Time!
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