6.037/ Lecture /B

Scheme Variants
Normal Order
Lazy Evaluation
Streams

Edited by Mike Phillips & Ben Vandiver
Original Material by Eric Grimson & Duane Boning



Further Variations on a Scheme

Beyond Scheme — more language variants

Lazy evaluation
— Complete conversion — normal order evaluator
— Selective Laziness: Streams

Punchline: Small edits to the interpreter give us a new programming language



Environment model

Rules of evaluation:

* |f expression is self-evaluating (e.g. a number), just return value

* |f expression is a name, look up value associated with that name in
environment

* |f expression is a lambda, create procedure and return

* |f expression is special form (e.g. if) follow specific rules for evaluating
subexpressions

* |f expression is a compound expression

— Evaluate subexpressions in any order

— If first subexpression is primitive (or built-in) procedure, just apply it to
values of other subexpressions

— If first subexpression is compound procedure (created by lambda),
evaluate the body of the procedure in a new environment, which
extends the environment of the procedure with a new frame in which
the procedure’s parameters are bound to the supplied arguments




Alternative models for
computation

* Applicative Order (aka Eager evaluation):
— evaluate all arguments, then apply operator

* Normal Order (aka Lazy evaluation:

— go ahead and apply operator with unevaluated
argument subexpressions

— evaluate a subexpression only when value is needed
e to print

e by primitive procedure (that is, primitive procedures are
"strict" in their arguments)

e to test (if predicate)
e to apply (operator)



Making Order of Evaluation Visible

e (define (notice x)
(display “noticed”)
X)

* (+ (notice 52) (notice (+ 4 4))
noticed
noticed

=> 60



Applicative Order Example

(define (foo x)

(display "inside foo")
(+ x x))

(foo (notice 222))

=> (notice 222)
=> 222

=> (begin (display "inside foo")
(+ 222 222))

We first evaluated argument, then
substituted value into the body of the

noticed procedure

inside foo

=> 444

6/31



Normal Order Example

(define (foo x)
(display "inside foo")
(+ x x))

(foo (notice 222))

-~
=> (begin (display "inside foo") From body
(+ (notice 222) > of foo
(notice 222)))
-’
As if we substituted the unevaluated

inside foo expression in the body of the procedure
noticed
noticed

7/31




Applicative Order vs. Normal Order

(define (foo x)
(display "inside foo")
(+ x x))

(foo (notice 222))

Applicative order Normal order
noticed inside foo
inside foo noticed
Think of as substituting noticed
values for variables in _ _ _
expressions Think of as expanding expressions

until only involve primitive
““operations and data structures



Normal order (lazy evaluation) versus applicative order

* How can we change our evaluator to use
normal order?

— Create “promises” — expressions whose evaluation
has been delayed

— Change the evaluator to force evaluation only
when needed

* Why is normal order useful?
— What kinds of computations does it make easier?



m-apply — the original version

(define (m-apply procedur
(cond ((primitive-proce
(apply-primitive
procedure

e arguments)
dure? procedure)
-procedure

arguments))—

Actual values

( (compound-procedur
(eval-sequence
(procedure-body p
(extend-environme
(procedure-pa

e? procedure)

rocedure)
nt

rameters prnhpdu

re)

arguments <

Actual values

(procedure-environment procedure))))
(else (error "Unknown procedure" procedure))))

10/31



How can we implement lazy
evaluation?

(define (l-apply procedure arguments |env ; changed

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure / Delayed

Need to convert rocedure expressions
to actual values I‘E(>list—of—arg—values arguments env)))

( (compound-procedure? procedure)

(l-eval-sequence

procedure-body procedure) Delayed

Need to create .
Expressions

delayed version |(extend-environment

of arguments (procedure-parameters procedure)
that will lead to Fiist—of—delayed—args arguﬁents env)
values (procedure-environment procedure))))

(else (error "Unknown proc" procedure))))

11/31



Lazy Evaluation— 1-eval

* Most of the work is in 1-apply; need to call
it with:

— actual value for the operator
— just expressions for the operands
— the environment...

(define (l-eval exp env)
(cond ((self-evaluating? exp) exp)

((application? exp

(l-apply (actual-value (operator exp) env)
(operands exp)
env))

(else (error "Unknown expression" exp))))



m-eval versus |-Eval

(define (m-eval exp env)
(cond ((self-evaluating? exp) exp)

((cond? exp) (m-eval (cond->if exp) env))

((application? exp)

(m-apply (m-eval (operator exp) env)
(list-of-values (operands exp) env)))

(else (error "Unknown expression type -- EVAL" exp))))

(define (l-eval exp env)
(cond ((self-evaluating? exp) exp)

( (cond? exp)

((application? exp

(lL-apply (actual-value (operator exp) env)
(operands exp) env))

(else (error "Unknown expression" exp))))

13/31



Actual vs. Delayed Values

(define (actual-value exp env)

(force-it| (1-eval exp env)))

(define (list-of-arg-values exps env) Used when applying a
(if (no-operands? exps) '() primitive procedure
(cons (actual-value (first-operand exps) env)
(list-of-arg-values (rest-operands exps)
env))))

(define (list-of-delayed-args exps env) Used when applying a
(if (no-operands? exps) compound procedure
"()
(cons |(delay-it| (first-operand exps) env)
(list-of-delayed-args (rest-operands exps)
env))))

14/31



Representing Promises

e Abstractly —a "promise" to return a value when
later needed ("forced")

» Concretely — our
representation: ' i = i >“_m

promise exp env

* Book calls it a thunk,
which means procedure
with no arguments.

« Structure looks very
similar.



Promises — delay-it and force-it

(define (delay-it exp env) (list '‘promise exp env))

(define (promise? obj) (tagged-list? obj 'promise))
(define (promise-exp promise) (cadr promise))
(define (promise-env promise) (caddr promise))

(define (force-it obj)

(cond ((promise? obj)
(actual-value (promise-exp obj)
(promise-env obj)))

(else obj)))

(define (actual-value exp env)

(force-it (l-eval exp env)))



Lazy Evaluation — other changes needed

Example: Need actual predicate value in
conditional if...

(define (l-eval-if exp env)
(Lf (true? (actual-value (if-predicate exp) env))
(l1-eval (if-consequent exp) env)

(L-eval (if-alternative exp) env)))

Example: Don't need actual value in assignment...

(define (l-eval-assignment exp env)
(set-variable-value!
(assignment-variable exp)
(l1-eval (assignment-value exp) env)
env)
'ok)



Examples

(define identity (lambda (x) x)) identity: <proc>
(define a (notice 3)) a: promise 3 Noticed!
(define b (identity (notice 3))) b: promise (notice 3)
(define c b) ¢

(defined (+bc)) d: 6  Noticed! Noticed!
(define plus (identity +)) plus: promise +
(plusab) =>6 Noticed!

c =>3 Noticed!



Memo-izing evaluation

* |In lazy evaluation, if we reuse an argument,
nave to reevaluate each time

* |n usual (applicative) evaluation, argument is
evaluated once, and just referenced

e Can we keep track of values once we’ve
obtained them, and avoid cost of re-
evaluation?



Memo-izing Promises

* Idea: once promise exp has been evaluated,

remember it

* If value is needed again, just return it rather than

recompute

» Concretely { mutate

A

promise int0 an evaluated-

promise

Why mutuate? —
because other names or
data structures may
point to this promise!

ﬁ

l

promise

— —
|

l

evaluated-
promise

20/31

— > /l
| | |

result



Promises — Memoizing Implementation

(define (evaluated-promise? obj)
(tagged-1ist? ob]j 'evaluated-promise))
(define (promise-value evaluated-promise)

(cadr evaluated-promise))

(define (force-it obj)
(cond ((promise? obj)
(let ((result (actual-value (promise-exp obj)
(promise-env obj))))
(set-car! obj 'evaluated-promise)
(set-car! (cdr obj) result)
(set-cdr! (cdr obj) '())
result))
( (evaluated-promise? obj) (promise-value obj))
(else obj)))



Examples - Memoized

(define identity (lambda (x) x)) identity: <proc>
(define a (notice 3)) a: promise 3 Noticed!
(define b (identity (notice 3))) b: promise (notice 3)
(define c b) c:

(defined (+bc)) d: 6 Noticed! *CHANGE*
(define plus (identity +)) plus: promise +
(plusab) =>6 *CHANGE*

c =>3 *CHANGE*



Summary of lazy evaluation

* This completes changes to evaluator

— Apply takes a set of expressions for arguments
and an environment

* Forces evaluation of arguments for primitive procedure
application

* Else defers evaluation and unwinds computation
further

* Need to pass in environment since don’t know when it
will be needed

— Need to force evaluation on branching operations
(e.g. if)

— Otherwise small number of changes make big
change in behavior of language



Laziness and Language Design

 We have a dilemma with lazy evaluation

— Advantage: only do work when value actually
needed

— Disadvantages

* not sure when expression will be evaluated; can be very
big issue in a language with side effects

* may evaluate same expression more than once

« Memoization doesn't fully resolve our dilemma
« Advantage: Evaluate expression at most once

« Disadvantage: What if we want evaluation on each
use?

« Alternative approach: Selective Laziness



Choose via Parameter Declarations

 Handle lazy and lazy-memo extensions in an upward-
compatible fashion.

(lambda (a (b lazy) ¢ (d lazy-memo)) ...)

e "a", "c" are usual variables (evaluated before
procedure application)

 "b"islazy; it gets (re)-evaluated each time its value is
actually needed

e "d" is lazy-memo; it gets evaluated the first time its
value is needed, and then that value is returned
again any other time it is needed



Streams — the lazy way

Beyond Scheme — designing language variants:

e Streams — an alternative programming style

to infinity, and beyond...

26



Decoupling computation from description

* Can separate order of events in computer from
apparent order of events in procedure description

(lList-ref Creates 100K

(filter (lambda (x) (prime? x))|e€lements

(enumerate-interval 1 1000000))

100)

Generate only what you actually need...

27

Creates 1M
elements




Stream Object

* A pair-like object, except the cdr part is lazy
(not evaluated until needed):

\c?ns-stream

stream-car gg stream-cdr

a a
value promise
« Example
(define x (cons-stream 99 (/ 1 0))) Stream-cdr forces
(stream-car x) => 99 the promise wrapped

around (/1 0),

(stream-cdr x) => error - divide by zero resulting in an error

28



Implementing Streams

e Stream is a data structure with the following contract:
— (cons-stream a b) — cons together a with promise to compute b
— (stream-car s) — Returns car of s
— (stream-cdr s) — Forces and returns value of cdr of s

* Implement in regular evaluator with a little syntactic sugar

— (define (cons-stream->cons exp)
“(cons ,(second exp) (lambda () ,(third exp))))

— In m-eval, add to cond:
((cons-stream? exp) (m-eval (cons-stream->cons exp) env))

— And the following regular definitions (inside m-eval!)
e (define stream-car car)
* (define (stream-cdr s) ((cdr s)))
e Streams can be done in lazy eval
— (define (cons-stream a b) (cons a b)) € doesn’t work! (Why?)

(define (cons-stream a b) (cons a (lambda () b)))



Ints-starting-with

e (define (ints-starting-with i)
(cons-stream i (ints-starting-with (+i 1))))

Delayed!

* Recursive procedure with no base case!
— Why does it work?



Stream-ref

(define (stream-ref s 1)
(i1f (= i 0)
(stream-car s)
(stream-ref (stream-cdr s) (- 1 1))))

* Like list-ref, but cdr’s down stream, forcing



Stream-filter

(define (stream-filter pred str)
(Lf (pred (stream-car str))
(cons-stream (stream-car str)
(stream-filter pred
(stream-cdr str)))
(stream-filter pred

(stream-cdr str))))



Decoupling Order of Evaluation

(define (stream-filter pred str)
(Lf (pred (stream-car str))
(cons-stream (stream-car str)
(stream-filter pred
(stream-cdr str)))
(stream-filter pred
(stream-cdr str))))
(stream-ref
(stream-filter (lambda (x) (prime? x))
(ints-starting-with 2))
4)

33



Decoupling Order of Evaluation

(stream-filter prime? (ints-from 1))

~~, )
SI=2

1

(stream-filter prime?

(stream-filter prime? ) .
From recursive call

(stream-filter prime? )

=2

(stream-cdr

_ N




One Possibility: Infinite Data Structures!

* Some very interesting behavior

(define ones (cons 1 ones))

(define ones (cons-stream 1 ones))
(stream-car (stream-cdr ones)) => 1

ones

The infinite stream of 1's!
g ones: 1 11111
(stream-ref ones 1) =21

(stream-ref ones 1000) =21
(stream-ref ones 10000000) = 1



Finite list procs turn into infinite
stream procs

(define (add-streams sl s2)
(cons-stream
(+ (stream-car sl) (stream-car s2))
(add-streams (stream-cdr sl)
(stream-cdr s2))))))
(define ints

(cons-stream 1 (add-streams ones ints)))

ints (str-cdr ints)
36

[add—streams ones add-streams (str-cdr ones)]




Finding all the primes

37



Using a sieve
(define (sieve str) g;
(cons-stream
(stream-car str)
(sieve (stream-filter
(lambda (x)
(not (divisible? x (stream-car str))))

(stream-cdr str)))))

(define primes
(sieve (stream-cdr ints)))

( 2|sieve (filter ints 2)

—

(2 3 sieve (filter

sieve (filter ints 2)

3))

B8




Interleave

Produce a stream that has all the elements of
two input streams:

(define (interleave sl s2)
(cons-stream (stream-car s1)
(interleave s2 (stream-cdr s1))))



Rationals

L /1 | 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5
4/1 4/2 4/3 4/4 4/5
5/1 5/2 5/3 5/4 5/5

(define (div-by-stream s n)
(cons-stream (/ n (stream-car s))
(div-by-stream (stream-cdr s) n))))

(define (make-rats n)
(cons-stream n
(interleave

)))

(define rats (make-rats 1))



Power Series

e Approximate function by summation of
infinite polynomial

* Great application for streams!
<We’ll do this in recitation!>



