
6.037 Lecture 7B

Scheme Variants
Normal Order

Lazy Evaluation
Streams

Edited by Mike Phillips & Ben Vandiver
Original Material by Eric Grimson & Duane Boning

2/31

Further Variations on a Scheme

Beyond Scheme – more language variants

Lazy evaluation

– Complete conversion – normal order evaluator

– Selective Laziness: Streams

Punchline: Small edits to the interpreter give us a new programming language

3/31

Environment model
Rules of evaluation:

• If expression is self-evaluating (e.g. a number), just return value

• If expression is a name, look up value associated with that name in
environment

• If expression is a lambda, create procedure and return

• If expression is special form (e.g. if) follow specific rules for evaluating
subexpressions

• If expression is a compound expression

– Evaluate subexpressions in any order

– If first subexpression is primitive (or built-in) procedure, just apply it to
values of other subexpressions

– If first subexpression is compound procedure (created by lambda),
evaluate the body of the procedure in a new environment, which
extends the environment of the procedure with a new frame in which
the procedure’s parameters are bound to the supplied arguments

4/31

Alternative models for
computation

• Applicative Order (aka Eager evaluation):
– evaluate all arguments, then apply operator

• Normal Order (aka Lazy evaluation:
– go ahead and apply operator with unevaluated

argument subexpressions

– evaluate a subexpression only when value is needed
• to print

• by primitive procedure (that is, primitive procedures are
"strict" in their arguments)

• to test (if predicate)

• to apply (operator)

Making Order of Evaluation Visible

• (define (notice x)
(display “noticed”)

x)

• (+ (notice 52) (notice (+ 4 4))
noticed
noticed
=> 60

6/31

Applicative Order Example
(define (foo x)

(display "inside foo")

(+ x x))

(foo (notice 222))

We first evaluated argument, then

substituted value into the body of the

procedurenoticed

=> (begin (display "inside foo")

(+ 222 222))

=> 222

=> (notice 222)

=> 444

inside foo

7/31

Normal Order Example
(define (foo x)

(display "inside foo")

(+ x x))

(foo (notice 222))

As if we substituted the unevaluated

expression in the body of the procedure

=> (begin (display "inside foo")

(+ (notice 222)

(notice 222)))

inside foo

noticed

noticed

=> 444

From body

of foo

8/31

Applicative Order vs. Normal Order
(define (foo x)

(display "inside foo")

(+ x x))

(foo (notice 222))

inside foo

noticed

noticed

Normal order

noticed

inside foo

Applicative order

Think of as expanding expressions

until only involve primitive

operations and data structures

Think of as substituting

values for variables in

expressions

9/31

Normal order (lazy evaluation) versus applicative order

• How can we change our evaluator to use
normal order?

– Create “promises” – expressions whose evaluation
has been delayed

– Change the evaluator to force evaluation only
when needed

• Why is normal order useful?

– What kinds of computations does it make easier?

10/31

m-apply – the original version
(define (m-apply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure

procedure

arguments))

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

arguments

(procedure-environment procedure))))

(else (error "Unknown procedure" procedure))))

Actual values

Actual values

11/31

How can we implement lazy
evaluation?

(define (l-apply procedure arguments env) ; changed

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure

procedure

(list-of-arg-values arguments env)))

((compound-procedure? procedure)

(l-eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

(list-of-delayed-args arguments env)

(procedure-environment procedure))))

(else (error "Unknown proc" procedure))))

Delayed

expressions

Delayed

Expressions

Need to convert

to actual values

Need to create

delayed version

of arguments

that will lead to

values

12/31

Lazy Evaluation – l-eval

• Most of the work is in l-apply; need to call
it with:

– actual value for the operator

– just expressions for the operands

– the environment...

(define (l-eval exp env)

(cond ((self-evaluating? exp) exp)

...

((application? exp

(l-apply (actual-value (operator exp) env)

(operands exp)

env))

(else (error "Unknown expression" exp))))

13/31

m-eval versus l-Eval
(define (m-eval exp env)

(cond ((self-evaluating? exp) exp)

…

((cond? exp) (m-eval (cond->if exp) env))

((application? exp)

(m-apply (m-eval (operator exp) env)

(list-of-values (operands exp) env)))

(else (error "Unknown expression type -- EVAL" exp))))

(define (l-eval exp env)

(cond ((self-evaluating? exp) exp)

...

((cond? exp)

((application? exp

(l-apply (actual-value (operator exp) env)

(operands exp) env))

(else (error "Unknown expression" exp))))

14/31

Actual vs. Delayed Values
(define (actual-value exp env)

(force-it (l-eval exp env)))

(define (list-of-delayed-args exps env)

(if (no-operands? exps)

'()

(cons (delay-it (first-operand exps) env)

(list-of-delayed-args (rest-operands exps)

env))))

(define (list-of-arg-values exps env)

(if (no-operands? exps) '()

(cons (actual-value (first-operand exps) env)

(list-of-arg-values (rest-operands exps)

env))))

Used when applying a

primitive procedure

Used when applying a

compound procedure

15/31

Representing Promises
• Abstractly –a "promise" to return a value when

later needed ("forced")

• Concretely – our

representation:

• Book calls it a thunk,

which means procedure

with no arguments.

• Structure looks very

similar.

promise envexp

16/31

Promises – delay-it and force-it
(define (delay-it exp env) (list 'promise exp env))

(define (promise? obj) (tagged-list? obj 'promise))

(define (promise-exp promise) (cadr promise))

(define (promise-env promise) (caddr promise))

(define (force-it obj)

(cond ((promise? obj)

(actual-value (promise-exp obj)

(promise-env obj)))

(else obj)))

(define (actual-value exp env)

(force-it (l-eval exp env)))

17/31

Lazy Evaluation – other changes needed

• Example: Need actual predicate value in
conditional if...

(define (l-eval-if exp env)

(if (true? (actual-value (if-predicate exp) env))

(l-eval (if-consequent exp) env)

(l-eval (if-alternative exp) env)))

• Example: Don't need actual value in assignment...
(define (l-eval-assignment exp env)

(set-variable-value!

(assignment-variable exp)

(l-eval (assignment-value exp) env)

env)

'ok)

Examples

• (define identity (lambda (x) x))

• (define a (notice 3))

• (define b (identity (notice 3)))

• (define c b)

• (define d (+ b c))

• (define plus (identity +))

• (plus a b)

• c

a: promise 3 Noticed!

b: promise (notice 3)

c:

d: 6 Noticed! Noticed!

plus: promise +

=> 6 Noticed!

=> 3 Noticed!

identity: <proc>

19/31

Memo-izing evaluation

• In lazy evaluation, if we reuse an argument,
have to reevaluate each time

• In usual (applicative) evaluation, argument is
evaluated once, and just referenced

• Can we keep track of values once we’ve
obtained them, and avoid cost of re-
evaluation?

20/31

Memo-izing Promises
• Idea: once promise exp has been evaluated,

remember it

• If value is needed again, just return it rather than
recompute

promise envexp• Concretely – mutate a
promise into an evaluated-

promise

evaluated-

promise
result

Why mutuate? –

because other names or

data structures may

point to this promise!

21/31

Promises – Memoizing Implementation
(define (evaluated-promise? obj)

(tagged-list? obj 'evaluated-promise))

(define (promise-value evaluated-promise)

(cadr evaluated-promise))

(define (force-it obj)

(cond ((promise? obj)

(let ((result (actual-value (promise-exp obj)

(promise-env obj))))

(set-car! obj 'evaluated-promise)

(set-car! (cdr obj) result)

(set-cdr! (cdr obj) '())

result))

((evaluated-promise? obj) (promise-value obj))

(else obj)))

Examples - Memoized

• (define identity (lambda (x) x))

• (define a (notice 3))

• (define b (identity (notice 3)))

• (define c b)

• (define d (+ b c))

• (define plus (identity +))

• (plus a b)

• c

a: promise 3 Noticed!

b: promise (notice 3)

c:

d: 6 Noticed! *CHANGE*

plus: promise +

=> 6 *CHANGE*

=> 3 *CHANGE*

identity: <proc>

23/31

Summary of lazy evaluation

• This completes changes to evaluator
– Apply takes a set of expressions for arguments

and an environment
• Forces evaluation of arguments for primitive procedure

application

• Else defers evaluation and unwinds computation
further

• Need to pass in environment since don’t know when it
will be needed

– Need to force evaluation on branching operations
(e.g. if)

– Otherwise small number of changes make big
change in behavior of language

24/31

Laziness and Language Design
• We have a dilemma with lazy evaluation

– Advantage: only do work when value actually
needed

– Disadvantages
• not sure when expression will be evaluated; can be very

big issue in a language with side effects

• may evaluate same expression more than once

• Memoization doesn't fully resolve our dilemma
• Advantage: Evaluate expression at most once

• Disadvantage: What if we want evaluation on each
use?

• Alternative approach: Selective Laziness

Choose via Parameter Declarations

• Handle lazy and lazy-memo extensions in an upward-
compatible fashion.

(lambda (a (b lazy) c (d lazy-memo)) ...)

• "a", "c" are usual variables (evaluated before
procedure application)

• "b" is lazy; it gets (re)-evaluated each time its value is
actually needed

• "d" is lazy-memo; it gets evaluated the first time its
value is needed, and then that value is returned
again any other time it is needed

26

Streams – the lazy way

Beyond Scheme – designing language variants:

• Streams – an alternative programming style

to infinity, and beyond…

27

Decoupling computation from description

• Can separate order of events in computer from
apparent order of events in procedure description

(list-ref

(filter (lambda (x) (prime? x))

(enumerate-interval 1 1000000))

100)
Creates 1M

elements

Creates 100K

elements

Generate only what you actually need…

28

Stream Object
• A pair-like object, except the cdr part is lazy

(not evaluated until needed):

a

promise

a

value

stream-car

cons-stream

stream-cdr

• Example
(define x (cons-stream 99 (/ 1 0)))

(stream-car x) => 99

(stream-cdr x) => error – divide by zero

Stream-cdr forces

the promise wrapped

around (/ 1 0),

resulting in an error

29

Implementing Streams
• Stream is a data structure with the following contract:

– (cons-stream a b) – cons together a with promise to compute b

– (stream-car s) – Returns car of s

– (stream-cdr s) – Forces and returns value of cdr of s

• Implement in regular evaluator with a little syntactic sugar
– (define (cons-stream->cons exp)

`(cons ,(second exp) (lambda () ,(third exp))))

– In m-eval, add to cond:
((cons-stream? exp) (m-eval (cons-stream->cons exp) env))

– And the following regular definitions (inside m-eval!)

• (define stream-car car)

• (define (stream-cdr s) ((cdr s)))

• Streams can be done in lazy eval
– (define (cons-stream a b) (cons a b))  doesn’t work! (Why?)

(define (cons-stream a b) (cons a (lambda () b)))

Ints-starting-with

• (define (ints-starting-with i)
(cons-stream i (ints-starting-with (+ i 1))))

• Recursive procedure with no base case!

– Why does it work?

Delayed!

Stream-ref

(define (stream-ref s i)

(if (= i 0)

(stream-car s)

(stream-ref (stream-cdr s) (- i 1))))

• Like list-ref, but cdr’s down stream, forcing

32

Stream-filter

(define (stream-filter pred str)

(if (pred (stream-car str))

(cons-stream (stream-car str)

(stream-filter pred

(stream-cdr str)))

(stream-filter pred

(stream-cdr str))))

33

Decoupling Order of Evaluation

(define (stream-filter pred str)

(if (pred (stream-car str))

(cons-stream (stream-car str)

(stream-filter pred

(stream-cdr str)))

(stream-filter pred

(stream-cdr str))))

(stream-ref

(stream-filter (lambda (x) (prime? x))

(ints-starting-with 2))

4)

34

Decoupling Order of Evaluation
(stream-filter prime? (ints-from 1))

(ints-

from 2)
1

(stream-filter prime?)

(stream-filter prime?)

(ints-

from 2)

(stream-filter prime?)

(ints-

from 3)
2

(stream-filter prime?

(stream-cdr
2

From recursive call

35

One Possibility: Infinite Data Structures!

• Some very interesting behavior
(define ones (cons 1 ones))

(define ones (cons-stream 1 ones))

(stream-car (stream-cdr ones)) => 1

1

ones

The infinite stream of 1's!

ones: 1 1 1 1 1 1

(stream-ref ones 1) 1

(stream-ref ones 1000) 1

(stream-ref ones 10000000)  1

36

Finite list procs turn into infinite
stream procs

(define (add-streams s1 s2)

(cons-stream

(+ (stream-car s1) (stream-car s2))

(add-streams (stream-cdr s1)

(stream-cdr s2))))))

(define ints

(cons-stream 1 (add-streams ones ints)))

ones: 1 1 1 1 1 1

add-streams (str-cdr ones)

(str-cdr ints)

3 ...

add-streams ones

ints

2ints: 1

37

XXXX

XX

XX

XXXX

XX

XXXX

XX

XXXX

XX

7

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXX2

XXXXXX

XXXXXXXX

XXXXXX

XXXXXX

XXXXXXXX

XXXXXX

XXXXXX

XXXXXXXX

XXXXXX

XX 3

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

XX5

100999897969594939291

90898887868584838281

80797877767574737271

60696867666564636261

60595857565554535251

50494847464544434241

40393837363534333231

30292827262524232221

20191817161514131211

1098765432

Finding all the primes

38

Using a sieve
(define (sieve str)

(cons-stream

(stream-car str)

(sieve (stream-filter

(lambda (x)

(not (divisible? x (stream-car str))))

(stream-cdr str)))))

(define primes

(sieve (stream-cdr ints)))

(2 sieve (filter ints 2))

(2 3 sieve (filter

sieve (filter ints 2)

3))

Interleave

Produce a stream that has all the elements of
two input streams:

(define (interleave s1 s2)

(cons-stream (stream-car s1)

(interleave s2 (stream-cdr s1))))

Rationals
1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 2/5 …

3/1 3/2 3/3 3/4 3/5 …

4/1 4/2 4/3 4/4 4/5 …

5/1 5/2 5/3 5/4 5/5 …

… … … … … …

(define (div-by-stream s n)

(cons-stream (/ n (stream-car s))

(div-by-stream (stream-cdr s) n))))

(define (make-rats n)

(cons-stream n

(interleave (div-by-streams (stream-cdr ints) n)

(make-rats (+ n 1)))))

(define rats (make-rats 1))

Power Series

• Approximate function by summation of
infinite polynomial

• Great application for streams!

<We’ll do this in recitation!>

