
Bugs, crawling all over
6.037 - Structure and Interpretation of Computer Programs

Mike Phillips

Massachusetts Institute of Technology

Lecture 5

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 1 / 58

Which program is better? Why?

(define (prime? n)
(= n (smallest-divisor n)))

(define (smallest-divisor n)
(find-divisor n 2))

(define (find-divisor n d)
(cond ((> (square d) n) n)

((divides? d n) d)
(else (find-divisor n (+ d 1)))))

(define (divides? a b)
(= (remainder b a) 0))

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t) ((= (remainder

temp1 temp2) 0) #f) (else (prime? temp1 (+
temp2 1)))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 2 / 58

Which program is better? Why?

(define (prime? n)
(= n (smallest-divisor n)))

(define (smallest-divisor n)
(find-divisor n 2))

(define (find-divisor n d)
(cond ((> (square d) n) n)

((divides? d n) d)
(else (find-divisor n (+ d 1)))))

(define (divides? a b)
(= (remainder b a) 0))

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t) ((= (remainder

temp1 temp2) 0) #f) (else (prime? temp1 (+
temp2 1)))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 2 / 58

What do we mean by “better”?

Correctness
Does the program compute correct results?
Programming is about communicating the algorithm to the computer
Is it clear what the correct result should be?

Clarity
Can it be easily read and understood?
Programming is also about communicating the algorithm to people!
An unreadable program is a useless program
Does not benefit from abstraction

Maintainability
Can it be easily changed?

Performance
Algorithm choice: order of growth in time & space
Optimization: tweaking of constant factors

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 3 / 58

What do we mean by “better”?

Correctness
Does the program compute correct results?
Programming is about communicating the algorithm to the computer
Is it clear what the correct result should be?

Clarity
Can it be easily read and understood?
Programming is also about communicating the algorithm to people!
An unreadable program is a useless program
Does not benefit from abstraction

Maintainability
Can it be easily changed?

Performance
Algorithm choice: order of growth in time & space
Optimization: tweaking of constant factors

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 3 / 58

What do we mean by “better”?

Correctness
Does the program compute correct results?
Programming is about communicating the algorithm to the computer
Is it clear what the correct result should be?

Clarity
Can it be easily read and understood?
Programming is also about communicating the algorithm to people!
An unreadable program is a useless program
Does not benefit from abstraction

Maintainability
Can it be easily changed?

Performance
Algorithm choice: order of growth in time & space
Optimization: tweaking of constant factors

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 3 / 58

What do we mean by “better”?

Correctness
Does the program compute correct results?
Programming is about communicating the algorithm to the computer
Is it clear what the correct result should be?

Clarity
Can it be easily read and understood?
Programming is also about communicating the algorithm to people!
An unreadable program is a useless program
Does not benefit from abstraction

Maintainability
Can it be easily changed?

Performance
Algorithm choice: order of growth in time & space
Optimization: tweaking of constant factors

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 3 / 58

Why is optimization last?

http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svgMike Phillips (MIT) Bugs, crawling all over Lecture 5 4 / 58

http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

Making code more readable

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t) ((= (remainder

temp1 temp2) 0) #f) (else (prime? temp1 (+
temp2 1)))))

Use indentation to show structure:

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (prime? temp1 (+ temp2 1)))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 5 / 58

Making code more readable

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t) ((= (remainder

temp1 temp2) 0) #f) (else (prime? temp1 (+
temp2 1)))))

Use indentation to show structure:

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (prime? temp1 (+ temp2 1)))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 5 / 58

Making code more readable

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (prime? temp1 (+ temp2 1)))))

Don’t ask the caller to supply extra arguments for iterative calls:

(define (prime? temp1)
(do-it temp1 2))

(define (do-it temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 6 / 58

Making code more readable

(define (prime? temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (prime? temp1 (+ temp2 1)))))

Don’t ask the caller to supply extra arguments for iterative calls:

(define (prime? temp1)
(do-it temp1 2))

(define (do-it temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 6 / 58

Making code more readable

(define (prime? temp1)
(do-it temp1 2))

(define (do-it temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

Use block structure to hide your helper procedures:

(define (prime? temp1)
(define (do-it temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

(do-it 2))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 7 / 58

Making code more readable

(define (prime? temp1)
(do-it temp1 2))

(define (do-it temp1 temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

Use block structure to hide your helper procedures:

(define (prime? temp1)
(define (do-it temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

(do-it 2))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 7 / 58

Making code more readable

(define (prime? temp1)
(define (do-it temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

(do-it 2))

Choose good names for procedures and variables:

(define (prime? n)
(define (find-divisor d)
(cond ((>= d n) #t)

((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 8 / 58

Making code more readable

(define (prime? temp1)
(define (do-it temp2)
(cond ((>= temp2 temp1) #t)

((= (remainder temp1 temp2) 0) #f)
(else (do-it (+ temp2 1)))))

(do-it 2))

Choose good names for procedures and variables:

(define (prime? n)
(define (find-divisor d)
(cond ((>= d n) #t)

((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 8 / 58

Making code more readable

(define (prime? n)
(define (find-divisor d)
(cond ((>= d n) #t)

((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

Find useful common patterns:

(define (prime? n)
(define (find-divisor d)
(cond ((>= d n) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

(define (divides? d n)
(= (remainder n d) 0))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 9 / 58

Making code more readable

(define (prime? n)
(define (find-divisor d)
(cond ((>= d n) #t)

((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

Find useful common patterns:

(define (prime? n)
(define (find-divisor d)
(cond ((>= d n) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

(define (divides? d n)
(= (remainder n d) 0))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 9 / 58

Performance?

(define (prime? n)
(define (find-divisor d)
(cond ((>= d n) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

(define (divides? d n)
(= (remainder n d) 0))

Focus on algorithm improvements (order of growth)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 10 / 58

Performance?

(define (prime? n)
(define (find-divisor d)
(cond ((>= d (sqrt n)) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

(define (divides? d n)
(= (remainder n d) 0))

Focus on algorithm improvements (order of growth)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 10 / 58

Performance?

(cond ((>= d (sqrt n)) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

Is square faster than sqrt?

(cond ((>= (square d) n) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

What if we inline square and divides?

(cond ((>= (* d d) n) #t)
((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

Micro-optimizations are generally useless

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 11 / 58

Performance?

(cond ((>= d (sqrt n)) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

Is square faster than sqrt?

(cond ((>= (square d) n) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

What if we inline square and divides?

(cond ((>= (* d d) n) #t)
((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

Micro-optimizations are generally useless

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 11 / 58

Performance?

(cond ((>= d (sqrt n)) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

Is square faster than sqrt?

(cond ((>= (square d) n) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

What if we inline square and divides?

(cond ((>= (* d d) n) #t)
((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

Micro-optimizations are generally useless

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 11 / 58

Performance?

(cond ((>= d (sqrt n)) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

Is square faster than sqrt?

(cond ((>= (square d) n) #t)
((divides? d n) #f)
(else (find-divisor (+ d 1)))))

What if we inline square and divides?

(cond ((>= (* d d) n) #t)
((= (remainder n d) 0) #f)
(else (find-divisor (+ d 1)))))

Micro-optimizations are generally useless
Mike Phillips (MIT) Bugs, crawling all over Lecture 5 11 / 58

Making code more readable

Indent code for readability
Find common, easily-named patterns in your code, and pull them
out as procedures and data abstractions

Makes procedures shorter, able to fit more in your head

Choose good, descriptive names for procedures and variables
Clarity first, then performance

If performance matters, focus on the algorithm first
Small optimizations are just constant factors

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 12 / 58

Finding prime numbers in a range

(define (primes-in-range min max)
(cond ((> min max) ’())

((prime? min)
(cons min

(primes-in-range (+ 1 min)
max)))

(else (primes-in-range (+ 1 min) max))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 13 / 58

Finding prime numbers in a range

(define (primes-in-range min max)
(cond ((> min max) ’())

((prime? min)
(cons min

(primes-in-range (+ 1 min)
max)))

(else (primes-in-range (+ 1 min) max))))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 13 / 58

Finding prime numbers in a range

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

(primes-in-range 0 10) ; expect (2 3 5 7)

.......

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 14 / 58

Finding prime numbers in a range

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

(primes-in-range 0 10) ; expect (2 3 5 7)
.

......

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 14 / 58

Finding prime numbers in a range

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

(primes-in-range 0 10) ; expect (2 3 5 7)
..

.....

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 14 / 58

Finding prime numbers in a range

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

(primes-in-range 0 10) ; expect (2 3 5 7)
...

....

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 14 / 58

Finding prime numbers in a range

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

(primes-in-range 0 10) ; expect (2 3 5 7)
.......

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 14 / 58

Dealing with bugs in your code

We all write perfect code

Clearly never any bugs in it
But other people’s code has bugs in it

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 15 / 58

Dealing with bugs in your code

We all write perfect code
Clearly never any bugs in it

But other people’s code has bugs in it

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 15 / 58

Dealing with bugs in your code

We all write perfect code
Clearly never any bugs in it
But other people’s code has bugs in it

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 15 / 58

Dealing with bugs in other people’s code

What do you do when you find a bug in a program?

Write a bug report
Anyone can do this
A lot of people do it badly

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 16 / 58

Dealing with bugs in other people’s code

What do you do when you find a bug in a program?
Write a bug report

Anyone can do this
A lot of people do it badly

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 16 / 58

Dealing with bugs in other people’s code

What do you do when you find a bug in a program?
Write a bug report
Anyone can do this

A lot of people do it badly

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 16 / 58

Dealing with bugs in other people’s code

What do you do when you find a bug in a program?
Write a bug report
Anyone can do this
A lot of people do it badly

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 16 / 58

Bad bug reports

To: Alyssa P. Hacker
From: Ben Bitdiddle

Your prime-finding program doesn’t work.

Please advise.

- Ben

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 17 / 58

Questions to ask

What did you do to cause the bug?

Is it repeatable?
What did you expect it to do?
What did it actually do?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 18 / 58

Questions to ask

What did you do to cause the bug?
Is it repeatable?

What did you expect it to do?
What did it actually do?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 18 / 58

Questions to ask

What did you do to cause the bug?
Is it repeatable?
What did you expect it to do?

What did it actually do?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 18 / 58

Questions to ask

What did you do to cause the bug?
Is it repeatable?
What did you expect it to do?
What did it actually do?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 18 / 58

What did you do?

Precise instructions are important

Simple precise instructions are even
better
Repeatability is key

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 19 / 58

What did you do?

Precise instructions are important
Simple precise instructions are even
better

Repeatability is key

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 19 / 58

What did you do?

Precise instructions are important
Simple precise instructions are even
better
Repeatability is key

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 19 / 58

What were you expecting?

State and re-check your assumptions

Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0) ; error
(/ 5 0.) ; +inf.0

Sometimes the bug is in the user
Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s

; Dividing by zero is always an error
(/ 5 0) ; error
(/ 5 0.) ; +inf.0

Sometimes the bug is in the user
Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0)

; error
(/ 5 0.) ; +inf.0

Sometimes the bug is in the user
Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0) ; error

(/ 5 0.) ; +inf.0

Sometimes the bug is in the user
Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0) ; error
(/ 5 0.)

; +inf.0

Sometimes the bug is in the user
Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0) ; error
(/ 5 0.) ; +inf.0

Sometimes the bug is in the user
Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0) ; error
(/ 5 0.) ; +inf.0

Sometimes the bug is in the user

Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0) ; error
(/ 5 0.) ; +inf.0

Sometimes the bug is in the user
Read the documentation

Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What were you expecting?

State and re-check your assumptions
Your belief of the right answer may differ from the specification of
the author’s
; Dividing by zero is always an error
(/ 5 0) ; error
(/ 5 0.) ; +inf.0

Sometimes the bug is in the user
Read the documentation
Leave open the possibility of PEBKAC

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 20 / 58

What happened?

“It didn’t work”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 21 / 58

What happened?

“It didn’t work”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 21 / 58

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 22 / 58

The many flavors of failure

“Nothing happens”

. . . or is it just very slow?

. . . does it pinwheel?

. . . does it consume all of your CPU?

. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?

. . . does it pinwheel?

. . . does it consume all of your CPU?

. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?

. . . does it consume all of your CPU?

. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?
. . . does it consume all of your CPU?

. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?
. . . does it consume all of your CPU?
. . . does it consume all of your memory?

“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?
. . . does it consume all of your CPU?
. . . does it consume all of your memory?
“The answer is not what I expect”

. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?
. . . does it consume all of your CPU?
. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?

“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?
. . . does it consume all of your CPU?
. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”

. . . and what does that message say?

. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?
. . . does it consume all of your CPU?
. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?

. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

The many flavors of failure

“Nothing happens”
. . . or is it just very slow?
. . . does it pinwheel?
. . . does it consume all of your CPU?
. . . does it consume all of your memory?
“The answer is not what I expect”
. . . what is the significant way in which it differs from your
expectations?
“It gives an error message”
. . . and what does that message say?
. . . and is there anything in the error log?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 23 / 58

Better bug reports

To: Alyssa P. Hacker
From: Ben Bitdiddle

primes-in-range appears to never halt. I ran:

(primes-in-range 0 10)

...and it just kept going, never outputting anything;
I’d expect it to return (1 2 3 5 7). I waited for 10
minutes, but it appeared to just make my laptop hot.

- Ben

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 24 / 58

Check expectations

As the author, do we agree that (primes-in-range 0 10)
should halt?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 25 / 58

Replicate the error

Can we replicate the error?

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 26 / 58

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 27 / 58

Replicate the error

Can we replicate the error?

We get a different outcome!
Either this is a different cause, or the same cause with a different
symptom
Always re-check you actually fixed the relevant bug at the end

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 28 / 58

Replicate the error

Can we replicate the error?
We get a different outcome!

Either this is a different cause, or the same cause with a different
symptom
Always re-check you actually fixed the relevant bug at the end

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 28 / 58

Replicate the error

Can we replicate the error?
We get a different outcome!
Either this is a different cause, or the same cause with a different
symptom

Always re-check you actually fixed the relevant bug at the end

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 28 / 58

Replicate the error

Can we replicate the error?
We get a different outcome!
Either this is a different cause, or the same cause with a different
symptom
Always re-check you actually fixed the relevant bug at the end

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 28 / 58

Is this the simplest error case?

;; Out of memory; test from user
(primes-in-range 0 10)

;; Ditto; so 0 not at fault
(primes-in-range 9 10)

;; Simpler upper bound
(primes-in-range 0 1)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 29 / 58

Is this the simplest error case?

;; Out of memory; test from user
(primes-in-range 0 10)

;; Ditto; so 0 not at fault
(primes-in-range 9 10)

;; Simpler upper bound
(primes-in-range 0 1)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 29 / 58

Is this the simplest error case?

;; Out of memory; test from user
(primes-in-range 0 10)

;; Ditto; so 0 not at fault
(primes-in-range 9 10)

;; Simpler upper bound
(primes-in-range 0 1)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 29 / 58

Use abstraction barriers to your advantage

There appears to be nothing special about 0 or 10
All calls to primes-in-range run out of memory

Divide and conquer – verify that lower abstractions work
Abstractions (procedural and structural) are good points to check

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 30 / 58

Use abstraction barriers to your advantage

There appears to be nothing special about 0 or 10
All calls to primes-in-range run out of memory
Divide and conquer – verify that lower abstractions work
Abstractions (procedural and structural) are good points to check

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 30 / 58

Check the lower abstractions

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

;; Check that our prime? code works!
(prime? 1) ; -> #t

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 31 / 58

Check the lower abstractions

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

;; Check that our prime? code works!
(prime? 1)

; -> #t

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 31 / 58

Check the lower abstractions

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

;; Check that our prime? code works!
(prime? 1) ; -> #t

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 31 / 58

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

(primes-in-range 0 10) ;; expect (2 3 5 7)
; => (0 1 2 3 4 5 7 9)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 32 / 58

(define (primes-in-range min max)
(let ((other-primes (primes-in-range (+ 1 min) max)))
(cond ((> min max) ’())

((prime? min) (cons min other-primes))
(else other-primes))))

(primes-in-range 0 10) ;; expect (2 3 5 7)
; => (0 1 2 3 4 5 7 9)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 32 / 58

(define (primes-in-range min max)
(if (> min max)

’()
(let ((other-primes (primes-in-range (+ 1 min))))
(if (prime? min)

(cons min other-primes)
other-primes))))

(primes-in-range 0 10) ;; expect (2 3 5 7)
; => (0 1 2 3 4 5 7 9)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 32 / 58

(define (primes-in-range min max)
(if (> min max)

’()
(let ((other-primes (primes-in-range (+ 1 min))))
(if (prime? min)

(cons min other-primes)
other-primes))))

(primes-in-range 0 10) ;; expect (2 3 5 7)

; => (0 1 2 3 4 5 7 9)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 32 / 58

(define (primes-in-range min max)
(if (> min max)

’()
(let ((other-primes (primes-in-range (+ 1 min))))
(if (prime? min)

(cons min other-primes)
other-primes))))

(primes-in-range 0 10) ;; expect (2 3 5 7)
; => (0 1 2 3 4 5 7 9)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 32 / 58

(define (primes-in-range min max)
(if (> min max)

’()
(let ((other-primes (primes-in-range (+ 1 min))))
(if (prime? min)

(cons min other-primes)
other-primes))))

(primes-in-range 0 10) ;; expect (2 3 5 7)
; => (0 1 2 3 4 5 7 9)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 32 / 58

Assumptions

(define (prime? n)
(define (find-divisor d)
(cond ((>= d (sqrt n)) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

Only works on n ≥ 2

Everything has hidden assumptions
Document them!

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 33 / 58

Assumptions

(define (prime? n)
(define (find-divisor d)
(cond ((>= d (sqrt n)) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

Only works on n ≥ 2
Everything has hidden assumptions

Document them!

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 33 / 58

Assumptions

(define (prime? n)
(define (find-divisor d)
(cond ((>= d (sqrt n)) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

Only works on n ≥ 2
Everything has hidden assumptions
Document them!

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 33 / 58

Documenting code

Documentation improves readability, allows for maintenance,
and supports reuse.
Describe input and output
Any assumptions about inputs or internal state
Interesting decisions or algorithms

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 34 / 58

Documenting code

(define (prime? n)
; Tests if n is prime (divisible only by 1 and
; itself)
; n must be >= 2

; Test each divisor from 2 to sqrt(n),
; since if a divisor > sqrt(n) exists,
; there must be another divisor < sqrt(n)
(define (find-divisor d)
(cond ((>= d (sqrt n)) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(find-divisor 2))

(define (divides? d n)
; Tests if d is a factor of n (i.e. n/d is an integer)
; d cannot be 0
(= (remainder n d) 0))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 35 / 58

Not all comments are good

Horrid comment:

(define k 2) ;; set k to 2

Better comment:

(define k 2) ;; 2 is the smallest prime

Better yet, obviate the need for the comment:

(define smallest-prime 2)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 36 / 58

Not all comments are good

Horrid comment:

(define k 2) ;; set k to 2

Better comment:

(define k 2) ;; 2 is the smallest prime

Better yet, obviate the need for the comment:

(define smallest-prime 2)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 36 / 58

Not all comments are good

Horrid comment:

(define k 2) ;; set k to 2

Better comment:

(define k 2) ;; 2 is the smallest prime

Better yet, obviate the need for the comment:

(define smallest-prime 2)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 36 / 58

The how and why of comments

Comments should explain “how” or “why”
“What” is almost never useful

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 37 / 58

Make no assumptions?

Use assertions to check assumptions and provide good errors:

(define (prime? n)
; Tests if n is prime (divisible only by 1 and
; itself)
; n must be >= 2

(find-divisor 2))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 38 / 58

Make no assumptions?

Use assertions to check assumptions and provide good errors:

(define (prime? n)
; Tests if n is prime (divisible only by 1 and
; itself)
(if (< n 2)

(error "prime? requires n >= 2")
(find-divisor 2)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 38 / 58

Make no assumptions?

Or, better, cover all of your bases:

(define (prime? n)
; Tests if n is prime (divisible only by 1 and
; itself)
; n must be >= 2

(find-divisor 2))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 39 / 58

Make no assumptions?

Or, better, cover all of your bases:

(define (prime? n)
; Tests if n is prime (divisible only by 1 and
; itself)
(if (< n 2)

#f
(find-divisor 2)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 39 / 58

Make no assumptions?

All of your bases?

(prime? "5")

(if (<= "5" 1) #f (find-divisor 2))
(<= "5" 1)
<=: expected argument of type <real number>;

given "5"

Include input/output types in a comment

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 40 / 58

Make no assumptions?

All of your bases?

(prime? "5")
(if (<= "5" 1) #f (find-divisor 2))

(<= "5" 1)
<=: expected argument of type <real number>;

given "5"

Include input/output types in a comment

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 40 / 58

Make no assumptions?

All of your bases?

(prime? "5")
(if (<= "5" 1) #f (find-divisor 2))
(<= "5" 1)

<=: expected argument of type <real number>;
given "5"

Include input/output types in a comment

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 40 / 58

Make no assumptions?

All of your bases?

(prime? "5")
(if (<= "5" 1) #f (find-divisor 2))
(<= "5" 1)
<=: expected argument of type <real number>;

given "5"

Include input/output types in a comment

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 40 / 58

Make no assumptions?

All of your bases?

(prime? "5")
(if (<= "5" 1) #f (find-divisor 2))
(<= "5" 1)
<=: expected argument of type <real number>;

given "5"

Include input/output types in a comment

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 40 / 58

All better!

(primes-in-range 0 10) ; (expect 2 3 5 7)

(2 3 4 5 7 9)

(prime? 9) ; => #t

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 41 / 58

All better!

(primes-in-range 0 10) ; (expect 2 3 5 7)
(2 3 4 5 7 9)

(prime? 9) ; => #t

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 41 / 58

All better!

(primes-in-range 0 10) ; (expect 2 3 5 7)
(2 3 4 5 7 9)

(prime? 9)

; => #t

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 41 / 58

All better!

(primes-in-range 0 10) ; (expect 2 3 5 7)
(2 3 4 5 7 9)

(prime? 9) ; => #t

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 41 / 58

How do you know what works?. . .

Assume you get a good bug report

With simple, precise instructions that allow you to repeat it
Would be good if we never had this bug again. . .
Hey, computers are good at executing simple, precise instructions
Write a test case for the bug

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 42 / 58

How do you know what works?. . .

Assume you get a good bug report
With simple, precise instructions that allow you to repeat it

Would be good if we never had this bug again. . .
Hey, computers are good at executing simple, precise instructions
Write a test case for the bug

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 42 / 58

How do you know what works?. . .

Assume you get a good bug report
With simple, precise instructions that allow you to repeat it
Would be good if we never had this bug again. . .

Hey, computers are good at executing simple, precise instructions
Write a test case for the bug

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 42 / 58

How do you know what works?. . .

Assume you get a good bug report
With simple, precise instructions that allow you to repeat it
Would be good if we never had this bug again. . .
Hey, computers are good at executing simple, precise instructions

Write a test case for the bug

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 42 / 58

How do you know what works?. . .

Assume you get a good bug report
With simple, precise instructions that allow you to repeat it
Would be good if we never had this bug again. . .
Hey, computers are good at executing simple, precise instructions
Write a test case for the bug

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 42 / 58

When to write tests

When should you write tests?

ALL OF THE TIME.
Mostly after a bug is found
You can also write tests before a feature is added – “test-first
methodology”
But at least a tests-sometime methodology is key
Test each moving part before you use it elsewhere

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 43 / 58

When to write tests

When should you write tests?

ALL OF THE TIME.

Mostly after a bug is found
You can also write tests before a feature is added – “test-first
methodology”
But at least a tests-sometime methodology is key
Test each moving part before you use it elsewhere

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 43 / 58

When to write tests

When should you write tests?

ALL OF THE TIME.
Mostly after a bug is found

You can also write tests before a feature is added – “test-first
methodology”
But at least a tests-sometime methodology is key
Test each moving part before you use it elsewhere

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 43 / 58

When to write tests

When should you write tests?

ALL OF THE TIME.
Mostly after a bug is found
You can also write tests before a feature is added – “test-first
methodology”

But at least a tests-sometime methodology is key
Test each moving part before you use it elsewhere

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 43 / 58

When to write tests

When should you write tests?

ALL OF THE TIME.
Mostly after a bug is found
You can also write tests before a feature is added – “test-first
methodology”
But at least a tests-sometime methodology is key

Test each moving part before you use it elsewhere

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 43 / 58

When to write tests

When should you write tests?

ALL OF THE TIME.
Mostly after a bug is found
You can also write tests before a feature is added – “test-first
methodology”
But at least a tests-sometime methodology is key
Test each moving part before you use it elsewhere

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 43 / 58

Choosing good test cases

How do you choose what to test?

Start with simple cases
Test the boundaries of your data and recursive cases
Check a variety of kinds of input (empty list, single element, many)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 44 / 58

Choosing good test cases

How do you choose what to test?
Start with simple cases

Test the boundaries of your data and recursive cases
Check a variety of kinds of input (empty list, single element, many)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 44 / 58

Choosing good test cases

How do you choose what to test?
Start with simple cases
Test the boundaries of your data and recursive cases

Check a variety of kinds of input (empty list, single element, many)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 44 / 58

Choosing good test cases

How do you choose what to test?
Start with simple cases
Test the boundaries of your data and recursive cases
Check a variety of kinds of input (empty list, single element, many)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 44 / 58

Choosing good test cases

(prime? 0) ;; Test the lower limits
(prime? 1)
(prime? 2)
(prime? 3)
(prime? 7) ;; Simple should-be-true test
(prime? 10) ;; Simple should-be-false test
(prime? 9) ;; Square numbers should be false

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 45 / 58

Choosing good test cases

(prime? 0) ;; Test the lower limits
(prime? 1)
(prime? 2)
(prime? 3)

(prime? 7) ;; Simple should-be-true test
(prime? 10) ;; Simple should-be-false test
(prime? 9) ;; Square numbers should be false

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 45 / 58

Choosing good test cases

(prime? 0) ;; Test the lower limits
(prime? 1)
(prime? 2)
(prime? 3)
(prime? 7) ;; Simple should-be-true test

(prime? 10) ;; Simple should-be-false test
(prime? 9) ;; Square numbers should be false

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 45 / 58

Choosing good test cases

(prime? 0) ;; Test the lower limits
(prime? 1)
(prime? 2)
(prime? 3)
(prime? 7) ;; Simple should-be-true test
(prime? 10) ;; Simple should-be-false test

(prime? 9) ;; Square numbers should be false

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 45 / 58

Choosing good test cases

(prime? 0) ;; Test the lower limits
(prime? 1)
(prime? 2)
(prime? 3)
(prime? 7) ;; Simple should-be-true test
(prime? 10) ;; Simple should-be-false test
(prime? 9) ;; Square numbers should be false

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 45 / 58

Boundary cases

(define (prime? n)
; Tests if n is prime (divisible only by 1 and
; itself)

; Test each divisor from 2 to sqrt(n),
; since if a divisor > sqrt(n) exists,
; there must be another divisor < sqrt(n)
(define (find-divisor d)
(cond ((>= d (sqrt n)) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(if (< n 2)
#f
(find-divisor 2)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 46 / 58

Boundary cases

(define (prime? n)
; Tests if n is prime (divisible only by 1 and
; itself)

; Test each divisor from 2 to sqrt(n),
; since if a divisor > sqrt(n) exists,
; there must be another divisor < sqrt(n)
(define (find-divisor d)
(cond ((> d (sqrt n)) #t)

((divides? d n) #f)
(else (find-divisor (+ d 1)))))

(if (< n 2)
#f
(find-divisor 2)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 46 / 58

“What will this change break?”

“Did I actually fix the bug?”

Having tests means not needing to know all of the code
Small changes can have far-reaching impacts
You can keep maybe about 50k LOC in your head at once
Tests keep the proper functionality on disk, not in your head

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 47 / 58

“What will this change break?”

“Did I actually fix the bug?”
Having tests means not needing to know all of the code

Small changes can have far-reaching impacts
You can keep maybe about 50k LOC in your head at once
Tests keep the proper functionality on disk, not in your head

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 47 / 58

“What will this change break?”

“Did I actually fix the bug?”
Having tests means not needing to know all of the code
Small changes can have far-reaching impacts

You can keep maybe about 50k LOC in your head at once
Tests keep the proper functionality on disk, not in your head

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 47 / 58

“What will this change break?”

“Did I actually fix the bug?”
Having tests means not needing to know all of the code
Small changes can have far-reaching impacts
You can keep maybe about 50k LOC in your head at once

Tests keep the proper functionality on disk, not in your head

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 47 / 58

“What will this change break?”

“Did I actually fix the bug?”
Having tests means not needing to know all of the code
Small changes can have far-reaching impacts
You can keep maybe about 50k LOC in your head at once
Tests keep the proper functionality on disk, not in your head

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 47 / 58

“When did I break this functionality?”

Tests written now are like debugging in the past

Run your test against old versions of your code
If it ever worked, you’ll find what change broke it
Bisection in time is awesome
(but only as awesome as your ability to use your version control)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 48 / 58

“When did I break this functionality?”

Tests written now are like debugging in the past
Run your test against old versions of your code

If it ever worked, you’ll find what change broke it
Bisection in time is awesome
(but only as awesome as your ability to use your version control)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 48 / 58

“When did I break this functionality?”

Tests written now are like debugging in the past
Run your test against old versions of your code
If it ever worked, you’ll find what change broke it

Bisection in time is awesome
(but only as awesome as your ability to use your version control)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 48 / 58

“When did I break this functionality?”

Tests written now are like debugging in the past
Run your test against old versions of your code
If it ever worked, you’ll find what change broke it
Bisection in time is awesome

(but only as awesome as your ability to use your version control)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 48 / 58

“When did I break this functionality?”

Tests written now are like debugging in the past
Run your test against old versions of your code
If it ever worked, you’ll find what change broke it
Bisection in time is awesome
(but only as awesome as your ability to use your version control)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 48 / 58

“Why did I do it that way?”

Store your code in “version control”

Git, Subversion, Mercurial, Bazaar, DARCS, CVS, RCS, SCCS,. . .
Version control lets you group a set of changes into a chunk
And then write a message about the how and why of the change
Commit messages are like comments – the intended audience is
you in the future

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 49 / 58

“Why did I do it that way?”

Store your code in “version control”
Git, Subversion, Mercurial, Bazaar, DARCS, CVS, RCS, SCCS,. . .

Version control lets you group a set of changes into a chunk
And then write a message about the how and why of the change
Commit messages are like comments – the intended audience is
you in the future

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 49 / 58

“Why did I do it that way?”

Store your code in “version control”
Git, Subversion, Mercurial, Bazaar, DARCS, CVS, RCS, SCCS,. . .

Version control lets you group a set of changes into a chunk
And then write a message about the how and why of the change
Commit messages are like comments – the intended audience is
you in the future

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 49 / 58

“Why did I do it that way?”

Store your code in “version control”
Git, Subversion, Mercurial, Bazaar, DARCS, CVS, RCS, SCCS,. . .
Version control lets you group a set of changes into a chunk

And then write a message about the how and why of the change
Commit messages are like comments – the intended audience is
you in the future

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 49 / 58

“Why did I do it that way?”

Store your code in “version control”
Git, Subversion, Mercurial, Bazaar, DARCS, CVS, RCS, SCCS,. . .
Version control lets you group a set of changes into a chunk
And then write a message about the how and why of the change

Commit messages are like comments – the intended audience is
you in the future

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 49 / 58

“Why did I do it that way?”

Store your code in “version control”
Git, Subversion, Mercurial, Bazaar, DARCS, CVS, RCS, SCCS,. . .
Version control lets you group a set of changes into a chunk
And then write a message about the how and why of the change

Commit messages are like comments – the intended audience is
you in the future

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 49 / 58

“Why did I do it that way?”

Store your code in “version control”
Git, Subversion, Mercurial, Bazaar, DARCS, CVS, RCS, SCCS,. . .
Version control lets you group a set of changes into a chunk
And then write a message about the how and why of the change
Commit messages are like comments – the intended audience is
you in the future

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 49 / 58

How to write tests

Languages have test frameworks
JUnit (Java), PyUnit (Python), Test::Unit (Ruby), Test::More (Perl)

Racket has RackUnit

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 50 / 58

How to write tests

Languages have test frameworks
JUnit (Java), PyUnit (Python), Test::Unit (Ruby), Test::More (Perl)
Racket has RackUnit

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 50 / 58

(require rackunit)

(check-false (prime? 0) "0 is composite")
(check-false (prime? 1) "1 is composite")
(check-true (prime? 2) "2 is the smallest prime")
(check-true (prime? 3) "3 is also prime")
(check-true (prime? 7) "Larger prime")
(check-false (prime? 10) "Divisible by 2 is composite")
(check-false (prime? 9) "Square means composite")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 51 / 58

(require rackunit)

(check-false (prime? 0) "0 is composite")
(check-false (prime? 1) "1 is composite")
(check-true (prime? 2) "2 is the smallest prime")
(check-true (prime? 3) "3 is also prime")

(check-true (prime? 7) "Larger prime")
(check-false (prime? 10) "Divisible by 2 is composite")
(check-false (prime? 9) "Square means composite")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 51 / 58

(require rackunit)

(check-false (prime? 0) "0 is composite")
(check-false (prime? 1) "1 is composite")
(check-true (prime? 2) "2 is the smallest prime")
(check-true (prime? 3) "3 is also prime")
(check-true (prime? 7) "Larger prime")

(check-false (prime? 10) "Divisible by 2 is composite")
(check-false (prime? 9) "Square means composite")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 51 / 58

(require rackunit)

(check-false (prime? 0) "0 is composite")
(check-false (prime? 1) "1 is composite")
(check-true (prime? 2) "2 is the smallest prime")
(check-true (prime? 3) "3 is also prime")
(check-true (prime? 7) "Larger prime")
(check-false (prime? 10) "Divisible by 2 is composite")

(check-false (prime? 9) "Square means composite")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 51 / 58

(require rackunit)

(check-false (prime? 0) "0 is composite")
(check-false (prime? 1) "1 is composite")
(check-true (prime? 2) "2 is the smallest prime")
(check-true (prime? 3) "3 is also prime")
(check-true (prime? 7) "Larger prime")
(check-false (prime? 10) "Divisible by 2 is composite")
(check-false (prime? 9) "Square means composite")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 51 / 58

Debugging 101

(display ...)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 52 / 58

Debugging 101

(display ...)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 52 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language

Faster to implement than learning a new debugger
Provides written log of code decisions
Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger

Provides written log of code decisions
Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger
Provides written log of code decisions

Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger
Provides written log of code decisions
Find out which branch the code took?

(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger
Provides written log of code decisions
Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger
Provides written log of code decisions
Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?

(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger
Provides written log of code decisions
Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger
Provides written log of code decisions
Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?

(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Reasons why display is awesome

Learn the name of one function, and you can debug in a new
language
Faster to implement than learning a new debugger
Provides written log of code decisions
Find out which branch the code took?
(display "No fallback value found!")

Find out the return value of a function?
(display retval)

Find if a function is called?
(display "IaIaCthuluFtagn() called!")

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 53 / 58

Interactive debuggers

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 54 / 58

Interactive debuggers

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 55 / 58

Interactive debugger glossary

Go – Continue until you hit a breakpoint

Breakpoint – Function or line to stop at
Watch – Value or expression to continuously display

Step – Proceed to next expression
Step over – Run until we have the value of the current expression,

or hit a breakpoint
Out – Run until we have the value of the surrounding

expression, or hit a breakpoint
Call stack – Nested list of function calls that we are in; also,

“backtrace.”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 56 / 58

Interactive debugger glossary

Go – Continue until you hit a breakpoint
Breakpoint – Function or line to stop at

Watch – Value or expression to continuously display
Step – Proceed to next expression

Step over – Run until we have the value of the current expression,
or hit a breakpoint

Out – Run until we have the value of the surrounding
expression, or hit a breakpoint

Call stack – Nested list of function calls that we are in; also,
“backtrace.”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 56 / 58

Interactive debugger glossary

Go – Continue until you hit a breakpoint
Breakpoint – Function or line to stop at

Watch – Value or expression to continuously display

Step – Proceed to next expression
Step over – Run until we have the value of the current expression,

or hit a breakpoint
Out – Run until we have the value of the surrounding

expression, or hit a breakpoint
Call stack – Nested list of function calls that we are in; also,

“backtrace.”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 56 / 58

Interactive debugger glossary

Go – Continue until you hit a breakpoint
Breakpoint – Function or line to stop at

Watch – Value or expression to continuously display
Step – Proceed to next expression

Step over – Run until we have the value of the current expression,
or hit a breakpoint

Out – Run until we have the value of the surrounding
expression, or hit a breakpoint

Call stack – Nested list of function calls that we are in; also,
“backtrace.”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 56 / 58

Interactive debugger glossary

Go – Continue until you hit a breakpoint
Breakpoint – Function or line to stop at

Watch – Value or expression to continuously display
Step – Proceed to next expression

Step over – Run until we have the value of the current expression,
or hit a breakpoint

Out – Run until we have the value of the surrounding
expression, or hit a breakpoint

Call stack – Nested list of function calls that we are in; also,
“backtrace.”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 56 / 58

Interactive debugger glossary

Go – Continue until you hit a breakpoint
Breakpoint – Function or line to stop at

Watch – Value or expression to continuously display
Step – Proceed to next expression

Step over – Run until we have the value of the current expression,
or hit a breakpoint

Out – Run until we have the value of the surrounding
expression, or hit a breakpoint

Call stack – Nested list of function calls that we are in; also,
“backtrace.”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 56 / 58

Interactive debugger glossary

Go – Continue until you hit a breakpoint
Breakpoint – Function or line to stop at

Watch – Value or expression to continuously display
Step – Proceed to next expression

Step over – Run until we have the value of the current expression,
or hit a breakpoint

Out – Run until we have the value of the surrounding
expression, or hit a breakpoint

Call stack – Nested list of function calls that we are in; also,
“backtrace.”

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 56 / 58

Heisenbugs

Some bugs go away when you examine them

Debugging statements can have side effects

(define foo 0)
(define (new-foo) (set! foo (add1 foo)) foo)

(define sum 0)
(display
(let loop ()
(if (< foo 10)

(begin

(set! sum (+ sum (new-foo)))
(loop))

sum)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 57 / 58

Heisenbugs

Some bugs go away when you examine them
Debugging statements can have side effects

(define foo 0)
(define (new-foo) (set! foo (add1 foo)) foo)

(define sum 0)
(display
(let loop ()
(if (< foo 10)

(begin

(set! sum (+ sum (new-foo)))
(loop))

sum)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 57 / 58

Heisenbugs

Some bugs go away when you examine them
Debugging statements can have side effects

(define foo 0)
(define (new-foo) (set! foo (add1 foo)) foo)

(define sum 0)
(display
(let loop ()
(if (< foo 10)

(begin

(set! sum (+ sum (new-foo)))
(loop))

sum)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 57 / 58

Heisenbugs

Some bugs go away when you examine them
Debugging statements can have side effects

(define foo 0)
(define (new-foo) (set! foo (add1 foo)) foo)

(define sum 0)
(display
(let loop ()
(if (< foo 10)

(begin
(display (new-foo))(newline)
(set! sum (+ sum (new-foo)))
(loop))

sum)))

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 57 / 58

Common failure paradigms

Some error messages tell you immediately what you should be
looking for

application: not a procedure; expected a
procedure that can be applied to arguments,
given: 6; arguments were: 7 8

cdr: expects argument of type <pair>; given ()

cannot reference an identifier before its
definition: paramter

Learn them for your given language
(ConcurrentModificationException, null pointer dereference, etc)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 58 / 58

Common failure paradigms

Some error messages tell you immediately what you should be
looking for
application: not a procedure; expected a
procedure that can be applied to arguments,
given: 6; arguments were: 7 8

cdr: expects argument of type <pair>; given ()

cannot reference an identifier before its
definition: paramter

Learn them for your given language
(ConcurrentModificationException, null pointer dereference, etc)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 58 / 58

Common failure paradigms

Some error messages tell you immediately what you should be
looking for
application: not a procedure; expected a
procedure that can be applied to arguments,
given: 6; arguments were: 7 8

cdr: expects argument of type <pair>; given ()

cannot reference an identifier before its
definition: paramter

Learn them for your given language
(ConcurrentModificationException, null pointer dereference, etc)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 58 / 58

Common failure paradigms

Some error messages tell you immediately what you should be
looking for
application: not a procedure; expected a
procedure that can be applied to arguments,
given: 6; arguments were: 7 8

cdr: expects argument of type <pair>; given ()

cannot reference an identifier before its
definition: paramter

Learn them for your given language
(ConcurrentModificationException, null pointer dereference, etc)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 58 / 58

Common failure paradigms

Some error messages tell you immediately what you should be
looking for
application: not a procedure; expected a
procedure that can be applied to arguments,
given: 6; arguments were: 7 8

cdr: expects argument of type <pair>; given ()

cannot reference an identifier before its
definition: paramter

Learn them for your given language
(ConcurrentModificationException, null pointer dereference, etc)

Mike Phillips (MIT) Bugs, crawling all over Lecture 5 58 / 58

	Better code
	Bugs and you
	Reporting bugs
	Documentation
	Testing
	Tools

