
 1

6.037 Lecture 3

Mutation and
The Environment Model

Edited by 6.001-zombies@mit.edu
Original material by Eric Grimson

 2

Previously, on 6.037....

• Basics of Scheme
• Substitution Model
• Recursion, plus iterative and recursive processes
• Procedural abstraction
• Abstract data types (cons cells and lists)
• Higher-order procedures
• Symbols and quotation
• Tagged Data

 4

Data Mutation

• Syntax
•set! for names

•set-car!, set-cdr! for pairs

• Semantics
• Simple case: one global environment
• Complex case: many environments: environment model

 5

Primitive Data

 (define x 10) creates a new binding for name;

special form

 x returns value bound to name

• To Mutate:
 (set! x "foo") changes the binding for name;

special form (value is undefined)

 6

Assignment -- set!

• Substitution model -- functional programming:
(define x 10)
(+ x 5) ==> 15 - expression has same value
... each time it's evaluated (in
(+ x 5) ==> 15 same scope as binding)

• With mutation:
(define x 10)
(+ x 5) ==> 15 - expression "value" depends
... on when it is evaluated
(set! x 94)
...
(+ x 5) ==> 99

 7

Syntax: Expression Sequences
• With side-effects, sometimes you want to do some things

and then return a value. Use the begin special form.

• (begin
(set! x 2)
(set! y 3)
4) ; return value

• lambda, let, and cond accept sequences
(define frob

(lambda ()
(display “frob called”) ; do this
(set! x (+ x 1)) ; then this
x))

 8

Mutating Compound Data

• constructor:
 (cons x y) creates a new pair p

• selectors:
 (car p) returns car part of pair p

 (cdr p) returns cdr part of pair p

• mutators:
 (set-car! p new-x) changes car part of pair p

 (set-cdr! p new-y) changes cdr part of pair p

 ; Pair,anytype -> undef -- side-effect only!

 9

Example 1: Pair/List Mutation

(define a (list 1 2))
(define b a)

a  (1 2)

b  (1 2) 1 2b

a

(set-car! a 10)

b  (10 2)
10

X

Compare with:

(define a (list 1 2))

(define b (list 1 2))

1 2

a

1 2

b

10

X

(set-car! a 10)

b  (1 2)

 10

Example 2: Pair/List Mutation

(define x (list 'a 'b))

a b

x
X

21

(set-car! (cdr x)
 (list 1 2))

1. Evaluate (cdr x) to get
a pair object

2. Change car part of that
pair object

• How can we use mutation to
achieve the result at right?

 11

Sharing, Equivalence, and Identity

• How can we tell if two things are equivalent?
Well, what do you mean by "equivalent"?
● The same object: test with eq?
(eq? a b) ==> #t

● Objects that "look" the same: test with equal?
 (equal? (list 1 2) (list 1 2)) ==> #t

 (eq? (list 1 2) (list 1 2)) ==> #f

1 21 2

(1 2) (1 2)

1 2b

a

 12

Sharing, Equivalence, and Identity

• How can we tell if two things are equivalent?
Well, what do you mean by "equivalent"?
● The same object: test with eq?
(eq? a b) ==> #t

● Objects that "look" the same: test with equal?
(equal? (list 1 2) (list 1 2)) ==> #t
(eq? (list 1 2) (list 1 2)) ==> #f

• If we change an object, is it the same object?
 -- Yes, if we retain the same pointer to the object

• How do we tell if part of an object is shared with another?
 -- If we mutate one, see if the other also changes

• Notice: No way to tell the difference without mutation!

 13

 x ==> (3 4)
 y ==> (1 2)

 (set-car! x y)

 x ==>

followed by
 (set-cdr! y (cdr x))

 x ==>

 (set-car! (cdr x) 5)
 x ==>

One last example...

3 4

x

1 2

y

((1 2) 4)

X

((1 5) 5)

X

((1 4) 4)

X 5

 14

Functional vs Imperative Programming

• Functional programming
• No assignments
• As computing mathematical functions
• No side effects
• Easy to understand: use the substitution model!

• Imperative programming
• A style that relies heavily on assignment
• Introduces new classes of bugs

• This doesn't mean that assignment is evil
• It sure does complicate things, but:
• Being able to modify local state is powerful as we will see

 15

Stack Data Abstraction (for recitation)
• constructor:

 (make-stack) returns an empty stack

• selectors:
 (top-stack s) returns current top element from a stack s

• operations:
 (push-stack s elt) returns a new stack with the element

added to the top of the stack

 (pop-stack s) returns a new stack with the top
element removed from the stack

 (empty-stack? s) returns #t if no elements, #f otherwise

 16

Stack Contract

• If s is a stack, created by (make-stack)and subsequent stack
procedures, where i is the number of pushes and j is the number of
pops, then

● If j>i then it is an error

● If j=i then (empty-stack? s) is true,
and (top-stack s) is an error.

● If j<i then (empty-stack? s) is false, and for any val,
 (top-stack
 (pop-stack
 (push-stack s val))) = (top-stack s)

● If j<=i then for any val,
 (top-stack (push-stack s val))) = val

 17

Stack Implementation Strategy

• Implement a stack as a list

dba

• We will insert and delete items at the front of the list

 18

Stack Implementation

; Stack<A> = List<A>
(define (make-stack) '())

(define (empty-stack? s) ; Stack<A> -> boolean
 (null? s))

(define (push-stack s elt) ; Stack<A>, A -> Stack<A>
 (cons elt s))

(define (pop-stack s) ; Stack<A> -> Stack<A>
 (if (not (empty-stack? s))
 (cdr s)
 (error "stack underflow – delete"))

(define (top-stack s) ; Stack<A> -> A
 (if (not (empty-stack? s))
 (car s)
 (error "stack underflow – top")))

 26

Queue Data Abstraction (Non-Mutating)

• constructor:
 (make-queue) returns an empty queue

• accessors:
 (front-queue q) returns the object at the front of the

queue. If queue is empty signals error
• operations:

 (insert-queue q elt) returns a new queue with elt at the
rear of the queue

 (delete-queue q) returns a new queue with the item at the

front of the queue removed

 (empty-queue? q) tests if the queue is empty

 27

Queue Contract

Given q is a queue, created by (make-queue) and
subsequent queue procedures, where i is the number of
inserts, and j is the number of deletes

● If j>i then it is an error

● If j=i then (empty-queue? q) is true,
and (front-queue q) is an error

● If j<i then (empty-queue? q) is false,
and (front-queue q) is the (j+1)th element
inserted into the queue

 28

Simple Queue Implementation – pg. 1

• Let the queue simply be a list of queue elements:

c db

• The front of the queue is the first element in the list

• To insert an element at the tail of the queue, we need to
“copy” the existing queue onto the front of the new element:

d newcb

 29

Simple Queue Implementation – pg. 2

(define (make-queue) '())

(define (empty-queue? q) (null? q)); Queue<A> -> boolean

(define (front-queue q) ; Queue<A> -> A
 (if (not (empty-queue? q))
 (car q)
 (error "front of empty queue:" q)))

(define (delete-queue q) ; Queue<A> -> Queue<A>
 (if (not (empty-queue? q))

(cdr q)
 (error "delete of empty queue:" q)))

(define (insert-queue q elt) ; Queue<A>, A -> Queue<A>
 (if (empty-queue? q)
 (cons elt '())
 (cons (car q) (insert-queue (cdr q) elt))))

 30

Simple Queue - Efficiency

• How efficient is the simple queue implementation?
• For a queue of length n

– Time required – number of iterations?
– Space required – number of pending operations?

• front-queue, delete-queue:

• Time: Constant
• Space: Constant

• insert-queue:

• Time: Linear

• Space: Linear

 31

Limitations in our Queue

• Queue does not have identity

(define q (make-queue))
q ==> ()

(insert-queue q 'a) ==> (a)
q ==> ()

(set! q (insert-queue q 'b))
q ==> (b)

 32

Queue Data Abstraction (Mutating)

• constructor:
 (make-queue) returns an empty queue

• accessors:
 (front-queue q) returns the object at the front of the

queue. If queue is empty signals error
• mutators:

 (insert-queue! q elt) inserts the elt at the rear of the queue
and returns the modified queue

 (delete-queue! q) removes the elt at the front of the queue
and returns the modified queue

• operations:
 (queue? q) tests if the object is a queue

 (empty-queue? q) tests if the queue is empty

 33

Better Queue Implementation – pg. 1

• We’ll attach a type tag as a defensive measure
• Maintain queue identity
• Build a structure to hold:

• a list of items in the queue
• a pointer to the front of the queue
• a pointer to the rear of the queue

queue

c dba

front-ptr

rear-ptr

 34

Queue Helper Procedures

• Hidden inside the abstraction

(define (front-ptr q) (cadr q))
(define (rear-ptr q) (cddr q))

(define (set-front-ptr! q item)
 (set-car! (cdr q) item))

(define (set-rear-ptr! q item)
 (set-cdr! (cdr q) item))

queue

c dba

front-ptr

rear-ptr

 35

Better Queue Implementation – pg. 2

(define (make-queue)
 (cons 'queue (cons '() '())))

(define (queue? q) ; anytype -> boolean
 (and (pair? q) (eq? 'queue (car q))))

(define (empty-queue? q) ; Queue<A> -> boolean
 (if (queue? q)
 (null? (front-ptr q))
 (error "object not a queue:" q)))

(define (front-queue q) ; Queue<A> -> A
 (if (not (empty-queue? q))
 (car (front-ptr q))
 (error "front of empty queue:" q)))

 36

Queue Implementation – pg. 3

(define (insert-queue! q elt); Queue<A>, A -> Queue<A>
 (let ((new-pair (cons elt '())))
 (cond ((empty-queue? q) (set-front-ptr! q new-pair)
 (set-rear-ptr! q new-pair))
 (else (set-cdr! (rear-ptr q) new-pair)
 (set-rear-ptr! q new-pair)))
 q)))

queue

c dba

front-ptr

rear-ptr

e

 37

Queue Implementation – pg. 4

(define (delete-queue! q) ; Queue<A> -> Queue<A>
 (if (not (empty-queue? q))
 (set-front-ptr! q (cdr (front-ptr q)))
 (error "delete of empty queue:" q))
 q)

queue

c dba

front-ptr
rear-ptr

 38

Mutating Queue - Efficiency

• How efficient is the mutating queue implementation?
• For a queue of length n

– Time required -- number of iterations?
– Space required -- number of pending operations?

• front-queue, delete-queue!:

• Time: Constant
• Space: Constant

• insert-queue!:

• Time: T(n) = Constant

• Space: S(n) = Constant

 40

Summary - Catch your breath

• Built-in mutators which operate by side-effect
•set! (special form)
•set-car! ; Pair, anytype -> undef
•set-cdr! ; Pair, anytype -> undef

• Extend our notion of data abstraction to include mutators

• Mutation is a powerful idea
• enables new and efficient data structures
• can have surprising side effects
• breaks our model of "functional" programming

(substitution model)

 41

 (define make-counter
 (lambda (n)
 (lambda () (set! n (+ n 1))
 n)))

 (define ca (make-counter 0))
 (ca) ==> 1
 (ca) ==> 2 ; not functional programming!
 (define cb (make-counter 0))
 (cb) ==> 1
 (ca) ==> 3 ; ca and cb are independent

Can you figure out why this code works?

Need a new model of mutation for closures.

 42

What the Environment Model is:

• A precise, completely mechanical description:
• name-rule looking up the value of a variable
• define-rule creating a new definition of a var
• set!-rule changing the value of a variable
• lambda-rule creating a procedure
• application applying a procedure

● Basis for implementing a scheme interpreter
● for now: draw EM state with boxes and pointers
● later on: implement with code

● Enables analyzing more complex scheme code:
● Example: make-counter

 43

A shift in viewpoint

• As we introduce the environment model, we are going to
shift our viewpoint on computation

• Variable:
• OLD – name for value
• NEW – place into which one can store things

• Procedure:
• OLD – functional description
• NEW – object with inherited context

• Expressions
• Now only have meaning with respect to an environment

 44

Frame: a table of bindings

• Binding: a pairing of a name and a value

Example: x is bound to 15 in frame A
 y is bound to (1 2) in frame A
 the value of the variable x in frame A is 15

21

x: 15

A

y:

 45

Environment: a sequence of frames

• Environment E1 consists of frames A and B

z: 10

B

E1

E2

x: 15

A

21

y:

this arrow is called
the enclosing

environment pointer

• Environment E2 consists of frame B only

• A frame may be shared by multiple environments

 46

Evaluation in the environment model

• All evaluation occurs with respect to an environment

• The current environment changes when the

interpreter applies a procedure

● To evaluate a combination

● Evaluate the subexpressions in the current environment

● Apply the value of the first to the values of the rest

• The top environment is called the global environment (GE)
● Only the GE has no enclosing environment

 47

Name-rule

• A name X evaluated in environment E gives
the value of X in the first frame of E where X is bound

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

• In E1, the binding of x in frame A shadows the binding of x in B

•x | GE ==> 3

•z | GE ==> 10 z | E1 ==> 10 x | E1 ==> 15

 48

Define-rule

• A define special form evaluated in environment E
creates or replaces a binding in the first frame of E

(define z 25) | E1(define z 20) | GE

z: 25

z: 20

x: 15A

21

z: 10
x: 3

B

E1

GE

y:

z | GE ==> 20

z | E1 ==> 25

 49

(set! z 25) | E1

Set!-rule

• A set! of variable X evaluated in environment E changes
the binding of X in the first frame of E where X is bound

(set! z 20) | GE

20 25

x: 15A

21

z: 10
x: 3

B

E1

GE

y:

 51

Your turn: evaluate the following in order

(+ z 1) | E1 ==>

(set! z (+ z 1)) | E1 (modify EM)

(define z (+ z 1)) | E1 (modify EM)

(set! y (+ z 1)) | GE (modify EM)

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

11

 52

Your turn: evaluate the following in order

(+ z 1) | E1 ==>

(set! z (+ z 1)) | E1 (modify EM)

(define z (+ z 1)) | E1 (modify EM)

(set! y (+ z 1)) | GE (modify EM)

x: 15
A

21

z: 10
x: 3

B

E1

GE

y:

11

11

z: 12

Error:
unbound
variable: y

 53

Double bubble: how to draw a procedure

(lambda (x) (* x x))eval

lam
bda-rule

A compound proc
that squares its

argument

#<procedure>
pr

in
t

Code pointer

parameters: x
body: (* x x)

Environment
pointer

 54

Lambda-rule

• A lambda special form evaluated in environment E
creates a procedure whose environment pointer is E

x: 15
A

z: 10
x: 3

B

E1

parameters: x
body: (* x x)

square:

(define square (lambda (x) (* x x))) | E1

environment pointer
points to frame A

because the lambda
was evaluated in E1

and E1  A
Evaluating a lambda returns

 a pointer to the procedure object

 55

To apply a compound procedure P to arguments:
1. Create a new frame A
2. Make A into an environment E:

 A's enclosing environment pointer goes to the same frame
 as the environment pointer of P

3. In A, bind the parameters of P to the argument values

4. Evaluate the body of P with E as the current environment

 56

 (square 4) | GE

x: 10
GE

parameters: x
body: (* x x)

square:

E1 x: 4

(* x x) | E1

*: #[prim]

==> 16

* | E1 ==> #[prim]

x | E1 ==> 4

square | GE ==> #<proc>

A

 60

Lessons from this example

• EM doesn't show the complete state of the interpreter
• missing the stack of pending operations

• The GE contains all standard bindings (*, cons, etc)

• omitted from EM drawings

• Useful to link environment pointer of each frame
to the procedure that created it

 61

(let ((x 15)
 (z (+ x 5))
(* z 2)) | E1

Let special form

• A let expression evaluated in environment E evaluates the
values for the new variables, and then drops a new frame
whose parent frame is E, binding them to the given names

x: 3

x: 15
z: 8

E1

=> 16

• The binding values are evaluated before
 the new frame is created.

• The body is evaluated in
 the new environment

• Sounds familiar....

 62

(let ((x 15)
 (z (+ x 5))
(* z 2)) | E1

Let special form

• A let expression evaluated in environment E evaluates the
values for the new variables, and then drops a new frame
whose parent frame is E, binding them to the given names

• Hidden lambda!

x: 3

x: 15
z: 8

E1

=> 16

parameters: x z
body: (* z 2)

((lambda (x z) (* z 2)) 15 (+ x 5))

 63

Example: make-counter

• Counter: something which counts up from a number

(define make-counter
 (lambda (n)
 (lambda () (set! n (+ n 1))
 n
)))

(define ca (make-counter 0))
(ca) ==> 1
(ca) ==> 2 ; not functional programming
(define cb (make-counter 0))
(cb) ==> 1
(ca) ==> 3
(cb) ==> 2 ; ca and cb are independent

 64

(define ca (make-counter 0)) | GE

GE

p: n
b:(lambda ()
 (set! n
 (+ n 1))
 n)

make-counter:

E1
n: 0

(lambda () (set! n (+ n 1)) n) | E1

p:
b:(set! n (+ n 1)) n

ca:

environment pointer
points to E1

because the lambda
was evaluated in E1

 65

(ca) | GE

(set! n (+ n 1)) | E2

1

n | E2 ==> 1

E2
empty

GE

p: n
b:(lambda ()
 (set! n
 (+ n 1))
 n)

make-counter:

E1
n: 0

p:
b:(set! n (+ n 1)) n

ca:

==> 1

 66

E3

(ca) | GE

(set! n (+ n 1)) | E3

GE

p: n
b:(lambda ()
 (set! n
 (+ n 1))
 n)

make-counter:

E1
n: 0

p:
b:(set! n (+ n 1)) n

ca:

1

n | E3 ==> 2

empty

==> 2

2

 67

(define cb (make-counter 0)) | GE

(lambda () (set! n (+ n 1)) n) | E4

n: 0
E4

p:
b:(set! n
 (+ n 1)) n

cb:GE

p: n
b:(lambda ()
 (set! n
 (+ n 1))
 n)

make-counter:

E1
n: 2

p:
b:(set! n
 (+ n 1)) n

ca:

E3

 68

(cb) | GE

1
n: 0

E4

p:
b:(set! n
 (+ n 1)) n

cb:GE

p: n
b:(lambda ()
 (set! n
 (+ n 1))
 n)

make-counter:

E1
n: 2

p:
b:(set! n
 (+ n 1)) n

ca:

E2

==> 1

E5

 69

Capturing state in local frames & procedures

n: 1
E4

p:
b:(set! n
 (+ n 1)) n

cb:GE

p: n
b:(lambda ()
 (set! n
 (+ n 1))
 n)

make-counter:

E1
n: 2

p:
b:(set! n
 (+ n 1)) n

ca:

E2

 70

Lessons from the make-counter example

• Environment diagrams get complicated very quickly
• Rules are meant for the computer to follow,

not to help humans
• A lambda inside a procedure body captures the

frame that was active when the lambda was evaluated
• this effect can be used to store local state

 71

Recitation Time!

	6.184 Lecture 3
	Slide 2
	Data Mutation
	Primitive Data
	Slide 6
	Slide 7
	Compound Data
	Example 1: Pair/List Mutation
	Example 2: Pair/List Mutation
	Sharing, Equivalence and Identity
	Slide 12
	Your Turn
	Slide 14
	Stack Data Abstraction
	Stack Contract
	Stack Implementation Strategy
	Stack Implementation
	Queue Data Abstraction (Non-Mutating)
	Queue Contract
	Simple Queue Implementation – pg. 1
	Simple Queue Implementation – pg. 2
	Simple Queue - Orders of Growth
	Slide 31
	Queue Data Abstraction (Mutating)
	Better Queue Implementation – pg. 1
	Queue Helper Procedures
	Better Queue Implementation – pg. 2
	Queue Implementation – pg. 3
	Queue Implementation – pg. 4
	Mutating Queue - Orders of Growth
	Summary
	Slide 41
	What the EM is:
	A shift in viewpoint
	Frame: a table of bindings
	Environment: a sequence of frames
	Evaluation in the environment model
	Name-rule
	Define-rule
	Set!-rule
	Slide 51
	Your turn: evaluate the following in order
	Double bubble: how to draw a procedure
	Lambda-rule
	To apply a compound procedure P to arguments:
	(square 4) | GE
	Lessons from the inc-square example
	Slide 61
	Slide 62
	Example: make-counter
	(define ca (make-counter 0)) | GE
	(ca) | GE
	Slide 66
	(define cb (make-counter 0)) | GE
	(cb) | GE
	Capturing state in local frames & procedures
	Lessons from the make-counter example
	Slide 71

