
2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 1/18

[Go to first, previous, next page; contents; index]

1.3 Formulating Abstractions with Higher-Order
Procedures

We have seen that procedures are, in effect, abstractions that describe compound
operations on numbers independent of the particular numbers. For example,
when we

(define (cube x) (* x x x))

we are not talking about the cube of a particular number, but rather about a
method for obtaining the cube of any number. Of course we could get along
without ever defining this procedure, by always writing expressions such as

(* 3 3 3)
(* x x x)
(* y y y)

and never mentioning cube explicitly. This would place us at a serious
disadvantage, forcing us to work always at the level of the particular operations
that happen to be primitives in the language (multiplication, in this case) rather
than in terms of higher-level operations. Our programs would be able to
compute cubes, but our language would lack the ability to express the concept of
cubing. One of the things we should demand from a powerful programming
language is the ability to build abstractions by assigning names to common
patterns and then to work in terms of the abstractions directly. Procedures
provide this ability. This is why all but the most primitive programming languages
include mechanisms for defining procedures.

Yet even in numerical processing we will be severely limited in our ability to
create abstractions if we are restricted to procedures whose parameters must be
numbers. Often the same programming pattern will be used with a number of
different procedures. To express such patterns as concepts, we will need to
construct procedures that can accept procedures as arguments or return
procedures as values. Procedures that manipulate procedures are called higher-
order procedures. This section shows how higher-order procedures can serve as
powerful abstraction mechanisms, vastly increasing the expressive power of our
language.

1.3.1 Procedures as Arguments

Consider the following three procedures. The first computes the sum of the
integers from a through b:

(define (sum-integers a b)
 (if (> a b)
 0
 (+ a (sum-integers (+ a 1) b))))

The second computes the sum of the cubes of the integers in the given range:

https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-13.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.3.1

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 2/18

(define (sum-cubes a b)
 (if (> a b)
 0
 (+ (cube a) (sum-cubes (+ a 1) b))))

The third computes the sum of a sequence of terms in the series

which converges to /8 (very slowly):49

(define (pi-sum a b)
 (if (> a b)
 0
 (+ (/ 1.0 (* a (+ a 2))) (pi-sum (+ a 4) b))))

These three procedures clearly share a common underlying pattern. They are for
the most part identical, differing only in the name of the procedure, the function
of a used to compute the term to be added, and the function that provides the
next value of a. We could generate each of the procedures by filling in slots in
the same template:

(define (<name> a b)
 (if (> a b)
 0
 (+ (<term> a)
 (<name> (<next> a) b))))

The presence of such a common pattern is strong evidence that there is a useful
abstraction waiting to be brought to the surface. Indeed, mathematicians long
ago identified the abstraction of summation of a series and invented ``sigma
notation,'' for example

to express this concept. The power of sigma notation is that it allows
mathematicians to deal with the concept of summation itself rather than only
with particular sums -- for example, to formulate general results about sums that
are independent of the particular series being summed.

Similarly, as program designers, we would like our language to be powerful
enough so that we can write a procedure that expresses the concept of
summation itself rather than only procedures that compute particular sums. We
can do so readily in our procedural language by taking the common template
shown above and transforming the ``slots'' into formal parameters:

(define (sum term a next b)
 (if (> a b)
 0
 (+ (term a)
 (sum term (next a) next b))))

Notice that sum takes as its arguments the lower and upper bounds a and b
together with the procedures term and next. We can use sum just as we would any
procedure. For example, we can use it (along with a procedure inc that
increments its argument by 1) to define sum-cubes:

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 3/18

(define (inc n) (+ n 1))
(define (sum-cubes a b)
 (sum cube a inc b))

Using this, we can compute the sum of the cubes of the integers from 1 to 10:

(sum-cubes 1 10)
3025

With the aid of an identity procedure to compute the term, we can define sum-
integers in terms of sum:

(define (identity x) x)

(define (sum-integers a b)
 (sum identity a inc b))

Then we can add up the integers from 1 to 10:

(sum-integers 1 10)
55

We can also define pi-sum in the same way:50

(define (pi-sum a b)
 (define (pi-term x)
 (/ 1.0 (* x (+ x 2))))
 (define (pi-next x)
 (+ x 4))
 (sum pi-term a pi-next b))

Using these procedures, we can compute an approximation to :

(* 8 (pi-sum 1 1000))
3.139592655589783

Once we have sum, we can use it as a building block in formulating further
concepts. For instance, the definite integral of a function f between the limits a
and b can be approximated numerically using the formula

for small values of dx. We can express this directly as a procedure:

(define (integral f a b dx)
 (define (add-dx x) (+ x dx))
 (* (sum f (+ a (/ dx 2.0)) add-dx b)
 dx))
(integral cube 0 1 0.01)
.24998750000000042
(integral cube 0 1 0.001)
.249999875000001

(The exact value of the integral of cube between 0 and 1 is 1/4.)

Exercise 1.29. Simpson's Rule is a more accurate method of numerical
integration than the method illustrated above. Using Simpson's Rule, the integral
of a function f between a and b is approximated as

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 4/18

where h = (b - a)/n, for some even integer n, and yk = f(a + kh). (Increasing n

increases the accuracy of the approximation.) Define a procedure that takes as
arguments f, a, b, and n and returns the value of the integral, computed using
Simpson's Rule. Use your procedure to integrate cube between 0 and 1 (with n =
100 and n = 1000), and compare the results to those of the integral procedure
shown above.

Exercise 1.30. The sum procedure above generates a linear recursion. The
procedure can be rewritten so that the sum is performed iteratively. Show how to
do this by filling in the missing expressions in the following definition:

(define (sum term a next b)
 (define (iter a result)
 (if <??>
 <??>
 (iter <??> <??>)))
 (iter <??> <??>))

Exercise 1.31.
a. The sum procedure is only the simplest of a vast number of similar abstractions
that can be captured as higher-order procedures.51 Write an analogous procedure
called product that returns the product of the values of a function at points over a
given range. Show how to define factorial in terms of product. Also use product to
compute approximations to using the formula52

b. If your product procedure generates a recursive process, write one that
generates an iterative process. If it generates an iterative process, write one that
generates a recursive process.

Exercise 1.32. a. Show that sum and product (exercise 1.31) are both special cases
of a still more general notion called accumulate that combines a collection of terms,
using some general accumulation function:

(accumulate combiner null-value term a next b)

Accumulate takes as arguments the same term and range specifications as sum and
product, together with a combiner procedure (of two arguments) that specifies how
the current term is to be combined with the accumulation of the preceding terms
and a null-value that specifies what base value to use when the terms run out.
Write accumulate and show how sum and product can both be defined as simple calls
to accumulate.

b. If your accumulate procedure generates a recursive process, write one that
generates an iterative process. If it generates an iterative process, write one that
generates a recursive process.

Exercise 1.33. You can obtain an even more general version of accumulate
(exercise 1.32) by introducing the notion of a filter on the terms to be combined.
That is, combine only those terms derived from values in the range that satisfy a
specified condition. The resulting filtered-accumulate abstraction takes the same
arguments as accumulate, together with an additional predicate of one argument

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 5/18

that specifies the filter. Write filtered-accumulate as a procedure. Show how to
express the following using filtered-accumulate:

a. the sum of the squares of the prime numbers in the interval a to b (assuming
that you have a prime? predicate already written)

b. the product of all the positive integers less than n that are relatively prime to n
(i.e., all positive integers i < n such that GCD(i,n) = 1).

1.3.2 Constructing Procedures Using Lambda

In using sum as in section 1.3.1, it seems terribly awkward to have to define trivial
procedures such as pi-term and pi-next just so we can use them as arguments to
our higher-order procedure. Rather than define pi-next and pi-term, it would be
more convenient to have a way to directly specify ``the procedure that returns its
input incremented by 4'' and ``the procedure that returns the reciprocal of its
input times its input plus 2.'' We can do this by introducing the special form
lambda, which creates procedures. Using lambda we can describe what we want as

(lambda (x) (+ x 4))

and

(lambda (x) (/ 1.0 (* x (+ x 2))))

Then our pi-sum procedure can be expressed without defining any auxiliary
procedures as

(define (pi-sum a b)
 (sum (lambda (x) (/ 1.0 (* x (+ x 2))))
 a
 (lambda (x) (+ x 4))
 b))

Again using lambda, we can write the integral procedure without having to define
the auxiliary procedure add-dx:

(define (integral f a b dx)
 (* (sum f
 (+ a (/ dx 2.0))
 (lambda (x) (+ x dx))
 b)
 dx))

In general, lambda is used to create procedures in the same way as define, except
that no name is specified for the procedure:

(lambda (<formal-parameters>) <body>)

The resulting procedure is just as much a procedure as one that is created using
define. The only difference is that it has not been associated with any name in the
environment. In fact,

(define (plus4 x) (+ x 4))

is equivalent to

(define plus4 (lambda (x) (+ x 4)))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.3.2

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 6/18

We can read a lambda expression as follows:

 (lambda (x) (+ x 4))

 the procedure of an argument x that adds x and 4

Like any expression that has a procedure as its value, a lambda expression can be
used as the operator in a combination such as

((lambda (x y z) (+ x y (square z))) 1 2 3)
12

or, more generally, in any context where we would normally use a procedure
name.53

Using let to create local variables

Another use of lambda is in creating local variables. We often need local variables
in our procedures other than those that have been bound as formal parameters.
For example, suppose we wish to compute the function

which we could also express as

In writing a procedure to compute f, we would like to include as local variables
not only x and y but also the names of intermediate quantities like a and b. One
way to accomplish this is to use an auxiliary procedure to bind the local variables:

(define (f x y)
 (define (f-helper a b)
 (+ (* x (square a))
 (* y b)
 (* a b)))
 (f-helper (+ 1 (* x y))
 (- 1 y)))

Of course, we could use a lambda expression to specify an anonymous procedure
for binding our local variables. The body of f then becomes a single call to that
procedure:

(define (f x y)
 ((lambda (a b)
 (+ (* x (square a))
 (* y b)
 (* a b)))
 (+ 1 (* x y))
 (- 1 y)))

This construct is so useful that there is a special form called let to make its use
more convenient. Using let, the f procedure could be written as

(define (f x y)
 (let ((a (+ 1 (* x y)))
 (b (- 1 y)))
 (+ (* x (square a))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_100

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 7/18

 (* y b)
 (* a b))))

The general form of a let expression is

(let ((<var1> <exp1>)

 (<var2> <exp2>)

 (<varn> <expn>))

 <body>)

which can be thought of as saying

let <var1> have the value <exp1> and

<var2> have the value <exp2> and

<varn> have the value <expn>

in <body>

The first part of the let expression is a list of name-expression pairs. When the let
is evaluated, each name is associated with the value of the corresponding
expression. The body of the let is evaluated with these names bound as local
variables. The way this happens is that the let expression is interpreted as an
alternate syntax for

((lambda (<var1> ...<varn>)

 <body>)
 <exp1>

 <expn>)

No new mechanism is required in the interpreter in order to provide local
variables. A let expression is simply syntactic sugar for the underlying lambda
application.

We can see from this equivalence that the scope of a variable specified by a let
expression is the body of the let. This implies that:

Let allows one to bind variables as locally as possible to where they are to
be used. For example, if the value of x is 5, the value of the expression

(+ (let ((x 3))
 (+ x (* x 10)))
 x)

is 38. Here, the x in the body of the let is 3, so the value of the let
expression is 33. On the other hand, the x that is the second argument to
the outermost + is still 5.

The variables' values are computed outside the let. This matters when the
expressions that provide the values for the local variables depend upon
variables having the same names as the local variables themselves. For
example, if the value of x is 2, the expression

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 8/18

(let ((x 3)
 (y (+ x 2)))
 (* x y))

will have the value 12 because, inside the body of the let, x will be 3 and y
will be 4 (which is the outer x plus 2).

Sometimes we can use internal definitions to get the same effect as with let. For
example, we could have defined the procedure f above as

(define (f x y)
 (define a (+ 1 (* x y)))
 (define b (- 1 y))
 (+ (* x (square a))
 (* y b)
 (* a b)))

We prefer, however, to use let in situations like this and to use internal define only
for internal procedures.54

Exercise 1.34. Suppose we define the procedure

(define (f g)
 (g 2))

Then we have

(f square)
4

(f (lambda (z) (* z (+ z 1))))
6

What happens if we (perversely) ask the interpreter to evaluate the combination
(f f)? Explain.

1.3.3 Procedures as General Methods

We introduced compound procedures in section 1.1.4 as a mechanism for
abstracting patterns of numerical operations so as to make them independent of
the particular numbers involved. With higher-order procedures, such as the
integral procedure of section 1.3.1, we began to see a more powerful kind of
abstraction: procedures used to express general methods of computation,
independent of the particular functions involved. In this section we discuss two
more elaborate examples -- general methods for finding zeros and fixed points of
functions -- and show how these methods can be expressed directly as
procedures.

Finding roots of equations by the half-interval method

The half-interval method is a simple but powerful technique for finding roots of
an equation f(x) = 0, where f is a continuous function. The idea is that, if we are
given points a and b such that f(a) < 0 < f(b), then f must have at least one zero
between a and b. To locate a zero, let x be the average of a and b and compute
f(x). If f(x) > 0, then f must have a zero between a and x. If f(x) < 0, then f must
have a zero between x and b. Continuing in this way, we can identify smaller and

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.3.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.4
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_103

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 9/18

smaller intervals on which f must have a zero. When we reach a point where the
interval is small enough, the process stops. Since the interval of uncertainty is
reduced by half at each step of the process, the number of steps required grows
as (log(L/T)), where L is the length of the original interval and T is the error
tolerance (that is, the size of the interval we will consider ``small enough''). Here is
a procedure that implements this strategy:

(define (search f neg-point pos-point)
 (let ((midpoint (average neg-point pos-point)))
 (if (close-enough? neg-point pos-point)
 midpoint
 (let ((test-value (f midpoint)))
 (cond ((positive? test-value)
 (search f neg-point midpoint))
 ((negative? test-value)
 (search f midpoint pos-point))
 (else midpoint))))))

We assume that we are initially given the function f together with points at which
its values are negative and positive. We first compute the midpoint of the two
given points. Next we check to see if the given interval is small enough, and if so
we simply return the midpoint as our answer. Otherwise, we compute as a test
value the value of f at the midpoint. If the test value is positive, then we continue
the process with a new interval running from the original negative point to the
midpoint. If the test value is negative, we continue with the interval from the
midpoint to the positive point. Finally, there is the possibility that the test value
is 0, in which case the midpoint is itself the root we are searching for.

To test whether the endpoints are ``close enough'' we can use a procedure similar
to the one used in section 1.1.7 for computing square roots:55

(define (close-enough? x y)
 (< (abs (- x y)) 0.001))

Search is awkward to use directly, because we can accidentally give it points at
which f's values do not have the required sign, in which case we get a wrong
answer. Instead we will use search via the following procedure, which checks to
see which of the endpoints has a negative function value and which has a
positive value, and calls the search procedure accordingly. If the function has the
same sign on the two given points, the half-interval method cannot be used, in
which case the procedure signals an error.56

(define (half-interval-method f a b)
 (let ((a-value (f a))
 (b-value (f b)))
 (cond ((and (negative? a-value) (positive? b-value))
 (search f a b))
 ((and (negative? b-value) (positive? a-value))
 (search f b a))
 (else
 (error "Values are not of opposite sign" a b)))))

The following example uses the half-interval method to approximate as the root
between 2 and 4 of sin x = 0:

(half-interval-method sin 2.0 4.0)
3.14111328125

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.7

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 10/18

Here is another example, using the half-interval method to search for a root of

the equation x3 - 2x - 3 = 0 between 1 and 2:

(half-interval-method (lambda (x) (- (* x x x) (* 2 x) 3))
 1.0
 2.0)
1.89306640625

Finding fixed points of functions

A number x is called a fixed point of a function f if x satisfies the equation f(x) =
x. For some functions f we can locate a fixed point by beginning with an initial
guess and applying f repeatedly,

until the value does not change very much. Using this idea, we can devise a
procedure fixed-point that takes as inputs a function and an initial guess and
produces an approximation to a fixed point of the function. We apply the
function repeatedly until we find two successive values whose difference is less
than some prescribed tolerance:

(define tolerance 0.00001)
(define (fixed-point f first-guess)
 (define (close-enough? v1 v2)
 (< (abs (- v1 v2)) tolerance))
 (define (try guess)
 (let ((next (f guess)))
 (if (close-enough? guess next)
 next
 (try next))))
 (try first-guess))

For example, we can use this method to approximate the fixed point of the
cosine function, starting with 1 as an initial approximation:57

(fixed-point cos 1.0)
.7390822985224023

Similarly, we can find a solution to the equation y = sin y + cos y:

(fixed-point (lambda (y) (+ (sin y) (cos y)))
 1.0)
1.2587315962971173

The fixed-point process is reminiscent of the process we used for finding square
roots in section 1.1.7. Both are based on the idea of repeatedly improving a
guess until the result satisfies some criterion. In fact, we can readily formulate the
square-root computation as a fixed-point search. Computing the square root of

some number x requires finding a y such that y2 = x. Putting this equation into
the equivalent form y = x/y, we recognize that we are looking for a fixed point of
the function58 y x/y, and we can therefore try to compute square roots as

(define (sqrt x)
 (fixed-point (lambda (y) (/ x y))
 1.0))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_106
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.7

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 11/18

Unfortunately, this fixed-point search does not converge. Consider an initial guess
y1. The next guess is y2 = x/y1 and the next guess is y3 = x/y2 = x/(x/y1) = y1.

This results in an infinite loop in which the two guesses y1 and y2 repeat over and

over, oscillating about the answer.

One way to control such oscillations is to prevent the guesses from changing so
much. Since the answer is always between our guess y and x/y, we can make a
new guess that is not as far from y as x/y by averaging y with x/y, so that the
next guess after y is (1/2)(y + x/y) instead of x/y. The process of making such a
sequence of guesses is simply the process of looking for a fixed point of y
(1/2)(y + x/y):

(define (sqrt x)
 (fixed-point (lambda (y) (average y (/ x y)))
 1.0))

(Note that y = (1/2)(y + x/y) is a simple transformation of the equation y = x/y; to
derive it, add y to both sides of the equation and divide by 2.)

With this modification, the square-root procedure works. In fact, if we unravel the
definitions, we can see that the sequence of approximations to the square root
generated here is precisely the same as the one generated by our original
square-root procedure of section 1.1.7. This approach of averaging successive
approximations to a solution, a technique we that we call average damping, often
aids the convergence of fixed-point searches.

Exercise 1.35. Show that the golden ratio (section 1.2.2) is a fixed point of the
transformation x 1 + 1/x, and use this fact to compute by means of the fixed-
point procedure.

Exercise 1.36. Modify fixed-point so that it prints the sequence of approximations
it generates, using the newline and display primitives shown in exercise 1.22. Then

find a solution to xx = 1000 by finding a fixed point of x log(1000)/log(x). (Use
Scheme's primitive log procedure, which computes natural logarithms.) Compare
the number of steps this takes with and without average damping. (Note that you
cannot start fixed-point with a guess of 1, as this would cause division by log(1) =
0.)

Exercise 1.37. a. An infinite continued fraction is an expression of the form

As an example, one can show that the infinite continued fraction expansion with
the Ni and the Di all equal to 1 produces 1/ , where is the golden ratio

(described in section 1.2.2). One way to approximate an infinite continued fraction
is to truncate the expansion after a given number of terms. Such a truncation -- a
so-called k-term finite continued fraction -- has the form

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.7
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2.2
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_thm_1.22
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2.2

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 12/18

Suppose that n and d are procedures of one argument (the term index i) that
return the Ni and Di of the terms of the continued fraction. Define a procedure

cont-frac such that evaluating (cont-frac n d k) computes the value of the k-term
finite continued fraction. Check your procedure by approximating 1/ using

(cont-frac (lambda (i) 1.0)
 (lambda (i) 1.0)
 k)

for successive values of k. How large must you make k in order to get an
approximation that is accurate to 4 decimal places?

b. If your cont-frac procedure generates a recursive process, write one that
generates an iterative process. If it generates an iterative process, write one that
generates a recursive process.

Exercise 1.38. In 1737, the Swiss mathematician Leonhard Euler published a
memoir De Fractionibus Continuis, which included a continued fraction expansion
for e - 2, where e is the base of the natural logarithms. In this fraction, the Ni are

all 1, and the Di are successively 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, Write a program

that uses your cont-frac procedure from exercise 1.37 to approximate e, based on
Euler's expansion.

Exercise 1.39. A continued fraction representation of the tangent function was
published in 1770 by the German mathematician J.H. Lambert:

where x is in radians. Define a procedure (tan-cf x k) that computes an
approximation to the tangent function based on Lambert's formula. K specifies the
number of terms to compute, as in exercise 1.37.

1.3.4 Procedures as Returned Values

The above examples demonstrate how the ability to pass procedures as
arguments significantly enhances the expressive power of our programming
language. We can achieve even more expressive power by creating procedures
whose returned values are themselves procedures.

We can illustrate this idea by looking again at the fixed-point example described
at the end of section 1.3.3. We formulated a new version of the square-root
procedure as a fixed-point search, starting with the observation that x is a fixed-
point of the function y x/y. Then we used average damping to make the
approximations converge. Average damping is a useful general technique in itself.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.3.4

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 13/18

Namely, given a function f, we consider the function whose value at x is equal to
the average of x and f(x).

We can express the idea of average damping by means of the following
procedure:

(define (average-damp f)
 (lambda (x) (average x (f x))))

Average-damp is a procedure that takes as its argument a procedure f and returns as
its value a procedure (produced by the lambda) that, when applied to a number x,
produces the average of x and (f x). For example, applying average-damp to the
square procedure produces a procedure whose value at some number x is the

average of x and x2. Applying this resulting procedure to 10 returns the average
of 10 and 100, or 55:59

((average-damp square) 10)
55

Using average-damp, we can reformulate the square-root procedure as follows:

(define (sqrt x)
 (fixed-point (average-damp (lambda (y) (/ x y)))
 1.0))

Notice how this formulation makes explicit the three ideas in the method: fixed-
point search, average damping, and the function y x/y. It is instructive to
compare this formulation of the square-root method with the original version
given in section 1.1.7. Bear in mind that these procedures express the same
process, and notice how much clearer the idea becomes when we express the
process in terms of these abstractions. In general, there are many ways to
formulate a process as a procedure. Experienced programmers know how to
choose procedural formulations that are particularly perspicuous, and where
useful elements of the process are exposed as separate entities that can be
reused in other applications. As a simple example of reuse, notice that the cube

root of x is a fixed point of the function y x/y2, so we can immediately
generalize our square-root procedure to one that extracts cube roots:60

(define (cube-root x)
 (fixed-point (average-damp (lambda (y) (/ x (square y))))
 1.0))

Newton's method

When we first introduced the square-root procedure, in section 1.1.7, we
mentioned that this was a special case of Newton's method. If x g(x) is a
differentiable function, then a solution of the equation g(x) = 0 is a fixed point of
the function x f(x) where

and Dg(x) is the derivative of g evaluated at x. Newton's method is the use of the
fixed-point method we saw above to approximate a solution of the equation by
finding a fixed point of the function f.61 For many functions g and for sufficiently

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.7
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_116
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.7

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 14/18

good initial guesses for x, Newton's method converges very rapidly to a solution
of g(x) = 0.62

In order to implement Newton's method as a procedure, we must first express
the idea of derivative. Note that ``derivative,'' like average damping, is something
that transforms a function into another function. For instance, the derivative of

the function x x3 is the function x 3x2. In general, if g is a function and dx is
a small number, then the derivative Dg of g is the function whose value at any
number x is given (in the limit of small dx) by

Thus, we can express the idea of derivative (taking dx to be, say, 0.00001) as the
procedure

(define (deriv g)
 (lambda (x)
 (/ (- (g (+ x dx)) (g x))
 dx)))

along with the definition

(define dx 0.00001)

Like average-damp, deriv is a procedure that takes a procedure as argument and
returns a procedure as value. For example, to approximate the derivative of x

x3 at 5 (whose exact value is 75) we can evaluate

(define (cube x) (* x x x))
((deriv cube) 5)
75.00014999664018

With the aid of deriv, we can express Newton's method as a fixed-point process:

(define (newton-transform g)
 (lambda (x)
 (- x (/ (g x) ((deriv g) x)))))
(define (newtons-method g guess)
 (fixed-point (newton-transform g) guess))

The newton-transform procedure expresses the formula at the beginning of this
section, and newtons-method is readily defined in terms of this. It takes as arguments
a procedure that computes the function for which we want to find a zero,
together with an initial guess. For instance, to find the square root of x, we can

use Newton's method to find a zero of the function y y2 - x starting with an
initial guess of 1.63 This provides yet another form of the square-root procedure:

(define (sqrt x)
 (newtons-method (lambda (y) (- (square y) x))
 1.0))

Abstractions and first-class procedures

We've seen two ways to express the square-root computation as an instance of a
more general method, once as a fixed-point search and once using Newton's
method. Since Newton's method was itself expressed as a fixed-point process, we

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_120

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 15/18

actually saw two ways to compute square roots as fixed points. Each method
begins with a function and finds a fixed point of some transformation of the
function. We can express this general idea itself as a procedure:

(define (fixed-point-of-transform g transform guess)
 (fixed-point (transform g) guess))

This very general procedure takes as its arguments a procedure g that computes
some function, a procedure that transforms g, and an initial guess. The returned
result is a fixed point of the transformed function.

Using this abstraction, we can recast the first square-root computation from this
section (where we look for a fixed point of the average-damped version of y
x/y) as an instance of this general method:

(define (sqrt x)
 (fixed-point-of-transform (lambda (y) (/ x y))
 average-damp
 1.0))

Similarly, we can express the second square-root computation from this section
(an instance of Newton's method that finds a fixed point of the Newton transform

of y y2 - x) as

(define (sqrt x)
 (fixed-point-of-transform (lambda (y) (- (square y) x))
 newton-transform
 1.0))

We began section 1.3 with the observation that compound procedures are a
crucial abstraction mechanism, because they permit us to express general
methods of computing as explicit elements in our programming language. Now
we've seen how higher-order procedures permit us to manipulate these general
methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the underlying
abstractions in our programs and to build upon them and generalize them to
create more powerful abstractions. This is not to say that one should always write
programs in the most abstract way possible; expert programmers know how to
choose the level of abstraction appropriate to their task. But it is important to be
able to think in terms of these abstractions, so that we can be ready to apply
them in new contexts. The significance of higher-order procedures is that they
enable us to represent these abstractions explicitly as elements in our
programming language, so that they can be handled just like other
computational elements.

In general, programming languages impose restrictions on the ways in which
computational elements can be manipulated. Elements with the fewest restrictions
are said to have first-class status. Some of the ``rights and privileges'' of first-class
elements are:64

They may be named by variables.
They may be passed as arguments to procedures.
They may be returned as the results of procedures.

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 16/18

They may be included in data structures.65

Lisp, unlike other common programming languages, awards procedures full first-
class status. This poses challenges for efficient implementation, but the resulting
gain in expressive power is enormous.66

Exercise 1.40. Define a procedure cubic that can be used together with the
newtons-method procedure in expressions of the form

(newtons-method (cubic a b c) 1)

to approximate zeros of the cubic x3 + ax2 + bx + c.

Exercise 1.41. Define a procedure double that takes a procedure of one argument
as argument and returns a procedure that applies the original procedure twice.
For example, if inc is a procedure that adds 1 to its argument, then (double inc)
should be a procedure that adds 2. What value is returned by

(((double (double double)) inc) 5)

Exercise 1.42. Let f and g be two one-argument functions. The composition f
after g is defined to be the function x f(g(x)). Define a procedure compose that
implements composition. For example, if inc is a procedure that adds 1 to its
argument,

((compose square inc) 6)
49

Exercise 1.43. If f is a numerical function and n is a positive integer, then we can
form the nth repeated application of f, which is defined to be the function whose
value at x is f(f(...(f(x))...)). For example, if f is the function x x + 1, then the
nth repeated application of f is the function x x + n. If f is the operation of
squaring a number, then the nth repeated application of f is the function that

raises its argument to the 2nth power. Write a procedure that takes as inputs a
procedure that computes f and a positive integer n and returns the procedure
that computes the nth repeated application of f. Your procedure should be able
to be used as follows:

((repeated square 2) 5)
625

Hint: You may find it convenient to use compose from exercise 1.42.

Exercise 1.44. The idea of smoothing a function is an important concept in
signal processing. If f is a function and dx is some small number, then the
smoothed version of f is the function whose value at a point x is the average of
f(x - dx), f(x), and f(x + dx). Write a procedure smooth that takes as input a
procedure that computes f and returns a procedure that computes the smoothed
f. It is sometimes valuable to repeatedly smooth a function (that is, smooth the
smoothed function, and so on) to obtained the n-fold smoothed function. Show
how to generate the n-fold smoothed function of any given function using smooth
and repeated from exercise 1.43.

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 17/18

Exercise 1.45. We saw in section 1.3.3 that attempting to compute square roots
by naively finding a fixed point of y x/y does not converge, and that this can
be fixed by average damping. The same method works for finding cube roots as

fixed points of the average-damped y x/y2. Unfortunately, the process does not
work for fourth roots -- a single average damp is not enough to make a fixed-

point search for y x/y3 converge. On the other hand, if we average damp twice

(i.e., use the average damp of the average damp of y x/y3) the fixed-point
search does converge. Do some experiments to determine how many average
damps are required to compute nth roots as a fixed-point search based upon

repeated average damping of y x/yn-1. Use this to implement a simple
procedure for computing nth roots using fixed-point, average-damp, and the repeated
procedure of exercise 1.43. Assume that any arithmetic operations you need are
available as primitives.

Exercise 1.46. Several of the numerical methods described in this chapter are
instances of an extremely general computational strategy known as iterative
improvement. Iterative improvement says that, to compute something, we start
with an initial guess for the answer, test if the guess is good enough, and
otherwise improve the guess and continue the process using the improved guess
as the new guess. Write a procedure iterative-improve that takes two procedures as
arguments: a method for telling whether a guess is good enough and a method
for improving a guess. Iterative-improve should return as its value a procedure that
takes a guess as argument and keeps improving the guess until it is good
enough. Rewrite the sqrt procedure of section 1.1.7 and the fixed-point procedure
of section 1.3.3 in terms of iterative-improve.

49 This series, usually written in the equivalent form (/4) = 1 - (1/3) + (1/5) - (1/7) + ···, is due to Leibniz.
We'll see how to use this as the basis for some fancy numerical tricks in section 3.5.3.

50 Notice that we have used block structure (section 1.1.8) to embed the definitions of pi-next and pi-term
within pi-sum, since these procedures are unlikely to be useful for any other purpose. We will see how to get
rid of them altogether in section 1.3.2.

51 The intent of exercises 1.31-1.33 is to demonstrate the expressive power that is attained by using an
appropriate abstraction to consolidate many seemingly disparate operations. However, though accumulation
and filtering are elegant ideas, our hands are somewhat tied in using them at this point since we do not yet
have data structures to provide suitable means of combination for these abstractions. We will return to these
ideas in section 2.2.3 when we show how to use sequences as interfaces for combining filters and
accumulators to build even more powerful abstractions. We will see there how these methods really come
into their own as a powerful and elegant approach to designing programs.

52 This formula was discovered by the seventeenth-century English mathematician John Wallis.

53 It would be clearer and less intimidating to people learning Lisp if a name more obvious than lambda, such
as make-procedure, were used. But the convention is firmly entrenched. The notation is adopted from the
calculus, a mathematical formalism introduced by the mathematical logician Alonzo Church (1941). Church
developed the calculus to provide a rigorous foundation for studying the notions of function and function
application. The calculus has become a basic tool for mathematical investigations of the semantics of
programming languages.

54 Understanding internal definitions well enough to be sure a program means what we intend it to mean
requires a more elaborate model of the evaluation process than we have presented in this chapter. The
subtleties do not arise with internal definitions of procedures, however. We will return to this issue in
section 4.1.6, after we learn more about evaluation.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.7
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.8
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-15.html#%_sec_2.2.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1.6

2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­12.html#%_sec_1.3 18/18

55 We have used 0.001 as a representative ``small'' number to indicate a tolerance for the acceptable error in
a calculation. The appropriate tolerance for a real calculation depends upon the problem to be solved and
the limitations of the computer and the algorithm. This is often a very subtle consideration, requiring help
from a numerical analyst or some other kind of magician.

56 This can be accomplished using error, which takes as arguments a number of items that are printed as
error messages.

57 Try this during a boring lecture: Set your calculator to radians mode and then repeatedly press the cos
button until you obtain the fixed point.

58 (pronounced ``maps to'') is the mathematician's way of writing lambda. y x/y means (lambda(y) (/ x y)),
that is, the function whose value at y is x/y.

59 Observe that this is a combination whose operator is itself a combination. Exercise 1.4 already
demonstrated the ability to form such combinations, but that was only a toy example. Here we begin to see
the real need for such combinations -- when applying a procedure that is obtained as the value returned by
a higher-order procedure.

60 See exercise 1.45 for a further generalization.

61 Elementary calculus books usually describe Newton's method in terms of the sequence of approximations
xn+1 = xn - g(xn)/Dg(xn). Having language for talking about processes and using the idea of fixed points

simplifies the description of the method.

62 Newton's method does not always converge to an answer, but it can be shown that in favorable cases
each iteration doubles the number-of-digits accuracy of the approximation to the solution. In such cases,
Newton's method will converge much more rapidly than the half-interval method.

63 For finding square roots, Newton's method converges rapidly to the correct solution from any starting
point.

64 The notion of first-class status of programming-language elements is due to the British computer scientist
Christopher Strachey (1916-1975).

65 We'll see examples of this after we introduce data structures in chapter 2.

66 The major implementation cost of first-class procedures is that allowing procedures to be returned as
values requires reserving storage for a procedure's free variables even while the procedure is not executing.
In the Scheme implementation we will study in section 4.1, these variables are stored in the procedure's
environment.

[Go to first, previous, next page; contents; index]

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_thm_1.4
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1
https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-13.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start

