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Deferred operations

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(+ (run-in-circles (cdr l))))

(run-in-circles the-cons)

..“The program ran out of memory”
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Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

.

.................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..

................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

...

...............

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

......

............

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

.........

.........

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

............

......

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21



Continuations

What if we never had any deferred operations?

Instead of returning a value with deferred operations, the function
is passed a continuation procedure, which we call to return a value
Which means that all function calls are tail-recursive
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Simple CPS example

(define (add-17 x)
(+ x 17))

(define (add-17 x cont)
(cont (+ x 17)))
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Factorial in CPS

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations
We craft a new continuation, based on the previous one, and pass
that to our recursive call
Asks the question, “What will I do with the return value of the
recursive call?”
“Multiply it by n, and call my continuation with that value”
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Sum-interval

(define (sum-interval a b)
(if (= a b)

a
(+ a (sum-interval (+ a 1) b))))

(define (cs-sum-interval a b cont)
(if (= a b)

(cont a)
(cs-sum-interval
(+ a 1)
b

(lambda (x) (cont (+ a x))))))
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Append

(define (append L1 L2)
(if (null? L1)

L2
(cons (car L1) (append (cdr L1) L2))))

(define (cs-append L1 L2 cont)
(if (null? L1)

(cont L2)
(cs-append
(cdr L1)
L2
(lambda (appended-cdr)
(cons (car L1) appended-cdr)))))
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Append, done right

(define (append L1 L2)
(if (null? L1)

L2
(cons (car L1) (append (cdr L1) L2))))

(define (cs-append L1 L2 cont)
(if (null? L1)

(cont L2)
(cs-append
(cdr L1)
L2
(lambda (appended-cdr)
(cont (cons (car L1) appended-cdr))))))
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Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)
(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))
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Control flow

Continuation-passing style is also very useful in controlling
program flow

Error handling and exceptions is a classic case:

(define (divide a b success fail)
(if (= b 0)

(fail "divide-by-zero")
(success (/ a b))))

Also asynchronous procedure calls
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Continuations in the interpreter

We can write a Scheme interpreter in continuation-passing style

(define (driver-loop)
(prompt-for-input input-prompt)
(let ((input (read)))
(if (eq? input ’**quit**)

’c-eval-done
(c-eval
input
the-global-environment
(lambda (output)

(announce-output output-prompt)
(display output)
(driver-loop))))))
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(define (c-eval exp env cont)
(cond ((self-evaluating? exp)

(cont exp))
((variable? exp)
(cont (lookup-variable-value exp env)))

((quoted? exp)
(cont (text-of-quotation exp)))

((assignment? exp)
(eval-assignment exp env cont))

((definition? exp)
(eval-definition exp env cont))

((if? exp) (eval-if exp env cont))
((lambda? exp)
(cont (make-procedure (lambda-parameters exp)

(lambda-body exp) env)))
((begin? exp)
(eval-sequence (begin-actions exp) env cont))

((cond? exp)
(c-eval (cond->if exp) env cont))

...
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(define (eval-if exp env cont)
(c-eval
(if-predicate exp) env
(lambda (test-value)

(if test-value
(c-eval (if-consequent exp) env cont)
(c-eval (if-alternative exp) env cont)))))

(define (eval-sequence exps env cont)
(if (last-exp? exps)

(c-eval (first-exp exps) env cont)
(c-eval (first-exp exps) env
(lambda (ignored)
(eval-sequence
(rest-exps exps)
env cont)))))
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Continuations with the interpreter

What if the evaluator made its continuations available to the
language?

call-with-current-continuation (a.k.a. call/cc)

;; Special form for evaluator
(define (eval-call-with-current-continuation exp env cont)

(c-eval
(call/cc-proc exp) env
(lambda (proc-to-call)

(c-apply proc-to-call
(list (make-continuation cont))
cont))))

;; in c-apply
((continuation? procedure)
(apply (continuation-internal-cont procedure)

arguments))
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call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25
(c 6)
; => 28
(+ 100 (c 6))
; => 28
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call/cc explained

call-with-current-continuation (or call/cc, as it is
usefully shortened to) takes a procedure as an argument, and
passes it the evaluator’s current continuation

The return value of call/cc is the same as the return value of
the procedure
. . . or the procedure could just call the continuation it was given.
Which is exactly identical in meaning!
The continuation of the call/cc expression, the continuation of
the procedure that it calls, and the value that it passes as an
argument to that procedure, are all the same!
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Storing continuations

Stored continuations can be saved away to “jump back” at any
later point in time

(define cont ’uninitialized)
(if (call/cc (lambda (c)

(set! cont c)
#t))

’something
’other-thing)

; => ’something
(cont #f)
; => ’other-thing
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(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))

(define test (fib-func))
(test) ; => 1
(test) ; => 1
(test) ; => 2
(test) ; => 3
(test) ; => 5
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(define resume ’uninitialized)
(define (fib-cont)

(let ((prev 0)
(cur 1))

(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
(if (call/cc

(lambda (c)
(set! resume (lambda () (c #f)))
(c #t)))

prev
(loop)))

(loop)))

(fib-cont) ; => 1
(resume) ; => 1
(resume) ; => 2
(resume) ; => 3
(resume) ; => 5
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Coroutines

Save the continuation, return true now

But call the continuation with false again, sometime in the future,
to take the other branch
In this case, resumes the loop!
This pattern is known as a coroutine
Poor man’s threading (running multiple things at once)
. . . but we can do better. . .
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Co-operative multithreading

Only one bit of code can run at once, but we have multiple tasks to
do

Make each task declare when it’s done doing some computation,
and then swap
“Co-operative” because tasks need to declare when they want to
let someone else have a turn
Used by Mac OS 9, Windows 3.1
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