
Continuations
6.037 - Structure and Interpretation of Computer Programs

Mike Phillips <mpp>

Massachusetts Institute of Technology

Lecture 7A

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 1 / 21

Deferred operations

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(+ (run-in-circles (cdr l))))

(run-in-circles the-cons)

..“The program ran out of memory”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 2 / 21

Deferred operations

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(+ (run-in-circles (cdr l))))

(run-in-circles the-cons)

..“The program ran out of memory”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 2 / 21

Deferred operations

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(+ (run-in-circles (cdr l))))

(run-in-circles the-cons)

..“The program ran out of memory”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 2 / 21

Deferred operations

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(+ (run-in-circles (cdr l))))

(run-in-circles the-cons)

.

.“The program ran out of memory”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 2 / 21

Deferred operations

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(+ (run-in-circles (cdr l))))

(run-in-circles the-cons)

..

“The program ran out of memory”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 2 / 21

Deferred operations

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(+ (run-in-circles (cdr l))))

(run-in-circles the-cons)

..“The program ran out of memory”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 2 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

.

.................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..

................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

...

...............

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

......

............

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

.........

.........

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

............

......

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Tail recursion in action

(define the-cons (cons 1 #f))
(set-cdr! the-cons the-cons)

(define (run-in-circles l)
(run-in-circles (cdr l)))

(run-in-circles the-cons)

..................

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 3 / 21

Continuations

What if we never had any deferred operations?

Instead of returning a value with deferred operations, the function
is passed a continuation procedure, which we call to return a value
Which means that all function calls are tail-recursive

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 4 / 21

Continuations

What if we never had any deferred operations?
Instead of returning a value with deferred operations, the function
is passed a continuation procedure, which we call to return a value

Which means that all function calls are tail-recursive

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 4 / 21

Continuations

What if we never had any deferred operations?
Instead of returning a value with deferred operations, the function
is passed a continuation procedure, which we call to return a value
Which means that all function calls are tail-recursive

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 4 / 21

Simple CPS example

(define (add-17 x)
(+ x 17))

(define (add-17 x cont)
(cont (+ x 17)))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 5 / 21

Simple CPS example

(define (add-17 x)
(+ x 17))

(define (add-17 x cont)
(cont (+ x 17)))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 5 / 21

Factorial in CPS

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations
We craft a new continuation, based on the previous one, and pass
that to our recursive call
Asks the question, “What will I do with the return value of the
recursive call?”
“Multiply it by n, and call my continuation with that value”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 6 / 21

Factorial in CPS

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations
We craft a new continuation, based on the previous one, and pass
that to our recursive call
Asks the question, “What will I do with the return value of the
recursive call?”
“Multiply it by n, and call my continuation with that value”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 6 / 21

Factorial in CPS

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations
We craft a new continuation, based on the previous one, and pass
that to our recursive call
Asks the question, “What will I do with the return value of the
recursive call?”
“Multiply it by n, and call my continuation with that value”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 6 / 21

Factorial in CPS

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations

We craft a new continuation, based on the previous one, and pass
that to our recursive call
Asks the question, “What will I do with the return value of the
recursive call?”
“Multiply it by n, and call my continuation with that value”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 6 / 21

Factorial in CPS

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations
We craft a new continuation, based on the previous one, and pass
that to our recursive call

Asks the question, “What will I do with the return value of the
recursive call?”
“Multiply it by n, and call my continuation with that value”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 6 / 21

Factorial in CPS

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations
We craft a new continuation, based on the previous one, and pass
that to our recursive call
Asks the question, “What will I do with the return value of the
recursive call?”

“Multiply it by n, and call my continuation with that value”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 6 / 21

Factorial in CPS

(define (factorial n cont)
(if (= n 0)

(cont 1)
(factorial (- n 1)

(lambda (x) (cont (* n x))))))

(factorial 10 (lambda (x) x))

No deferred operations
We craft a new continuation, based on the previous one, and pass
that to our recursive call
Asks the question, “What will I do with the return value of the
recursive call?”
“Multiply it by n, and call my continuation with that value”

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 6 / 21

Sum-interval

(define (sum-interval a b)
(if (= a b)

a
(+ a (sum-interval (+ a 1) b))))

(define (cs-sum-interval a b cont)
(if (= a b)

(cont a)
(cs-sum-interval
(+ a 1)
b

(lambda (x) (cont (+ a x))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 7 / 21

Append

(define (append L1 L2)
(if (null? L1)

L2
(cons (car L1) (append (cdr L1) L2))))

(define (cs-append L1 L2 cont)
(if (null? L1)

(cont L2)
(cs-append
(cdr L1)
L2
(lambda (appended-cdr)
(cons (car L1) appended-cdr)))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 8 / 21

Append

(define (append L1 L2)
(if (null? L1)

L2
(cons (car L1) (append (cdr L1) L2))))

(define (cs-append L1 L2 cont)
(if (null? L1)

(cont L2)
(cs-append
(cdr L1)
L2
(lambda (appended-cdr)
(cons (car L1) appended-cdr)))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 8 / 21

Append, done right

(define (append L1 L2)
(if (null? L1)

L2
(cons (car L1) (append (cdr L1) L2))))

(define (cs-append L1 L2 cont)
(if (null? L1)

(cont L2)
(cs-append
(cdr L1)
L2
(lambda (appended-cdr)
(cont (cons (car L1) appended-cdr))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 8 / 21

Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)
(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 9 / 21

Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)

(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 9 / 21

Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)

(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 9 / 21

Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)

(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 9 / 21

Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)

(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 9 / 21

Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)

(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 9 / 21

Flatten

(define (flatten tree)
(cond ((null? tree) ’())

((not (pair? tree)) (list tree))
(else (append (flatten (car tree))

(flatten (cdr tree))))))

(define (cs-flatten tree cont)
(cond ((null? tree) (cont ’()))

((not (pair? tree)) (cont (list tree)))
(else (cs-flatten

(car tree)
(lambda (car-leaves)

(cs-flatten
(cdr tree)
(lambda (cdr-leaves)

(cont
(append car-leaves cdr-leaves)

))))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 9 / 21

Control flow

Continuation-passing style is also very useful in controlling
program flow

Error handling and exceptions is a classic case:

(define (divide a b success fail)
(if (= b 0)

(fail "divide-by-zero")
(success (/ a b))))

Also asynchronous procedure calls

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 10 / 21

Control flow

Continuation-passing style is also very useful in controlling
program flow
Error handling and exceptions is a classic case:

(define (divide a b success fail)
(if (= b 0)

(fail "divide-by-zero")
(success (/ a b))))

Also asynchronous procedure calls

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 10 / 21

Control flow

Continuation-passing style is also very useful in controlling
program flow
Error handling and exceptions is a classic case:

(define (divide a b success fail)
(if (= b 0)
(fail "divide-by-zero")
(success (/ a b))))

Also asynchronous procedure calls

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 10 / 21

Control flow

Continuation-passing style is also very useful in controlling
program flow
Error handling and exceptions is a classic case:

(define (divide a b success fail)
(if (= b 0)
(fail "divide-by-zero")
(success (/ a b))))

Also asynchronous procedure calls

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 10 / 21

Continuations in the interpreter

We can write a Scheme interpreter in continuation-passing style

(define (driver-loop)
(prompt-for-input input-prompt)
(let ((input (read)))
(if (eq? input ’**quit**)

’c-eval-done
(c-eval
input
the-global-environment
(lambda (output)

(announce-output output-prompt)
(display output)
(driver-loop))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 11 / 21

Continuations in the interpreter

We can write a Scheme interpreter in continuation-passing style

(define (driver-loop)
(prompt-for-input input-prompt)
(let ((input (read)))
(if (eq? input ’**quit**)

’c-eval-done
(c-eval
input
the-global-environment
(lambda (output)

(announce-output output-prompt)
(display output)
(driver-loop))))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 11 / 21

(define (c-eval exp env cont)
(cond ((self-evaluating? exp)

(cont exp))
((variable? exp)
(cont (lookup-variable-value exp env)))

((quoted? exp)
(cont (text-of-quotation exp)))

((assignment? exp)
(eval-assignment exp env cont))

((definition? exp)
(eval-definition exp env cont))

((if? exp) (eval-if exp env cont))
((lambda? exp)
(cont (make-procedure (lambda-parameters exp)

(lambda-body exp) env)))
((begin? exp)
(eval-sequence (begin-actions exp) env cont))

((cond? exp)
(c-eval (cond->if exp) env cont))

...

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 12 / 21

(define (c-eval exp env cont)
(cond ((self-evaluating? exp)

(cont exp))
((variable? exp)
(cont (lookup-variable-value exp env)))

((quoted? exp)
(cont (text-of-quotation exp)))

((assignment? exp)
(eval-assignment exp env cont))

((definition? exp)
(eval-definition exp env cont))

((if? exp) (eval-if exp env cont))
((lambda? exp)
(cont (make-procedure (lambda-parameters exp)

(lambda-body exp) env)))
((begin? exp)
(eval-sequence (begin-actions exp) env cont))

((cond? exp)
(c-eval (cond->if exp) env cont))

...

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 12 / 21

(define (c-eval exp env cont)
(cond ((self-evaluating? exp)

(cont exp))
((variable? exp)
(cont (lookup-variable-value exp env)))

((quoted? exp)
(cont (text-of-quotation exp)))

((assignment? exp)
(eval-assignment exp env cont))

((definition? exp)
(eval-definition exp env cont))

((if? exp) (eval-if exp env cont))
((lambda? exp)
(cont (make-procedure (lambda-parameters exp)

(lambda-body exp) env)))
((begin? exp)
(eval-sequence (begin-actions exp) env cont))

((cond? exp)
(c-eval (cond->if exp) env cont))

...

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 12 / 21

(define (c-eval exp env cont)
(cond ((self-evaluating? exp)

(cont exp))
((variable? exp)
(cont (lookup-variable-value exp env)))

((quoted? exp)
(cont (text-of-quotation exp)))

((assignment? exp)
(eval-assignment exp env cont))

((definition? exp)
(eval-definition exp env cont))

((if? exp) (eval-if exp env cont))
((lambda? exp)
(cont (make-procedure (lambda-parameters exp)

(lambda-body exp) env)))
((begin? exp)
(eval-sequence (begin-actions exp) env cont))

((cond? exp)
(c-eval (cond->if exp) env cont))

...

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 12 / 21

(define (eval-if exp env cont)
(c-eval
(if-predicate exp) env
(lambda (test-value)

(if test-value
(c-eval (if-consequent exp) env cont)
(c-eval (if-alternative exp) env cont)))))

(define (eval-sequence exps env cont)
(if (last-exp? exps)

(c-eval (first-exp exps) env cont)
(c-eval (first-exp exps) env
(lambda (ignored)
(eval-sequence
(rest-exps exps)
env cont)))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 13 / 21

(define (eval-if exp env cont)
(c-eval
(if-predicate exp) env
(lambda (test-value)

(if test-value
(c-eval (if-consequent exp) env cont)
(c-eval (if-alternative exp) env cont)))))

(define (eval-sequence exps env cont)
(if (last-exp? exps)

(c-eval (first-exp exps) env cont)
(c-eval (first-exp exps) env
(lambda (ignored)

(eval-sequence
(rest-exps exps)
env cont)))))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 13 / 21

Continuations with the interpreter

What if the evaluator made its continuations available to the
language?

call-with-current-continuation (a.k.a. call/cc)

;; Special form for evaluator
(define (eval-call-with-current-continuation exp env cont)

(c-eval
(call/cc-proc exp) env
(lambda (proc-to-call)

(c-apply proc-to-call
(list (make-continuation cont))
cont))))

;; in c-apply
((continuation? procedure)
(apply (continuation-internal-cont procedure)

arguments))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 14 / 21

Continuations with the interpreter

What if the evaluator made its continuations available to the
language?
call-with-current-continuation (a.k.a. call/cc)

;; Special form for evaluator
(define (eval-call-with-current-continuation exp env cont)

(c-eval
(call/cc-proc exp) env
(lambda (proc-to-call)

(c-apply proc-to-call
(list (make-continuation cont))
cont))))

;; in c-apply
((continuation? procedure)
(apply (continuation-internal-cont procedure)

arguments))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 14 / 21

Continuations with the interpreter

What if the evaluator made its continuations available to the
language?
call-with-current-continuation (a.k.a. call/cc)

;; Special form for evaluator
(define (eval-call-with-current-continuation exp env cont)

(c-eval
(call/cc-proc exp) env
(lambda (proc-to-call)
(c-apply proc-to-call

(list (make-continuation cont))
cont))))

;; in c-apply
((continuation? procedure)
(apply (continuation-internal-cont procedure)

arguments))

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 14 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25
(c 6)
; => 28
(+ 100 (c 6))
; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25

(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25
(c 6)
; => 28
(+ 100 (c 6))
; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)

; => 25
(c 6)
; => 28
(+ 100 (c 6))
; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25

(c 6)
; => 28
(+ 100 (c 6))
; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25
(c 6)

; => 28
(+ 100 (c 6))
; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25
(c 6)
; => 28

(+ 100 (c 6))
; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25
(c 6)
; => 28
(+ 100 (c 6))

; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc example

(+ (* 3 (call-with-current-continuation
(lambda (cont)

(cont 5))))
10)

; => 25
(define c #f)
(+ (* 3 (call-with-current-continuation

(lambda (cont)
(set! c cont)
(cont 5))))

10)
; => 25
(c 6)
; => 28
(+ 100 (c 6))
; => 28

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 15 / 21

call/cc explained

call-with-current-continuation (or call/cc, as it is
usefully shortened to) takes a procedure as an argument, and
passes it the evaluator’s current continuation

The return value of call/cc is the same as the return value of
the procedure
. . . or the procedure could just call the continuation it was given.
Which is exactly identical in meaning!
The continuation of the call/cc expression, the continuation of
the procedure that it calls, and the value that it passes as an
argument to that procedure, are all the same!

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 16 / 21

call/cc explained

call-with-current-continuation (or call/cc, as it is
usefully shortened to) takes a procedure as an argument, and
passes it the evaluator’s current continuation
The return value of call/cc is the same as the return value of
the procedure

. . . or the procedure could just call the continuation it was given.
Which is exactly identical in meaning!
The continuation of the call/cc expression, the continuation of
the procedure that it calls, and the value that it passes as an
argument to that procedure, are all the same!

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 16 / 21

call/cc explained

call-with-current-continuation (or call/cc, as it is
usefully shortened to) takes a procedure as an argument, and
passes it the evaluator’s current continuation
The return value of call/cc is the same as the return value of
the procedure
. . . or the procedure could just call the continuation it was given.
Which is exactly identical in meaning!

The continuation of the call/cc expression, the continuation of
the procedure that it calls, and the value that it passes as an
argument to that procedure, are all the same!

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 16 / 21

call/cc explained

call-with-current-continuation (or call/cc, as it is
usefully shortened to) takes a procedure as an argument, and
passes it the evaluator’s current continuation
The return value of call/cc is the same as the return value of
the procedure
. . . or the procedure could just call the continuation it was given.
Which is exactly identical in meaning!
The continuation of the call/cc expression, the continuation of
the procedure that it calls, and the value that it passes as an
argument to that procedure, are all the same!

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 16 / 21

Storing continuations

Stored continuations can be saved away to “jump back” at any
later point in time

(define cont ’uninitialized)
(if (call/cc (lambda (c)

(set! cont c)
#t))

’something
’other-thing)

; => ’something
(cont #f)
; => ’other-thing

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 17 / 21

Storing continuations

Stored continuations can be saved away to “jump back” at any
later point in time

(define cont ’uninitialized)
(if (call/cc (lambda (c)

(set! cont c)
#t))

’something
’other-thing)

; => ’something
(cont #f)
; => ’other-thing

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 17 / 21

Storing continuations

Stored continuations can be saved away to “jump back” at any
later point in time

(define cont ’uninitialized)
(if (call/cc (lambda (c)

(set! cont c)
#t))

’something
’other-thing)

; => ’something

(cont #f)
; => ’other-thing

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 17 / 21

Storing continuations

Stored continuations can be saved away to “jump back” at any
later point in time

(define cont ’uninitialized)
(if (call/cc (lambda (c)

(set! cont c)
#t))

’something
’other-thing)

; => ’something
(cont #f)

; => ’other-thing

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 17 / 21

Storing continuations

Stored continuations can be saved away to “jump back” at any
later point in time

(define cont ’uninitialized)
(if (call/cc (lambda (c)

(set! cont c)
#t))

’something
’other-thing)

; => ’something
(cont #f)
; => ’other-thing

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 17 / 21

(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))

(define test (fib-func))
(test) ; => 1
(test) ; => 1
(test) ; => 2
(test) ; => 3
(test) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 18 / 21

(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))
(define test (fib-func))

(test) ; => 1
(test) ; => 1
(test) ; => 2
(test) ; => 3
(test) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 18 / 21

(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))
(define test (fib-func))
(test) ; => 1

(test) ; => 1
(test) ; => 2
(test) ; => 3
(test) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 18 / 21

(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))
(define test (fib-func))
(test) ; => 1
(test) ; => 1

(test) ; => 2
(test) ; => 3
(test) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 18 / 21

(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))
(define test (fib-func))
(test) ; => 1
(test) ; => 1
(test) ; => 2

(test) ; => 3
(test) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 18 / 21

(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))
(define test (fib-func))
(test) ; => 1
(test) ; => 1
(test) ; => 2
(test) ; => 3

(test) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 18 / 21

(define (fib-func)
(let ((prev 0)

(cur 1))
(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
prev)

loop))
(define test (fib-func))
(test) ; => 1
(test) ; => 1
(test) ; => 2
(test) ; => 3
(test) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 18 / 21

(define resume ’uninitialized)
(define (fib-cont)

(let ((prev 0)
(cur 1))

(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
(if (call/cc

(lambda (c)
(set! resume (lambda () (c #f)))
(c #t)))

prev
(loop)))

(loop)))

(fib-cont) ; => 1
(resume) ; => 1
(resume) ; => 2
(resume) ; => 3
(resume) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 19 / 21

(define resume ’uninitialized)
(define (fib-cont)

(let ((prev 0)
(cur 1))

(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
(if (call/cc

(lambda (c)
(set! resume (lambda () (c #f)))
(c #t)))

prev
(loop)))

(loop)))
(fib-cont) ; => 1

(resume) ; => 1
(resume) ; => 2
(resume) ; => 3
(resume) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 19 / 21

(define resume ’uninitialized)
(define (fib-cont)

(let ((prev 0)
(cur 1))

(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
(if (call/cc

(lambda (c)
(set! resume (lambda () (c #f)))
(c #t)))

prev
(loop)))

(loop)))
(fib-cont) ; => 1
(resume) ; => 1

(resume) ; => 2
(resume) ; => 3
(resume) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 19 / 21

(define resume ’uninitialized)
(define (fib-cont)

(let ((prev 0)
(cur 1))

(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
(if (call/cc

(lambda (c)
(set! resume (lambda () (c #f)))
(c #t)))

prev
(loop)))

(loop)))
(fib-cont) ; => 1
(resume) ; => 1
(resume) ; => 2

(resume) ; => 3
(resume) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 19 / 21

(define resume ’uninitialized)
(define (fib-cont)

(let ((prev 0)
(cur 1))

(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
(if (call/cc

(lambda (c)
(set! resume (lambda () (c #f)))
(c #t)))

prev
(loop)))

(loop)))
(fib-cont) ; => 1
(resume) ; => 1
(resume) ; => 2
(resume) ; => 3

(resume) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 19 / 21

(define resume ’uninitialized)
(define (fib-cont)

(let ((prev 0)
(cur 1))

(define (loop)
(define next (+ prev cur))
(set! prev cur)
(set! cur next)
(if (call/cc

(lambda (c)
(set! resume (lambda () (c #f)))
(c #t)))

prev
(loop)))

(loop)))
(fib-cont) ; => 1
(resume) ; => 1
(resume) ; => 2
(resume) ; => 3
(resume) ; => 5

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 19 / 21

Coroutines

Save the continuation, return true now

But call the continuation with false again, sometime in the future,
to take the other branch
In this case, resumes the loop!
This pattern is known as a coroutine
Poor man’s threading (running multiple things at once)
. . . but we can do better. . .

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 20 / 21

Coroutines

Save the continuation, return true now
But call the continuation with false again, sometime in the future,
to take the other branch

In this case, resumes the loop!
This pattern is known as a coroutine
Poor man’s threading (running multiple things at once)
. . . but we can do better. . .

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 20 / 21

Coroutines

Save the continuation, return true now
But call the continuation with false again, sometime in the future,
to take the other branch
In this case, resumes the loop!

This pattern is known as a coroutine
Poor man’s threading (running multiple things at once)
. . . but we can do better. . .

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 20 / 21

Coroutines

Save the continuation, return true now
But call the continuation with false again, sometime in the future,
to take the other branch
In this case, resumes the loop!
This pattern is known as a coroutine

Poor man’s threading (running multiple things at once)
. . . but we can do better. . .

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 20 / 21

Coroutines

Save the continuation, return true now
But call the continuation with false again, sometime in the future,
to take the other branch
In this case, resumes the loop!
This pattern is known as a coroutine
Poor man’s threading (running multiple things at once)

. . . but we can do better. . .

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 20 / 21

Coroutines

Save the continuation, return true now
But call the continuation with false again, sometime in the future,
to take the other branch
In this case, resumes the loop!
This pattern is known as a coroutine
Poor man’s threading (running multiple things at once)
. . . but we can do better. . .

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 20 / 21

Co-operative multithreading

Only one bit of code can run at once, but we have multiple tasks to
do

Make each task declare when it’s done doing some computation,
and then swap
“Co-operative” because tasks need to declare when they want to
let someone else have a turn
Used by Mac OS 9, Windows 3.1

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 21 / 21

Co-operative multithreading

Only one bit of code can run at once, but we have multiple tasks to
do
Make each task declare when it’s done doing some computation,
and then swap

“Co-operative” because tasks need to declare when they want to
let someone else have a turn
Used by Mac OS 9, Windows 3.1

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 21 / 21

Co-operative multithreading

Only one bit of code can run at once, but we have multiple tasks to
do
Make each task declare when it’s done doing some computation,
and then swap
“Co-operative” because tasks need to declare when they want to
let someone else have a turn

Used by Mac OS 9, Windows 3.1

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 21 / 21

Co-operative multithreading

Only one bit of code can run at once, but we have multiple tasks to
do
Make each task declare when it’s done doing some computation,
and then swap
“Co-operative” because tasks need to declare when they want to
let someone else have a turn
Used by Mac OS 9, Windows 3.1

Mike Phillips <mpp> (MIT) Continuations Lecture 7A 21 / 21

	Continuations

