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Previously, on 6.037....

e Basics of Scheme

e Substitution Model

Recursion, plus iterative and recursive processes
Procedural abstraction

Abstract data types (cons cells and lists)
Higher-order procedures

e Symbols and quotation

e Tagged Data



Data Mutation

e Syntax
* set! for names
e set-car!, set-cdr! for pairs

e Semantics
« Simple case: one global environment
 Complex case: many environments: environment model



Primitive Data

(define x 10)

X

e To Mutate:
(set! x "foo")

creates a new binding for name;
special form

returns value bound to name

changes the binding for name;
special form (value is undefined)



Assignment -- set!

e Substitution model -- functional programming:
(define x 10)

(+ x 5) ==> 15 - expression has same value
‘.. each time it's evaluated (in
(+ x 5) ==> 15 same scope as binding)

e With mutation:
(define x 10)

(+ x 5) ==> 15 - expression "value" depends
. on when it is evaluated
(set! x 94)

(+ x 5) ==> 99



Syntax: Expression Sequences

« With side-effects, sometimes you want to do some things
and then return a value. Use the begin special form.

e (begin
(set! x 2)
(set! y 3)

4) ; return value

« lambda, let, and cond accept sequences
(define frob

(lambda ()
(display “frob called”) ; do this
(set! x (+ x 1)) ; then this

X))



Mutating Compound Data

e constructor:
(cons x vy)

e selectors:

(car p)
(cdr p)

* mutators:

creates a new pair p

returns car part of pair p
returns cdr part of pair p

(set-car! p new-x) changes car part of pair p
(set-cdr! p new-y) changes cdr part of pair p
; Palir,anytype -> undef --



Example 1: Pair/List Mutation

(define a (list 1 2))
(define b a)

a D (12) a?\_)‘(\——»,ﬂ\
b = (1 2) b 1\ '
(set-car! a 10) 10

b = (10 2)

Compare with: 4 _i)'(‘ g I/l
(define a (list 1 2)) 1|

(define b (list 1 2)) 10
(set-car! a 10) b — 1.

b S (1 2) ‘

N <«

N <-——



Example 2: Pair/List Mutation

(define x (list 'a 'b)) x —

e How can we use mutation to
achieve the result at right?

(set-car! (cdr x)
(list 1 2))

1. Evaluate (cdr Xx) to get
a pair object

2. Change car part of that
pair object

k
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Sharing, Equivalence, and Identity

« How can we tell if two things are equivalent?
Well, what do you mean by "equivalent"?

« The same object: test with eq?
(eq? a b) ==> #t a—- -, M

|
e
1 2
« Objects that "/ook" the same: test with equal?

(equal? (list 1 2) (list 1 2)) ==> #t

(list 1 2) (list 1 2)) ==> #f
C_’?i)\ ——’i I/l C_:\? gl I/l

1 2 1 2
(1 2) (1 2) "




Sharing, Equivalence, and Identity

How can we tell if two things are equivalent?

Well, what do you mean by "equivalent"?

« The same object: test with eq?
(eq? a b) ==> #t

e Objects that "/ook" the same: test with equal?
(equal? (l1list 1 2) (list 1 2)) ==> #t
(eq? (list 1 2) (list 1 2)) ==> #f

If we change an object, Is it the same object?
-- Yes, if we retain the same pointer to the object

How do we tell if part of an object is shared with another?
-- If we mutate one, see If the other also changes

Notice: No way to tell the difference without mutation!
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One last example...

X ==> (3 4)
y ==> (1 2)

(set-car! x vy)

X ==2 ((1 2) 4)

followed by
(set-cdr! y (cdr x))

X ==> ((1 4) 4)

(set-car! (cdr x) 5)

X === ((15) 5)

y—>
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Functional vs Imperative Programming

e Functional programming
* No assignments
e As computing mathematical functions
* No side effects
e Easy to understand: use the substitution model!
e Imperative programming
A style that relies heavily on assignment
 Introduces new classes of bugs
e This doesn't mean that assignment is evil
e |t sure does complicate things, but:
e Being able to modify local state is powerful as we will see
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Stack Data Abstraction (for recitation)
e constructor:

(make-stack) returns an empty stack
e selectors:
(top-stack s) returns current top element from a stack s

e Operations:
(push-stack s elt) returns a new stack with the element

added to the top of the stack

(pop-stack s) returns a new stack with the top
element removed from the stack

(empty-stack? s) returns #t if no elements, #f otherwise

15



Stack Contract

If s is a stack, created by (make-stack)and subsequent stack
procedures, where i is the number of pushes and j is the number of
pops, then

If j>i thenitis an error

If j=i then (empty-stack? s) is true,
and (top-stack s) is an error.

If j<i then (empty-stack? s) is false, and for any val,
(top-stack
(pop-stack
(push-stack s val))) = (top-stack s)

If j<=i then for any val,
(top-stack (push-stack s val))) =val
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Stack Implementation Strategy

e Implement a stack as a list

__.i|/|

d

*-——

O «——

 We will insert and delete items at the front of the list
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Stack Implementation

; Stack<A> = List<A>
(define (make-stack) '())

(define (empty-stack? s) ; Stack<A> -> boolean
(null? s))

(define (push-stack s elt) ; Stack<A>, A -> Stack<A>
(cons elt s))

(define (pop-stack s) ; Stack<A> -> Stack<A>
(i1f (not (empty-stack? s))
(cdr s)
(error "stack underflow - delete"))

(define (top-stack s) ; Stack<A> -> A
(i1f (not (empty-stack? s))
(car s)
(error "stack underflow - top")))
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Queue Data Abstraction (Non-Mutating)

 constructor:
(make-queue) returns an empty queue

* accessors:
(front-queue q) returns the object at the front of the

queue. If queue is empty signals error

e Operations:
(insert-queue g elt) returns a new queue with elt at the

rear of the queue

(delete-queue q) returns a new queue with the item at the
front of the queue removed

(empty-queue? q) tests if the queue is empty
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Queue Contract

Given ¢ is a queue, created by (make-queue) and

subsequent queue procedures, where i is the number of
inserts, and j is the number of deletes

o If j>i then it is an error

o If j=i then (empty-queue? q) is true,
and (front-queue q) is an error

o If j<i then (empty-queue? (q) is false,
and (front-queue q) is the (j+1)th element
Inserted into the queue
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Simple Queue Implementation — pg. 1

 Let the queue simply be a list of queue elements:

ﬁ

—

|
!
b

—

A

l

C

l

d

The front of the queue is the first element in the list

* To insert an element at the talil of the queue, we need to
“copy” the existing queue onto the front of the new element:

-, /]

o

b_
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Simple Queue Implementation — pg. 2

(define (make-queue) '())
(define (empty-queue? q) (null? q)); Queue<A> -> boolean

(define (front-queue ) ; Queue<A> -> A
(i1f (not (empty-queue? q))
(car q)
(error "front of empty queue:" q)))

(define (delete-queue q) ; Queue<A> -> Queue<A>
(i1f (not (empty-queue? q))
(cdr q)
(error "delete of empty queue:" q)))

(define (insert-queue q elt) ; Queue<A>, A -> Queue<A>
(if (empty-queue? q)
(cons elt '())
(cons (car q) (insert-queue (cdr q) elt))))
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Simple Queue - Efficiency

* How efficient is the simple queue implementation?
e For a queue of length n
— Time required — number of iterations?
— Space required — number of pending operations?

 front-queue, delete-queue:

* Time: Constant
» Space: Constant

e 1nsert-queue:
 Time: Linear
e Space: Linear
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Limitations in our Queue

* Queue does not have identity

(define g (make-queue))
q ==> ()

(1nsert-queue q 'a) ==> (a)
q ==> ()

(set! q (1insert-queue q 'b))
q ==> (b)
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Queue Data Abstraction (Mutating)

e constructor:
(make-queue)

e accessors:
(front-queue q)

e mutators:
(1nsert-queue! q elt)

(delete-queue! q)

e Qperations:
(queue? q)
(empty-queue? q)

returns an empty queue

returns the object at the front of the
queue. If queue is empty signals error

Inserts the elt at the rear of the queue
and returns the modified queue

removes the elt at the front of the queue
and returns the modified queue

tests if the object is a queue
tests if the queue is empty
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Better Queue Implementation - pg. 1

o We'll attach a type tag as a defensive measure

e Maintain queue identity
e Build a structure to hold:
 a list of items In the queue
 a pointer to the front of the queue
 a pointer to the rear of the queue

rear-ptr
front-ptr
T Ty
| l
b C

O =
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Queue Helper Procedures

 Hidden inside the abstraction

(define (front-ptr q) (cadr q))
(define (rear-ptr q)

(cddr q))

(define (set-front-ptr! q item)
(set-car! (cdr ) item))

(define (set-rear-ptr! g item)
(set-cdr! (cdr q) item))

T3 rear-ptr
' front-ptr
queue Y Y
I 11 | —_—
Y Y Y Y
a b c d
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Better Queue Implementation - pg. 2

(define (make-queue)
(cons 'queue (cons '() '())))

(define (queue? ) ; anytype -> boolean
(and (pair? q) (eqg? 'queue (car q))))

(define (empty-queue? ) ; Queue<A> -> boolean
(1f (queue? q)
(null? (front-ptr q))
(error "object not a queue:" q)))

(define (front-queue q) ; Queue<A> -> A
(i1f (not (empty-queue? q))
(car (front-ptr q))
(error "front of empty queue:" q)))
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Queue Implementation - pg. 3

(define (insert-queue! q elt); Queue<A>, A -> Queue<A>

(let ((new-pair (cons elt '())))
(cond ((empty-queue? ) (set-front-ptr! g new-pair)
(set-rear-ptr! gq new-pair))
(else (set-cdr! (rear-ptr ) new-pair)
(set-rear-ptr! q new-pair)))

q)))

rear-ptr
front-ptr Y —é—m
queue = Iy e IR ey e B |/|/
] ] y Y
a b c d
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Queue Implementation - pg. 4

(define (delete-queue! ) ; Queue<A> -> Queue<A>
(if (not (empty-queue? q))
(set-front-ptr! q (cdr (front-ptr q)))
(error "delete of empty queue:" (q))

q)

front-ptr

rear-ptr

e l -

queue Y

-
-
<
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Mutating Queue - Efficiency

* How efficient is the mutating queue implementation?
e For a queue of length n
— Time required -- number of iterations?
— Space required -- number of pending operations?

» front-queue, delete-queue!:

* Time: Constant
» Space: Constant

e 1nsert-queue!:
e Time: T(n) = Constant
e Space: S(n) = Constant
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Summary - Catch your breath

 Built-in mutators which operate by side-effect

e set! (special form)
 set-car! ; Pair, anytype -> undef
s set-cdr! ; Palir, anytype -> undef

e Extend our notion of data abstraction to include mutators

e Mutation is a powerful idea
* enables new and efficient data structures
e can have surprising side effects

e breaks our model of "functional" programming
(substitution model)
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Can you figure out why this code works?

(define make-counter
(lambda (n)
(lambda () (set! n (+ n 1))

n )))

(define ca (make-counter 0))

(ca) ==> 1

(ca) ==> 2 ; hot functional programming!
(define cb (make-counter 0))

(cb) ==> 1

(ca) ==> 3 ; ca and cb are independent

Need a new model of mutation for closures.
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What the Environment Model is:

* A precise, completely mechanical description:

 name-rule looking up the value of a variable
e define-rule creating a new definition of a var
e setl-rule changing the value of a variable
* lambda-rule creating a procedure
 application applying a procedure

* Enables analyzing more complex scheme code:
* Example: make-counter

* Basis for implementing a scheme interpreter
 for now: draw EM state with boxes and pointers
* l[ater on: implement with code
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A shift in viewpoint

e As we introduce the environment model, we are going to
shift our viewpoint on computation

 Variable:
 OLD — name for value
« NEW - place into which one can store things
e Procedure:
e OLD - functional description
« NEW — object with inherited context
e Expressions
 Now only have meaning with respect to an environment
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Frame: a table of bindings

e Binding:  a pairing of a name and a value

Example: X Is bound to 15 in frame A
y isboundto (1 2) inframe A
the value of the variable x in frame Ais 15

®

X: 15
y:\

DnE

44



Environment: a sequence of frames

e Environment E1 consists of frames A and B

* Environment E2 consists of frame B only
* A frame may be shared by multiple environments

. . YN
E2 ~z: 10 ﬁls arrow is called
x the enclosing
@ == —environment pointer,
E1 | X :_ 15
Y- \

\’ __’I/l

1 2 45




Evaluation in the environment model

 All evaluation occurs with respect to an environment

* The current environment changes when the
Interpreter applies a procedure

* The top environment is called the global environment (GE)
* Only the GE has no enclosing environment

* To evaluate a combination
* Evaluate the subexpressions in the current environment

* Apply the value of the first to the values of the rest
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Name-rule

 Aname X evaluated in environment E gives

the value of X in the first frame of E where X is bound

'z | o ==

Z Im ==>

X Im ==>

* In E1, the binding of x in frame A shadows the binding of X in B

z: 10
GE X: 3
E1 »x:_ 15

N

X | ==> 3
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Define-rule

« A define special form evaluated in environment E
creates or replaces a binding in the first frame of E

(define z 20) | (define z 25) |
z.—:l:e-

GE X: 3 y4 IGE ==> 20
z: 20

™ [x:
E1l — Y zZ | ., ==> 25
Zz: 25
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Set!-rule

« A set! of variable X evaluated in environment E changes
the binding of X in the first frame of E where X is bound

(set! z 20) | . (set! z 25) |,
z: 10 20 25
GE I X: 3

@ X: 15
El »y:\

49



Your turn: evaluate the following in order

(+ 2 1) | ==>
(set! z (+ z 1)) | (modify EM)
(define z (+ z 1)) |, (modify EM)
(set! v (+ z 1)) | & (modify EM)

z: 10
GE x: 3
E1 »x:- 15

y- N

11
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Your turn: evaluate the following in order

(+ 2 1) |q ==>
(set! z (+ z 1)) | (modify EM)
(define z (+ z 1)) |, (modify EM)
(set! v (+ 2z 1)) |« (modify EM)
GE lz: 18 11
X: 3
E1 JX: 19 z: 12
y- \

N T

11

Error:
unbound
variable: y
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Double bubble: how to draw a procedure

(lambda (x) (* x X))
p: \\ #<procedure>

= Z
= ©
.~
3 /
QL«
C

——
\ /5
k N
3 /Q Environment

®

pointer
A compound proc
that squares its
argument Code pointer
X

parameters:
body: (* x Xx)
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Lambda-rule

« A lambda special form evaluated in environment E

creates a procedure whose environment pointer is E

(define square (lambda (x) (* x x))) |

E1l

Evaluating a lambda returns A
a pointer to the procedure object

®

-

z: 10
X: 3
xX: 15

square:

parameters:

body: (* Xx x)

environment pointer
points to frame A
because the lambda
was evaluated in E1
and E1 - A /
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To apply a compound procedure P to arguments:

1. Create a new frame A

2. Make A into an environment E:
A's enclosing environment pointer goes to the same frame

as the environment pointer of P

3. In A, bind the parameters of P to the argument values

4. Evaluate the body of P with E as the current environment
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(square 4) | .

—{x: 16 *1 #[prim
GE square: —~ Lpram]

parameters: X

body: (* x Xx) (:)
E1— X: 4

square |, ==> #<proc>
(" X X) |e ==> 16
" len ==> #[prim]

X g ==>4 %



Lessons from this example
 EM doesn't show the complete state of the interpreter

e missing the stack of pending operations

« The GE contains all standard bindings (*, cons, etc)
e omitted from EM drawings

e Useful to link environment pointer of each frame
to the procedure that created it
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Let special form

» Alet expression evaluated in environment E evaluates the
values for the new variables, and then drops a new frame
whose parent frame is E, binding them to the given names

(let ((x 15)

(z (+ x 5)) El
(* 2 2)) | X: 3
* The binding values are evaluated before Y
the new frame is created.
* The body is evaluated in X: 15
the new environment z: 8

* Sounds familiar....
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Let special form

» Alet expression evaluated in environment E evaluates the
values for the new variables, and then drops a new frame
whose parent frame is E, binding them to the given names

(let ((x 15)

(z (+ x 5)) El
(* y4 2)) Im X: 3
 Hidden lambdal ‘

parameters: X z|(z: 8
body: (* z 2)

=> 16
( (lambda (x z) (* z 2)) 15 (+ x 5) )
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Example: make-counter

e Counter: something which counts up from a number

(define make-counter
(lambda (n)
(lambda () (set! n (+ n 1))
n

)))

(define ca (make-counter 0))

(ca) ==> 1

(ca) ==> 2 ; not functional programming
(define cb (make-counter 0))

(cb) ==> 1

(ca) ==> 3

(chb) ==> 2 ; ca and cb are independent
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(define ca (make-counter 0)) | .

make-counter.:

GE—>C

E1l

b (lambda ()

(set! n
(+ n 1))
n) D:

n: 0 -

A

\

environment pointer

points to E1

® because the lambda
was evaluated in E1
5

b:(set! n (+ n 1)) n

(lambda () (set! n (+ n 1)) n) |,
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(ca) IGE ==> 1

N\

E1l
p: n
b: (lambda ()
(set! n
(+ n 1))
n) D:

E2
empty

b:(set! n (+ n 1)) n

(set! n (+ n 1)) |

N |g==>1
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(ca) IGE ==> 2

N\

E1l

p: n
b: (lambda ()
(set! n

(+ n 1))

n) D:

E3

empty

b:(set! n (+ n 1)) n

(set! n (+ n 1)) |

N | =

=> 2
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(define cb (make-counter 0)) | .

GE make-counter.:
,QQL;:=~<7////- ch: ——

N ! N\
ot e~
: n: 0

p: n
b:(lambda ()
(set! n
(+ n 1))
n) p: p:
b:(set! n b:(set! n
(+ n 1)) n (+ n 1)) n

(lambda () (set! n (+ n 1)) n) | .. 67



(cb) |

==> 1

N\

N\

o

p: n
b: (lambda ()
(set! n

(+ n 1))

n)

p:
b:(set! n
(+ n 1)) n

b:(set! n
(+ n 1)) n
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Capturing state in local frames & procedures




Lessons from the make-counter example

e Environment diagrams get complicated very quickly

* Rules are meant for the computer to follow,
not to help humans

 Alambda inside a procedure body captures the
frame that was active when the lambda was evaluated

 this effect can be used to store local state
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Recitation Time!
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