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1.2  Procedures and the Processes They Generate

We have now considered the elements of programming: We have used primitive
arithmetic operations, we have combined these operations, and we have
abstracted these composite operations by defining them as compound
procedures. But that is not enough to enable us to say that we know how to
program. Our situation is analogous to that of someone who has learned the
rules for how the pieces move in chess but knows nothing of typical openings,
tactics, or strategy. Like the novice chess player, we don't yet know the common
patterns of usage in the domain. We lack the knowledge of which moves are
worth making (which procedures are worth defining). We lack the experience to
predict the consequences of making a move (executing a procedure).

The ability to visualize the consequences of the actions under consideration is
crucial to becoming an expert programmer, just as it is in any synthetic, creative
activity. In becoming an expert photographer, for example, one must learn how to
look at a scene and know how dark each region will appear on a print for each
possible choice of exposure and development conditions. Only then can one
reason backward, planning framing, lighting, exposure, and development to
obtain the desired effects. So it is with programming, where we are planning the
course of action to be taken by a process and where we control the process by
means of a program. To become experts, we must learn to visualize the processes
generated by various types of procedures. Only after we have developed such a
skill can we learn to reliably construct programs that exhibit the desired behavior.

A procedure is a pattern for the local evolution of a computational process. It
specifies how each stage of the process is built upon the previous stage. We
would like to be able to make statements about the overall, or global, behavior of
a process whose local evolution has been specified by a procedure. This is very
difficult to do in general, but we can at least try to describe some typical patterns
of process evolution.

In this section we will examine some common ``shapes'' for processes generated
by simple procedures. We will also investigate the rates at which these processes
consume the important computational resources of time and space. The
procedures we will consider are very simple. Their role is like that played by test
patterns in photography: as oversimplified prototypical patterns, rather than
practical examples in their own right.

1.2.1  Linear Recursion and Iteration
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Figure 1.3:  A linear recursive process for computing 6!.

We begin by considering the factorial function, defined by

There are many ways to compute factorials. One way is to make use of the
observation that n! is equal to n times (n - 1)! for any positive integer n:

Thus, we can compute n! by computing (n - 1)! and multiplying the result by n. If
we add the stipulation that 1! is equal to 1, this observation translates directly
into a procedure:

(define (factorial n)
  (if (= n 1)
      1
      (* n (factorial (- n 1)))))

We can use the substitution model of section 1.1.5 to watch this procedure in
action computing 6!, as shown in figure 1.3.

Now let's take a different perspective on computing factorials. We could describe
a rule for computing n! by specifying that we first multiply 1 by 2, then multiply
the result by 3, then by 4, and so on until we reach n. More formally, we maintain
a running product, together with a counter that counts from 1 up to n. We can
describe the computation by saying that the counter and the product
simultaneously change from one step to the next according to the rule

product  counter · product

counter  counter + 1

and stipulating that n! is the value of the product when the counter exceeds n.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.5
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Figure 1.4:  A linear iterative process for computing 6!.

Once again, we can recast our description as a procedure for computing
factorials:29

(define (factorial n)
  (fact-iter 1 1 n))

(define (fact-iter product counter max-count)
  (if (> counter max-count)
      product
      (fact-iter (* counter product)
                 (+ counter 1)
                 max-count)))

As before, we can use the substitution model to visualize the process of
computing 6!, as shown in figure 1.4.

Compare the two processes. From one point of view, they seem hardly different
at all. Both compute the same mathematical function on the same domain, and
each requires a number of steps proportional to n to compute n!. Indeed, both
processes even carry out the same sequence of multiplications, obtaining the
same sequence of partial products. On the other hand, when we consider the
``shapes'' of the two processes, we find that they evolve quite differently.

Consider the first process. The substitution model reveals a shape of expansion
followed by contraction, indicated by the arrow in figure 1.3. The expansion
occurs as the process builds up a chain of deferred operations (in this case, a
chain of multiplications). The contraction occurs as the operations are actually
performed. This type of process, characterized by a chain of deferred operations,
is called a recursive process. Carrying out this process requires that the interpreter
keep track of the operations to be performed later on. In the computation of n!,
the length of the chain of deferred multiplications, and hence the amount of
information needed to keep track of it, grows linearly with n (is proportional to
n), just like the number of steps. Such a process is called a linear recursive
process.

By contrast, the second process does not grow and shrink. At each step, all we
need to keep track of, for any n, are the current values of the variables product,
counter, and max-count. We call this an iterative process. In general, an iterative
process is one whose state can be summarized by a fixed number of state
variables, together with a fixed rule that describes how the state variables should
be updated as the process moves from state to state and an (optional) end test
that specifies conditions under which the process should terminate. In computing
n!, the number of steps required grows linearly with n. Such a process is called a
linear iterative process.

The contrast between the two processes can be seen in another way. In the
iterative case, the program variables provide a complete description of the state
of the process at any point. If we stopped the computation between steps, all we
would need to do to resume the computation is to supply the interpreter with
the values of the three program variables. Not so with the recursive process. In
this case there is some additional ``hidden'' information, maintained by the
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interpreter and not contained in the program variables, which indicates ``where
the process is'' in negotiating the chain of deferred operations. The longer the
chain, the more information must be maintained.30

In contrasting iteration and recursion, we must be careful not to confuse the
notion of a recursive process with the notion of a recursive procedure. When we
describe a procedure as recursive, we are referring to the syntactic fact that the
procedure definition refers (either directly or indirectly) to the procedure itself.
But when we describe a process as following a pattern that is, say, linearly
recursive, we are speaking about how the process evolves, not about the syntax
of how a procedure is written. It may seem disturbing that we refer to a recursive
procedure such as fact-iter as generating an iterative process. However, the
process really is iterative: Its state is captured completely by its three state
variables, and an interpreter need keep track of only three variables in order to
execute the process.

One reason that the distinction between process and procedure may be
confusing is that most implementations of common languages (including Ada,
Pascal, and C) are designed in such a way that the interpretation of any recursive
procedure consumes an amount of memory that grows with the number of
procedure calls, even when the process described is, in principle, iterative. As a
consequence, these languages can describe iterative processes only by resorting
to special-purpose ``looping constructs'' such as do, repeat, until, for, and while. The
implementation of Scheme we shall consider in chapter 5 does not share this
defect. It will execute an iterative process in constant space, even if the iterative
process is described by a recursive procedure. An implementation with this
property is called tail-recursive. With a tail-recursive implementation, iteration can
be expressed using the ordinary procedure call mechanism, so that special
iteration constructs are useful only as syntactic sugar.31

Exercise 1.9.  Each of the following two procedures defines a method for adding
two positive integers in terms of the procedures inc, which increments its
argument by 1, and dec, which decrements its argument by 1.

(define (+ a b)
  (if (= a 0)
      b
      (inc (+ (dec a) b))))

(define (+ a b)
  (if (= a 0)
      b
      (+ (dec a) (inc b))))

Using the substitution model, illustrate the process generated by each procedure
in evaluating (+ 4 5). Are these processes iterative or recursive?

Exercise 1.10.  The following procedure computes a mathematical function called
Ackermann's function.

(define (A x y)
  (cond ((= y 0) 0)
        ((= x 0) (* 2 y))
        ((= y 1) 2)
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        (else (A (- x 1)
                 (A x (- y 1))))))

What are the values of the following expressions?

(A 1 10)

(A 2 4)

(A 3 3)

Consider the following procedures, where A is the procedure defined above:

(define (f n) (A 0 n))

(define (g n) (A 1 n))

(define (h n) (A 2 n))

(define (k n) (* 5 n n))

Give concise mathematical definitions for the functions computed by the
procedures f, g, and h for positive integer values of n. For example, (k n)

computes 5n2.

1.2.2  Tree Recursion

Another common pattern of computation is called tree recursion. As an example,
consider computing the sequence of Fibonacci numbers, in which each number is
the sum of the preceding two:

In general, the Fibonacci numbers can be defined by the rule

We can immediately translate this definition into a recursive procedure for
computing Fibonacci numbers:

(define (fib n)
  (cond ((= n 0) 0)
        ((= n 1) 1)
        (else (+ (fib (- n 1))
                 (fib (- n 2))))))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.2.2
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Figure 1.5:  The tree-recursive process generated in computing (fib 5).

Consider the pattern of this computation. To compute (fib 5), we compute (fib 4)
and (fib 3). To compute (fib 4), we compute (fib 3) and (fib 2). In general, the
evolved process looks like a tree, as shown in figure 1.5. Notice that the branches
split into two at each level (except at the bottom); this reflects the fact that the
fib procedure calls itself twice each time it is invoked.

This procedure is instructive as a prototypical tree recursion, but it is a terrible
way to compute Fibonacci numbers because it does so much redundant
computation. Notice in figure 1.5 that the entire computation of (fib 3) -- almost
half the work -- is duplicated. In fact, it is not hard to show that the number of
times the procedure will compute (fib 1) or (fib 0) (the number of leaves in the
above tree, in general) is precisely Fib(n + 1). To get an idea of how bad this is,
one can show that the value of Fib(n) grows exponentially with n. More precisely

(see exercise 1.13), Fib(n) is the closest integer to n / 5, where

is the golden ratio, which satisfies the equation

Thus, the process uses a number of steps that grows exponentially with the input.
On the other hand, the space required grows only linearly with the input, because
we need keep track only of which nodes are above us in the tree at any point in
the computation. In general, the number of steps required by a tree-recursive
process will be proportional to the number of nodes in the tree, while the space
required will be proportional to the maximum depth of the tree.

We can also formulate an iterative process for computing the Fibonacci numbers.
The idea is to use a pair of integers a and b, initialized to Fib(1) = 1 and Fib(0) =
0, and to repeatedly apply the simultaneous transformations
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It is not hard to show that, after applying this transformation n times, a and b will
be equal, respectively, to Fib(n + 1) and Fib(n). Thus, we can compute Fibonacci
numbers iteratively using the procedure

(define (fib n)
  (fib-iter 1 0 n))

(define (fib-iter a b count)
  (if (= count 0)
      b
      (fib-iter (+ a b) a (- count 1))))

This second method for computing Fib(n) is a linear iteration. The difference in
number of steps required by the two methods -- one linear in n, one growing as
fast as Fib(n) itself -- is enormous, even for small inputs.

One should not conclude from this that tree-recursive processes are useless.
When we consider processes that operate on hierarchically structured data rather
than numbers, we will find that tree recursion is a natural and powerful tool.32 But
even in numerical operations, tree-recursive processes can be useful in helping us
to understand and design programs. For instance, although the first fib procedure
is much less efficient than the second one, it is more straightforward, being little
more than a translation into Lisp of the definition of the Fibonacci sequence. To
formulate the iterative algorithm required noticing that the computation could be
recast as an iteration with three state variables.

Example: Counting change

It takes only a bit of cleverness to come up with the iterative Fibonacci algorithm.
In contrast, consider the following problem: How many different ways can we
make change of $ 1.00, given half-dollars, quarters, dimes, nickels, and pennies?
More generally, can we write a procedure to compute the number of ways to
change any given amount of money?

This problem has a simple solution as a recursive procedure. Suppose we think of
the types of coins available as arranged in some order. Then the following
relation holds:

The number of ways to change amount a using n kinds of coins equals

the number of ways to change amount a using all but the first kind of coin,
plus

the number of ways to change amount a - d using all n kinds of coins,
where d is the denomination of the first kind of coin.

To see why this is true, observe that the ways to make change can be divided
into two groups: those that do not use any of the first kind of coin, and those
that do. Therefore, the total number of ways to make change for some amount is
equal to the number of ways to make change for the amount without using any
of the first kind of coin, plus the number of ways to make change assuming that

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_52
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we do use the first kind of coin. But the latter number is equal to the number of
ways to make change for the amount that remains after using a coin of the first
kind.

Thus, we can recursively reduce the problem of changing a given amount to the
problem of changing smaller amounts using fewer kinds of coins. Consider this
reduction rule carefully, and convince yourself that we can use it to describe an
algorithm if we specify the following degenerate cases:33

If a is exactly 0, we should count that as 1 way to make change.

If a is less than 0, we should count that as 0 ways to make change.

If n is 0, we should count that as 0 ways to make change.

We can easily translate this description into a recursive procedure:

(define (count-change amount)
  (cc amount 5))
(define (cc amount kinds-of-coins)
  (cond ((= amount 0) 1)
        ((or (< amount 0) (= kinds-of-coins 0)) 0)
        (else (+ (cc amount
                     (- kinds-of-coins 1))
                 (cc (- amount
                        (first-denomination kinds-of-coins))
                     kinds-of-coins)))))
(define (first-denomination kinds-of-coins)
  (cond ((= kinds-of-coins 1) 1)
        ((= kinds-of-coins 2) 5)
        ((= kinds-of-coins 3) 10)
        ((= kinds-of-coins 4) 25)
        ((= kinds-of-coins 5) 50)))

(The first-denomination procedure takes as input the number of kinds of coins
available and returns the denomination of the first kind. Here we are thinking of
the coins as arranged in order from largest to smallest, but any order would do
as well.) We can now answer our original question about changing a dollar:

(count-change 100)
292

Count-change generates a tree-recursive process with redundancies similar to those
in our first implementation of fib. (It will take quite a while for that 292 to be
computed.) On the other hand, it is not obvious how to design a better algorithm
for computing the result, and we leave this problem as a challenge. The
observation that a tree-recursive process may be highly inefficient but often easy
to specify and understand has led people to propose that one could get the best
of both worlds by designing a ``smart compiler'' that could transform tree-
recursive procedures into more efficient procedures that compute the same
result.34

Exercise 1.11.  A function f is defined by the rule that f(n) = n if n<3 and f(n) =
f(n - 1) + 2f(n - 2) + 3f(n - 3) if n> 3. Write a procedure that computes f by
means of a recursive process. Write a procedure that computes f by means of an
iterative process.
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Exercise 1.12.  The following pattern of numbers is called Pascal's triangle.

The numbers at the edge of the triangle are all 1, and each number inside the
triangle is the sum of the two numbers above it.35 Write a procedure that
computes elements of Pascal's triangle by means of a recursive process.

Exercise 1.13.  Prove that Fib(n) is the closest integer to n/ 5, where  = (1 + 
5)/2. Hint: Let  = (1 - 5)/2. Use induction and the definition of the Fibonacci

numbers (see section 1.2.2) to prove that Fib(n) = ( n - n)/ 5.

1.2.3  Orders of Growth

The previous examples illustrate that processes can differ considerably in the rates
at which they consume computational resources. One convenient way to describe
this difference is to use the notion of order of growth to obtain a gross measure
of the resources required by a process as the inputs become larger.

Let n be a parameter that measures the size of the problem, and let R(n) be the
amount of resources the process requires for a problem of size n. In our previous
examples we took n to be the number for which a given function is to be
computed, but there are other possibilities. For instance, if our goal is to compute
an approximation to the square root of a number, we might take n to be the
number of digits accuracy required. For matrix multiplication we might take n to
be the number of rows in the matrices. In general there are a number of
properties of the problem with respect to which it will be desirable to analyze a
given process. Similarly, R(n) might measure the number of internal storage
registers used, the number of elementary machine operations performed, and so
on. In computers that do only a fixed number of operations at a time, the time
required will be proportional to the number of elementary machine operations
performed.

We say that R(n) has order of growth (f(n)), written R(n) = (f(n)) (pronounced
``theta of f(n)''), if there are positive constants k1 and k2 independent of n such

that

for any sufficiently large value of n. (In other words, for large n, the value R(n) is
sandwiched between k1f(n) and k2f(n).)

For instance, with the linear recursive process for computing factorial described in
section 1.2.1 the number of steps grows proportionally to the input n. Thus, the
steps required for this process grows as (n). We also saw that the space required
grows as (n). For the iterative factorial, the number of steps is still (n) but the
space is (1) -- that is, constant.36 The tree-recursive Fibonacci computation

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.2.3
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requires ( n) steps and space (n), where  is the golden ratio described in
section 1.2.2.

Orders of growth provide only a crude description of the behavior of a process.

For example, a process requiring n2 steps and a process requiring 1000n2 steps

and a process requiring 3n2 + 10n + 17 steps all have (n2) order of growth. On
the other hand, order of growth provides a useful indication of how we may
expect the behavior of the process to change as we change the size of the
problem. For a (n) (linear) process, doubling the size will roughly double the
amount of resources used. For an exponential process, each increment in problem
size will multiply the resource utilization by a constant factor. In the remainder of
section 1.2 we will examine two algorithms whose order of growth is logarithmic,
so that doubling the problem size increases the resource requirement by a
constant amount.

Exercise 1.14.  Draw the tree illustrating the process generated by the count-change
procedure of section 1.2.2 in making change for 11 cents. What are the orders of
growth of the space and number of steps used by this process as the amount to
be changed increases?

Exercise 1.15.  The sine of an angle (specified in radians) can be computed by
making use of the approximation sin x  x if x is sufficiently small, and the
trigonometric identity

to reduce the size of the argument of sin. (For purposes of this exercise an angle
is considered ``sufficiently small'' if its magnitude is not greater than 0.1 radians.)
These ideas are incorporated in the following procedures:

(define (cube x) (* x x x))
(define (p x) (- (* 3 x) (* 4 (cube x))))
(define (sine angle)
   (if (not (> (abs angle) 0.1))
       angle
       (p (sine (/ angle 3.0)))))

a.  How many times is the procedure p applied when (sine 12.15) is evaluated?

b.  What is the order of growth in space and number of steps (as a function of a)
used by the process generated by the sine procedure when (sine a) is evaluated?

1.2.4  Exponentiation

Consider the problem of computing the exponential of a given number. We
would like a procedure that takes as arguments a base b and a positive integer

exponent n and computes bn. One way to do this is via the recursive definition

which translates readily into the procedure

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.2.4
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(define (expt b n)
  (if (= n 0)
      1
      (* b (expt b (- n 1)))))

This is a linear recursive process, which requires (n) steps and (n) space. Just as
with factorial, we can readily formulate an equivalent linear iteration:

(define (expt b n)
  (expt-iter b n 1))

(define (expt-iter b counter product)
  (if (= counter 0)
      product
      (expt-iter b
                (- counter 1)
                (* b product)))) 

This version requires (n) steps and (1) space.

We can compute exponentials in fewer steps by using successive squaring. For

instance, rather than computing b8 as

we can compute it using three multiplications:

This method works fine for exponents that are powers of 2. We can also take
advantage of successive squaring in computing exponentials in general if we use
the rule

We can express this method as a procedure:

(define (fast-expt b n)
  (cond ((= n 0) 1)
        ((even? n) (square (fast-expt b (/ n 2))))
        (else (* b (fast-expt b (- n 1))))))

where the predicate to test whether an integer is even is defined in terms of the
primitive procedure remainder by

(define (even? n)
  (= (remainder n 2) 0))

The process evolved by fast-expt grows logarithmically with n in both space and

number of steps. To see this, observe that computing b2n using fast-expt requires

only one more multiplication than computing bn. The size of the exponent we
can compute therefore doubles (approximately) with every new multiplication we
are allowed. Thus, the number of multiplications required for an exponent of n
grows about as fast as the logarithm of n to the base 2. The process has (log n)
growth.37
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The difference between (log n) growth and (n) growth becomes striking as n
becomes large. For example, fast-expt for n = 1000 requires only 14
multiplications.38 It is also possible to use the idea of successive squaring to
devise an iterative algorithm that computes exponentials with a logarithmic
number of steps (see exercise 1.16), although, as is often the case with iterative
algorithms, this is not written down so straightforwardly as the recursive
algorithm.39

Exercise 1.16.  Design a procedure that evolves an iterative exponentiation
process that uses successive squaring and uses a logarithmic number of steps, as

does fast-expt. (Hint: Using the observation that (bn/2)2 = (b2)n/2, keep, along with
the exponent n and the base b, an additional state variable a, and define the

state transformation in such a way that the product a bn is unchanged from state
to state. At the beginning of the process a is taken to be 1, and the answer is
given by the value of a at the end of the process. In general, the technique of
defining an invariant quantity that remains unchanged from state to state is a
powerful way to think about the design of iterative algorithms.)

Exercise 1.17.  The exponentiation algorithms in this section are based on
performing exponentiation by means of repeated multiplication. In a similar way,
one can perform integer multiplication by means of repeated addition. The
following multiplication procedure (in which it is assumed that our language can
only add, not multiply) is analogous to the expt procedure:

(define (* a b)
  (if (= b 0)
      0
      (+ a (* a (- b 1)))))

This algorithm takes a number of steps that is linear in b. Now suppose we
include, together with addition, operations double, which doubles an integer, and
halve, which divides an (even) integer by 2. Using these, design a multiplication
procedure analogous to fast-expt that uses a logarithmic number of steps.

Exercise 1.18.  Using the results of exercises 1.16 and 1.17, devise a procedure
that generates an iterative process for multiplying two integers in terms of
adding, doubling, and halving and uses a logarithmic number of steps.40

Exercise 1.19.   There is a clever algorithm for computing the Fibonacci numbers
in a logarithmic number of steps. Recall the transformation of the state variables
a and b in the fib-iter process of section 1.2.2: a  a + b and b  a. Call this
transformation T, and observe that applying T over and over again n times,
starting with 1 and 0, produces the pair Fib(n + 1) and Fib(n). In other words, the

Fibonacci numbers are produced by applying Tn, the nth power of the
transformation T, starting with the pair (1,0). Now consider T to be the special
case of p = 0 and q = 1 in a family of transformations Tpq, where Tpq transforms

the pair (a,b) according to a  bq + aq + ap and b  bp + aq. Show that if we
apply such a transformation Tpq twice, the effect is the same as using a single

transformation Tp'q' of the same form, and compute p' and q' in terms of p

and q. This gives us an explicit way to square these transformations, and thus we

can compute Tn using successive squaring, as in the fast-expt procedure. Put this
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all together to complete the following procedure, which runs in a logarithmic
number of steps:41

(define (fib n)
  (fib-iter 1 0 0 1 n))
(define (fib-iter a b p q count)
  (cond ((= count 0) b)
        ((even? count)
         (fib-iter a
                   b
                   <??>      ; compute p'
                   <??>      ; compute q'
                   (/ count 2)))
        (else (fib-iter (+ (* b q) (* a q) (* a p))
                        (+ (* b p) (* a q))
                        p
                        q
                        (- count 1)))))

1.2.5  Greatest Common Divisors

The greatest common divisor (GCD) of two integers a and b is defined to be the
largest integer that divides both a and b with no remainder. For example, the
GCD of 16 and 28 is 4. In chapter 2, when we investigate how to implement
rational-number arithmetic, we will need to be able to compute GCDs in order to
reduce rational numbers to lowest terms. (To reduce a rational number to lowest
terms, we must divide both the numerator and the denominator by their GCD.
For example, 16/28 reduces to 4/7.) One way to find the GCD of two integers is
to factor them and search for common factors, but there is a famous algorithm
that is much more efficient.

The idea of the algorithm is based on the observation that, if r is the remainder
when a is divided by b, then the common divisors of a and b are precisely the
same as the common divisors of b and r. Thus, we can use the equation

to successively reduce the problem of computing a GCD to the problem of
computing the GCD of smaller and smaller pairs of integers. For example,

reduces GCD(206,40) to GCD(2,0), which is 2. It is possible to show that starting
with any two positive integers and performing repeated reductions will always
eventually produce a pair where the second number is 0. Then the GCD is the
other number in the pair. This method for computing the GCD is known as
Euclid's Algorithm.42

It is easy to express Euclid's Algorithm as a procedure:

(define (gcd a b)
  (if (= b 0)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.2.5
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      a
      (gcd b (remainder a b))))

This generates an iterative process, whose number of steps grows as the
logarithm of the numbers involved.

The fact that the number of steps required by Euclid's Algorithm has logarithmic
growth bears an interesting relation to the Fibonacci numbers:

Lamé's Theorem: If Euclid's Algorithm requires k steps to compute the GCD of
some pair, then the smaller number in the pair must be greater than or equal to
the kth Fibonacci number.43

We can use this theorem to get an order-of-growth estimate for Euclid's
Algorithm. Let n be the smaller of the two inputs to the procedure. If the process

takes k steps, then we must have n> Fib (k)  k/ 5. Therefore the number of
steps k grows as the logarithm (to the base ) of n. Hence, the order of growth is
(log n).

Exercise 1.20.  The process that a procedure generates is of course dependent
on the rules used by the interpreter. As an example, consider the iterative gcd
procedure given above. Suppose we were to interpret this procedure using
normal-order evaluation, as discussed in section 1.1.5. (The normal-order-
evaluation rule for if is described in exercise 1.5.) Using the substitution method
(for normal order), illustrate the process generated in evaluating (gcd 206 40) and
indicate the remainder operations that are actually performed. How many remainder
operations are actually performed in the normal-order evaluation of (gcd 206 40)?
In the applicative-order evaluation?

1.2.6  Example: Testing for Primality

This section describes two methods for checking the primality of an integer n,
one with order of growth ( n), and a ``probabilistic'' algorithm with order of
growth (log n). The exercises at the end of this section suggest programming
projects based on these algorithms.

Searching for divisors

Since ancient times, mathematicians have been fascinated by problems
concerning prime numbers, and many people have worked on the problem of
determining ways to test if numbers are prime. One way to test if a number is
prime is to find the number's divisors. The following program finds the smallest
integral divisor (greater than 1) of a given number n. It does this in a
straightforward way, by testing n for divisibility by successive integers starting
with 2.

(define (smallest-divisor n)
  (find-divisor n 2))
(define (find-divisor n test-divisor)
  (cond ((> (square test-divisor) n) n)
        ((divides? test-divisor n) test-divisor)
        (else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
  (= (remainder b a) 0))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.5
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We can test whether a number is prime as follows: n is prime if and only if n is its
own smallest divisor.

(define (prime? n)
  (= n (smallest-divisor n)))

The end test for find-divisor is based on the fact that if n is not prime it must
have a divisor less than or equal to n.44 This means that the algorithm need
only test divisors between 1 and n. Consequently, the number of steps required
to identify n as prime will have order of growth ( n).

The Fermat test

The (log n) primality test is based on a result from number theory known as
Fermat's Little Theorem.45

Fermat's Little Theorem: If n is a prime number and a is any positive integer less
than n, then a raised to the nth power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the same
remainder when divided by n. The remainder of a number a when divided by n is
also referred to as the remainder of a modulo n, or simply as a modulo n.)

If n is not prime, then, in general, most of the numbers a< n will not satisfy the
above relation. This leads to the following algorithm for testing primality: Given a

number n, pick a random number a < n and compute the remainder of an

modulo n. If the result is not equal to a, then n is certainly not prime. If it is a,
then chances are good that n is prime. Now pick another random number a and
test it with the same method. If it also satisfies the equation, then we can be even
more confident that n is prime. By trying more and more values of a, we can
increase our confidence in the result. This algorithm is known as the Fermat test.

To implement the Fermat test, we need a procedure that computes the
exponential of a number modulo another number:

(define (expmod base exp m)
  (cond ((= exp 0) 1)
        ((even? exp)
         (remainder (square (expmod base (/ exp 2) m))
                    m))
        (else
         (remainder (* base (expmod base (- exp 1) m))
                    m))))        

This is very similar to the fast-expt procedure of section 1.2.4. It uses successive
squaring, so that the number of steps grows logarithmically with the exponent.46

The Fermat test is performed by choosing at random a number a between 1 and
n - 1 inclusive and checking whether the remainder modulo n of the nth power
of a is equal to a. The random number a is chosen using the procedure random,
which we assume is included as a primitive in Scheme. Random returns a
nonnegative integer less than its integer input. Hence, to obtain a random
number between 1 and n - 1, we call random with an input of n - 1 and add 1 to
the result:
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(define (fermat-test n)
  (define (try-it a)
    (= (expmod a n n) a))
  (try-it (+ 1 (random (- n 1)))))

The following procedure runs the test a given number of times, as specified by a
parameter. Its value is true if the test succeeds every time, and false otherwise.

(define (fast-prime? n times)
  (cond ((= times 0) true)
        ((fermat-test n) (fast-prime? n (- times 1)))
        (else false)))

Probabilistic methods

The Fermat test differs in character from most familiar algorithms, in which one
computes an answer that is guaranteed to be correct. Here, the answer obtained
is only probably correct. More precisely, if n ever fails the Fermat test, we can be
certain that n is not prime. But the fact that n passes the test, while an extremely
strong indication, is still not a guarantee that n is prime. What we would like to
say is that for any number n, if we perform the test enough times and find that n
always passes the test, then the probability of error in our primality test can be
made as small as we like.

Unfortunately, this assertion is not quite correct. There do exist numbers that fool

the Fermat test: numbers n that are not prime and yet have the property that an

is congruent to a modulo n for all integers a < n. Such numbers are extremely
rare, so the Fermat test is quite reliable in practice.47 There are variations of the
Fermat test that cannot be fooled. In these tests, as with the Fermat method, one
tests the primality of an integer n by choosing a random integer a<n and
checking some condition that depends upon n and a. (See exercise 1.28 for an
example of such a test.) On the other hand, in contrast to the Fermat test, one
can prove that, for any n, the condition does not hold for most of the integers
a<n unless n is prime. Thus, if n passes the test for some random choice of a, the
chances are better than even that n is prime. If n passes the test for two random
choices of a, the chances are better than 3 out of 4 that n is prime. By running
the test with more and more randomly chosen values of a we can make the
probability of error as small as we like.

The existence of tests for which one can prove that the chance of error becomes
arbitrarily small has sparked interest in algorithms of this type, which have come
to be known as probabilistic algorithms. There is a great deal of research activity
in this area, and probabilistic algorithms have been fruitfully applied to many
fields.48

Exercise 1.21.  Use the smallest-divisor procedure to find the smallest divisor of
each of the following numbers: 199, 1999, 19999.

Exercise 1.22.  Most Lisp implementations include a primitive called runtime that
returns an integer that specifies the amount of time the system has been running
(measured, for example, in microseconds). The following timed-prime-test
procedure, when called with an integer n, prints n and checks to see if n is prime.
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If n is prime, the procedure prints three asterisks followed by the amount of time
used in performing the test.

(define (timed-prime-test n)
  (newline)
  (display n)
  (start-prime-test n (runtime)))
(define (start-prime-test n start-time)
  (if (prime? n)
      (report-prime (- (runtime) start-time))))
(define (report-prime elapsed-time)
  (display " *** ")
  (display elapsed-time))

Using this procedure, write a procedure search-for-primes that checks the primality
of consecutive odd integers in a specified range. Use your procedure to find the
three smallest primes larger than 1000; larger than 10,000; larger than 100,000;
larger than 1,000,000. Note the time needed to test each prime. Since the testing
algorithm has order of growth of ( n), you should expect that testing for primes
around 10,000 should take about 10 times as long as testing for primes around
1000. Do your timing data bear this out? How well do the data for 100,000 and
1,000,000 support the n prediction? Is your result compatible with the notion
that programs on your machine run in time proportional to the number of steps
required for the computation?

Exercise 1.23.  The smallest-divisor procedure shown at the start of this section
does lots of needless testing: After it checks to see if the number is divisible by 2
there is no point in checking to see if it is divisible by any larger even numbers.
This suggests that the values used for test-divisor should not be 2, 3, 4, 5, 6, ...,
but rather 2, 3, 5, 7, 9, .... To implement this change, define a procedure next that
returns 3 if its input is equal to 2 and otherwise returns its input plus 2. Modify
the smallest-divisor procedure to use (next test-divisor) instead of (+ test-divisor 1).
With timed-prime-test incorporating this modified version of smallest-divisor, run the
test for each of the 12 primes found in exercise 1.22. Since this modification
halves the number of test steps, you should expect it to run about twice as fast.
Is this expectation confirmed? If not, what is the observed ratio of the speeds of
the two algorithms, and how do you explain the fact that it is different from 2?

Exercise 1.24.  Modify the timed-prime-test procedure of exercise 1.22 to use fast-
prime? (the Fermat method), and test each of the 12 primes you found in that
exercise. Since the Fermat test has (log n) growth, how would you expect the
time to test primes near 1,000,000 to compare with the time needed to test
primes near 1000? Do your data bear this out? Can you explain any discrepancy
you find?

Exercise 1.25.  Alyssa P. Hacker complains that we went to a lot of extra work in
writing expmod. After all, she says, since we already know how to compute
exponentials, we could have simply written

(define (expmod base exp m)
  (remainder (fast-expt base exp) m))

Is she correct? Would this procedure serve as well for our fast prime tester?
Explain.
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Exercise 1.26.  Louis Reasoner is having great difficulty doing exercise 1.24. His
fast-prime? test seems to run more slowly than his prime? test. Louis calls his friend
Eva Lu Ator over to help. When they examine Louis's code, they find that he has
rewritten the expmod procedure to use an explicit multiplication, rather than calling
square:

(define (expmod base exp m)
  (cond ((= exp 0) 1)
        ((even? exp)
         (remainder (* (expmod base (/ exp 2) m)
                       (expmod base (/ exp 2) m))
                    m))
        (else
         (remainder (* base (expmod base (- exp 1) m))
                    m))))

``I don't see what difference that could make,'' says Louis. ``I do.'' says Eva. ``By
writing the procedure like that, you have transformed the (log n) process into a 
(n) process.'' Explain.

Exercise 1.27.  Demonstrate that the Carmichael numbers listed in footnote 47
really do fool the Fermat test. That is, write a procedure that takes an integer n

and tests whether an is congruent to a modulo n for every a<n, and try your
procedure on the given Carmichael numbers.

Exercise 1.28.  One variant of the Fermat test that cannot be fooled is called the
Miller-Rabin test (Miller 1976; Rabin 1980). This starts from an alternate form of
Fermat's Little Theorem, which states that if n is a prime number and a is any
positive integer less than n, then a raised to the (n - 1)st power is congruent to 1
modulo n. To test the primality of a number n by the Miller-Rabin test, we pick a
random number a<n and raise a to the (n - 1)st power modulo n using the expmod
procedure. However, whenever we perform the squaring step in expmod, we check
to see if we have discovered a ``nontrivial square root of 1 modulo n,'' that is, a
number not equal to 1 or n - 1 whose square is equal to 1 modulo n. It is
possible to prove that if such a nontrivial square root of 1 exists, then n is not
prime. It is also possible to prove that if n is an odd number that is not prime,

then, for at least half the numbers a<n, computing an-1 in this way will reveal a
nontrivial square root of 1 modulo n. (This is why the Miller-Rabin test cannot be
fooled.) Modify the expmod procedure to signal if it discovers a nontrivial square
root of 1, and use this to implement the Miller-Rabin test with a procedure
analogous to fermat-test. Check your procedure by testing various known primes
and non-primes. Hint: One convenient way to make expmod signal is to have it
return 0.

29 In a real program we would probably use the block structure introduced in the last section to hide the
definition of fact-iter:

(define (factorial n)
  (define (iter product counter)
    (if (> counter n)
        product
        (iter (* counter product)
              (+ counter 1))))
  (iter 1 1))

We avoided doing this here so as to minimize the number of things to think about at once.
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30 When we discuss the implementation of procedures on register machines in chapter 5, we will see that
any iterative process can be realized ``in hardware'' as a machine that has a fixed set of registers and no
auxiliary memory. In contrast, realizing a recursive process requires a machine that uses an auxiliary data
structure known as a stack.

31 Tail recursion has long been known as a compiler optimization trick. A coherent semantic basis for tail
recursion was provided by Carl Hewitt (1977), who explained it in terms of the ``message-passing'' model of
computation that we shall discuss in chapter 3. Inspired by this, Gerald Jay Sussman and Guy Lewis Steele Jr.
(see Steele 1975) constructed a tail-recursive interpreter for Scheme. Steele later showed how tail recursion is
a consequence of the natural way to compile procedure calls (Steele 1977). The IEEE standard for Scheme
requires that Scheme implementations be tail-recursive.

32 An example of this was hinted at in section 1.1.3: The interpreter itself evaluates expressions using a tree-
recursive process.

33 For example, work through in detail how the reduction rule applies to the problem of making change for
10 cents using pennies and nickels.

34 One approach to coping with redundant computations is to arrange matters so that we automatically
construct a table of values as they are computed. Each time we are asked to apply the procedure to some
argument, we first look to see if the value is already stored in the table, in which case we avoid performing
the redundant computation. This strategy, known as tabulation or memoization, can be implemented in a
straightforward way. Tabulation can sometimes be used to transform processes that require an exponential
number of steps (such as count-change) into processes whose space and time requirements grow linearly with
the input. See exercise 3.27.

35 The elements of Pascal's triangle are called the binomial coefficients, because the nth row consists of the

coefficients of the terms in the expansion of (x + y)n. This pattern for computing the coefficients appeared in
Blaise Pascal's 1653 seminal work on probability theory, Traité du triangle arithmétique. According to Knuth
(1973), the same pattern appears in the Szu-yuen Yü-chien (``The Precious Mirror of the Four Elements''),
published by the Chinese mathematician Chu Shih-chieh in 1303, in the works of the twelfth-century Persian
poet and mathematician Omar Khayyam, and in the works of the twelfth-century Hindu mathematician
Bháscara Áchárya.

36 These statements mask a great deal of oversimplification. For instance, if we count process steps as
``machine operations'' we are making the assumption that the number of machine operations needed to
perform, say, a multiplication is independent of the size of the numbers to be multiplied, which is false if the
numbers are sufficiently large. Similar remarks hold for the estimates of space. Like the design and
description of a process, the analysis of a process can be carried out at various levels of abstraction.

37 More precisely, the number of multiplications required is equal to 1 less than the log base 2 of n plus the
number of ones in the binary representation of n. This total is always less than twice the log base 2 of n. The
arbitrary constants k1 and k2 in the definition of order notation imply that, for a logarithmic process, the

base to which logarithms are taken does not matter, so all such processes are described as (log n).

38 You may wonder why anyone would care about raising numbers to the 1000th power. See section 1.2.6.

39 This iterative algorithm is ancient. It appears in the Chandah-sutra by Áchárya Pingala, written before 200
B.C. See Knuth 1981, section 4.6.3, for a full discussion and analysis of this and other methods of
exponentiation.

40 This algorithm, which is sometimes known as the ``Russian peasant method'' of multiplication, is ancient.
Examples of its use are found in the Rhind Papyrus, one of the two oldest mathematical documents in
existence, written about 1700 B.C. (and copied from an even older document) by an Egyptian scribe named
A'h-mose.

41 This exercise was suggested to us by Joe Stoy, based on an example in Kaldewaij 1990.

42 Euclid's Algorithm is so called because it appears in Euclid's Elements (Book 7, ca. 300 B.C.). According to
Knuth (1973), it can be considered the oldest known nontrivial algorithm. The ancient Egyptian method of
multiplication (exercise 1.18) is surely older, but, as Knuth explains, Euclid's algorithm is the oldest known to
have been presented as a general algorithm, rather than as a set of illustrative examples.

43 This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and engineer known chiefly
for his contributions to mathematical physics. To prove the theorem, we consider pairs (ak ,bk), where ak> bk,
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for which Euclid's Algorithm terminates in k steps. The proof is based on the claim that, if (ak+1, bk+1)  (ak,

bk)  (ak-1, bk-1) are three successive pairs in the reduction process, then we must have bk+1> bk + bk-1. To

verify the claim, consider that a reduction step is defined by applying the transformation ak-1 = bk, bk-1 =

remainder of ak divided by bk. The second equation means that ak = qbk + bk-1 for some positive integer q.

And since q must be at least 1 we have ak = qbk + bk-1 > bk + bk-1. But in the previous reduction step we

have bk+1 = ak. Therefore, bk+1 = ak> bk + bk-1. This verifies the claim. Now we can prove the theorem by

induction on k, the number of steps that the algorithm requires to terminate. The result is true for k = 1,
since this merely requires that b be at least as large as Fib(1) = 1. Now, assume that the result is true for all
integers less than or equal to k and establish the result for k + 1. Let (ak+1, bk+1)  (ak, bk)  (ak-1, bk-1) be

successive pairs in the reduction process. By our induction hypotheses, we have bk-1> Fib(k - 1) and bk>

Fib(k). Thus, applying the claim we just proved together with the definition of the Fibonacci numbers gives
bk+1 > bk + bk-1> Fib(k) + Fib(k - 1) = Fib(k + 1), which completes the proof of Lamé's Theorem.

44 If d is a divisor of n, then so is n/d. But d and n/d cannot both be greater than n.

45 Pierre de Fermat (1601-1665) is considered to be the founder of modern number theory. He obtained
many important number-theoretic results, but he usually announced just the results, without providing his
proofs. Fermat's Little Theorem was stated in a letter he wrote in 1640. The first published proof was given
by Euler in 1736 (and an earlier, identical proof was discovered in the unpublished manuscripts of Leibniz).
The most famous of Fermat's results -- known as Fermat's Last Theorem -- was jotted down in 1637 in his
copy of the book Arithmetic (by the third-century Greek mathematician Diophantus) with the remark ``I have
discovered a truly remarkable proof, but this margin is too small to contain it.'' Finding a proof of Fermat's
Last Theorem became one of the most famous challenges in number theory. A complete solution was finally
given in 1995 by Andrew Wiles of Princeton University.

46 The reduction steps in the cases where the exponent e is greater than 1 are based on the fact that, for
any integers x, y, and m, we can find the remainder of x times y modulo m by computing separately the
remainders of x modulo m and y modulo m, multiplying these, and then taking the remainder of the result

modulo m. For instance, in the case where e is even, we compute the remainder of be/2 modulo m, square
this, and take the remainder modulo m. This technique is useful because it means we can perform our
computation without ever having to deal with numbers much larger than m. (Compare exercise 1.25.)

47 Numbers that fool the Fermat test are called Carmichael numbers, and little is known about them other
than that they are extremely rare. There are 255 Carmichael numbers below 100,000,000. The smallest few
are 561, 1105, 1729, 2465, 2821, and 6601. In testing primality of very large numbers chosen at random, the
chance of stumbling upon a value that fools the Fermat test is less than the chance that cosmic radiation will
cause the computer to make an error in carrying out a ``correct'' algorithm. Considering an algorithm to be
inadequate for the first reason but not for the second illustrates the difference between mathematics and
engineering.

48 One of the most striking applications of probabilistic prime testing has been to the field of cryptography.
Although it is now computationally infeasible to factor an arbitrary 200-digit number, the primality of such a
number can be checked in a few seconds with the Fermat test. This fact forms the basis of a technique for
constructing ``unbreakable codes'' suggested by Rivest, Shamir, and Adleman (1977). The resulting RSA
algorithm has become a widely used technique for enhancing the security of electronic communications.
Because of this and related developments, the study of prime numbers, once considered the epitome of a
topic in ``pure'' mathematics to be studied only for its own sake, now turns out to have important practical
applications to cryptography, electronic funds transfer, and information retrieval.
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