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2.4  Multiple Representations for Abstract Data

We have introduced data abstraction, a methodology for structuring systems in
such a way that much of a program can be specified independent of the choices
involved in implementing the data objects that the program manipulates. For
example, we saw in section 2.1.1 how to separate the task of designing a
program that uses rational numbers from the task of implementing rational
numbers in terms of the computer language's primitive mechanisms for
constructing compound data. The key idea was to erect an abstraction barrier --
in this case, the selectors and constructors for rational numbers (make-rat, numer,
denom) -- that isolates the way rational numbers are used from their underlying
representation in terms of list structure. A similar abstraction barrier isolates the
details of the procedures that perform rational arithmetic (add-rat, sub-rat, mul-rat,
and div-rat) from the ``higher-level'' procedures that use rational numbers. The
resulting program has the structure shown in figure 2.1.

These data-abstraction barriers are powerful tools for controlling complexity. By
isolating the underlying representations of data objects, we can divide the task of
designing a large program into smaller tasks that can be performed separately.
But this kind of data abstraction is not yet powerful enough, because it may not
always make sense to speak of ``the underlying representation'' for a data object.

For one thing, there might be more than one useful representation for a data
object, and we might like to design systems that can deal with multiple
representations. To take a simple example, complex numbers may be represented
in two almost equivalent ways: in rectangular form (real and imaginary parts) and
in polar form (magnitude and angle). Sometimes rectangular form is more
appropriate and sometimes polar form is more appropriate. Indeed, it is perfectly
plausible to imagine a system in which complex numbers are represented in both
ways, and in which the procedures for manipulating complex numbers work with
either representation.

More importantly, programming systems are often designed by many people
working over extended periods of time, subject to requirements that change over
time. In such an environment, it is simply not possible for everyone to agree in
advance on choices of data representation. So in addition to the data-abstraction
barriers that isolate representation from use, we need abstraction barriers that
isolate different design choices from each other and permit different choices to
coexist in a single program. Furthermore, since large programs are often created
by combining pre-existing modules that were designed in isolation, we need
conventions that permit programmers to incorporate modules into larger systems
additively, that is, without having to redesign or reimplement these modules.

In this section, we will learn how to cope with data that may be represented in
different ways by different parts of a program. This requires constructing generic
procedures -- procedures that can operate on data that may be represented in
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more than one way. Our main technique for building generic procedures will be
to work in terms of data objects that have type tags, that is, data objects that
include explicit information about how they are to be processed. We will also
discuss data-directed programming, a powerful and convenient implementation
strategy for additively assembling systems with generic operations.

We begin with the simple complex-number example. We will see how type tags
and data-directed style enable us to design separate rectangular and polar
representations for complex numbers while maintaining the notion of an abstract
``complex-number'' data object. We will accomplish this by defining arithmetic
procedures for complex numbers (add-complex, sub-complex, mul-complex, and div-
complex) in terms of generic selectors that access parts of a complex number
independent of how the number is represented. The resulting complex-number
system, as shown in figure 2.19, contains two different kinds of abstraction
barriers. The ``horizontal'' abstraction barriers play the same role as the ones in
figure 2.1. They isolate ``higher-level'' operations from ``lower-level''
representations. In addition, there is a ``vertical'' barrier that gives us the ability to
separately design and install alternative representations.

Figure 2.19:  Data-abstraction barriers in the complex-number system.

In section 2.5 we will show how to use type tags and data-directed style to
develop a generic arithmetic package. This provides procedures (add, mul, and so
on) that can be used to manipulate all sorts of ``numbers'' and can be easily
extended when a new kind of number is needed. In section 2.5.3, we'll show how
to use generic arithmetic in a system that performs symbolic algebra.

2.4.1  Representations for Complex Numbers

We will develop a system that performs arithmetic operations on complex
numbers as a simple but unrealistic example of a program that uses generic
operations. We begin by discussing two plausible representations for complex
numbers as ordered pairs: rectangular form (real part and imaginary part) and
polar form (magnitude and angle).43 Section 2.4.2 will show how both
representations can be made to coexist in a single system through the use of
type tags and generic operations.

Like rational numbers, complex numbers are naturally represented as ordered
pairs. The set of complex numbers can be thought of as a two-dimensional space
with two orthogonal axes, the ``real'' axis and the ``imaginary'' axis. (See

figure 2.20.) From this point of view, the complex number z = x + iy (where i2 = -
1) can be thought of as the point in the plane whose real coordinate is x and
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whose imaginary coordinate is y. Addition of complex numbers reduces in this
representation to addition of coordinates:

When multiplying complex numbers, it is more natural to think in terms of
representing a complex number in polar form, as a magnitude and an angle (r
and A in figure 2.20). The product of two complex numbers is the vector obtained
by stretching one complex number by the length of the other and then rotating it
through the angle of the other:

Thus, there are two different representations for complex numbers, which are
appropriate for different operations. Yet, from the viewpoint of someone writing a
program that uses complex numbers, the principle of data abstraction suggests
that all the operations for manipulating complex numbers should be available
regardless of which representation is used by the computer. For example, it is
often useful to be able to find the magnitude of a complex number that is
specified by rectangular coordinates. Similarly, it is often useful to be able to
determine the real part of a complex number that is specified by polar
coordinates.

Figure 2.20:  Complex numbers as points in the plane.

To design such a system, we can follow the same data-abstraction strategy we
followed in designing the rational-number package in section 2.1.1. Assume that
the operations on complex numbers are implemented in terms of four selectors:
real-part, imag-part, magnitude, and angle. Also assume that we have two procedures
for constructing complex numbers: make-from-real-imag returns a complex number
with specified real and imaginary parts, and make-from-mag-ang returns a complex
number with specified magnitude and angle. These procedures have the property
that, for any complex number z, both

(make-from-real-imag (real-part z) (imag-part z))

and

(make-from-mag-ang (magnitude z) (angle z))

produce complex numbers that are equal to z.
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Using these constructors and selectors, we can implement arithmetic on complex
numbers using the ``abstract data'' specified by the constructors and selectors,
just as we did for rational numbers in section 2.1.1. As shown in the formulas
above, we can add and subtract complex numbers in terms of real and imaginary
parts while multiplying and dividing complex numbers in terms of magnitudes
and angles:

(define (add-complex z1 z2)
  (make-from-real-imag (+ (real-part z1) (real-part z2))
                       (+ (imag-part z1) (imag-part z2))))
(define (sub-complex z1 z2)
  (make-from-real-imag (- (real-part z1) (real-part z2))
                       (- (imag-part z1) (imag-part z2))))
(define (mul-complex z1 z2)
  (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                     (+ (angle z1) (angle z2))))
(define (div-complex z1 z2)
  (make-from-mag-ang (/ (magnitude z1) (magnitude z2))
                     (- (angle z1) (angle z2))))

To complete the complex-number package, we must choose a representation and
we must implement the constructors and selectors in terms of primitive numbers
and primitive list structure. There are two obvious ways to do this: We can
represent a complex number in ``rectangular form'' as a pair (real part, imaginary
part) or in ``polar form'' as a pair (magnitude, angle). Which shall we choose?

In order to make the different choices concrete, imagine that there are two
programmers, Ben Bitdiddle and Alyssa P. Hacker, who are independently
designing representations for the complex-number system. Ben chooses to
represent complex numbers in rectangular form. With this choice, selecting the
real and imaginary parts of a complex number is straightforward, as is
constructing a complex number with given real and imaginary parts. To find the
magnitude and the angle, or to construct a complex number with a given
magnitude and angle, he uses the trigonometric relations

which relate the real and imaginary parts (x, y) to the magnitude and the angle (r,
A).44 Ben's representation is therefore given by the following selectors and
constructors:

(define (real-part z) (car z))
(define (imag-part z) (cdr z))
(define (magnitude z)
  (sqrt (+ (square (real-part z)) (square (imag-part z)))))
(define (angle z)
  (atan (imag-part z) (real-part z)))
(define (make-from-real-imag x y) (cons x y))
(define (make-from-mag-ang r a) 
  (cons (* r (cos a)) (* r (sin a))))

Alyssa, in contrast, chooses to represent complex numbers in polar form. For her,
selecting the magnitude and angle is straightforward, but she has to use the
trigonometric relations to obtain the real and imaginary parts. Alyssa's
representation is:

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_sec_2.1.1
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(define (real-part z)
  (* (magnitude z) (cos (angle z))))
(define (imag-part z)
  (* (magnitude z) (sin (angle z))))
(define (magnitude z) (car z))
(define (angle z) (cdr z))
(define (make-from-real-imag x y) 
  (cons (sqrt (+ (square x) (square y)))
        (atan y x)))
(define (make-from-mag-ang r a) (cons r a))

The discipline of data abstraction ensures that the same implementation of add-
complex, sub-complex, mul-complex, and div-complex will work with either Ben's
representation or Alyssa's representation.

2.4.2  Tagged data

One way to view data abstraction is as an application of the ``principle of least
commitment.'' In implementing the complex-number system in section 2.4.1, we
can use either Ben's rectangular representation or Alyssa's polar representation.
The abstraction barrier formed by the selectors and constructors permits us to
defer to the last possible moment the choice of a concrete representation for our
data objects and thus retain maximum flexibility in our system design.

The principle of least commitment can be carried to even further extremes. If we
desire, we can maintain the ambiguity of representation even after we have
designed the selectors and constructors, and elect to use both Ben's
representation and Alyssa's representation. If both representations are included in
a single system, however, we will need some way to distinguish data in polar
form from data in rectangular form. Otherwise, if we were asked, for instance, to
find the magnitude of the pair (3,4), we wouldn't know whether to answer 5
(interpreting the number in rectangular form) or 3 (interpreting the number in
polar form). A straightforward way to accomplish this distinction is to include a
type tag -- the symbol rectangular or polar -- as part of each complex number.
Then when we need to manipulate a complex number we can use the tag to
decide which selector to apply.

In order to manipulate tagged data, we will assume that we have procedures type-
tag and contents that extract from a data object the tag and the actual contents
(the polar or rectangular coordinates, in the case of a complex number). We will
also postulate a procedure attach-tag that takes a tag and contents and produces
a tagged data object. A straightforward way to implement this is to use ordinary
list structure:

(define (attach-tag type-tag contents)
  (cons type-tag contents))
(define (type-tag datum)
  (if (pair? datum)
      (car datum)
      (error "Bad tagged datum -- TYPE-TAG" datum)))
(define (contents datum)
  (if (pair? datum)
      (cdr datum)
      (error "Bad tagged datum -- CONTENTS" datum)))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_2.4.2
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Using these procedures, we can define predicates rectangular? and polar?, which
recognize polar and rectangular numbers, respectively:

(define (rectangular? z)
  (eq? (type-tag z) 'rectangular))
(define (polar? z)
  (eq? (type-tag z) 'polar))

With type tags, Ben and Alyssa can now modify their code so that their two
different representations can coexist in the same system. Whenever Ben
constructs a complex number, he tags it as rectangular. Whenever Alyssa
constructs a complex number, she tags it as polar. In addition, Ben and Alyssa
must make sure that the names of their procedures do not conflict. One way to
do this is for Ben to append the suffix rectangular to the name of each of his
representation procedures and for Alyssa to append polar to the names of hers.
Here is Ben's revised rectangular representation from section 2.4.1:

(define (real-part-rectangular z) (car z))
(define (imag-part-rectangular z) (cdr z))
(define (magnitude-rectangular z)
  (sqrt (+ (square (real-part-rectangular z))
           (square (imag-part-rectangular z)))))
(define (angle-rectangular z)
  (atan (imag-part-rectangular z)
        (real-part-rectangular z)))
(define (make-from-real-imag-rectangular x y)
  (attach-tag 'rectangular (cons x y)))
(define (make-from-mag-ang-rectangular r a) 
  (attach-tag 'rectangular
              (cons (* r (cos a)) (* r (sin a)))))

and here is Alyssa's revised polar representation:

(define (real-part-polar z)
  (* (magnitude-polar z) (cos (angle-polar z))))
(define (imag-part-polar z)
  (* (magnitude-polar z) (sin (angle-polar z))))
(define (magnitude-polar z) (car z))
(define (angle-polar z) (cdr z))
(define (make-from-real-imag-polar x y) 
  (attach-tag 'polar
               (cons (sqrt (+ (square x) (square y)))
                     (atan y x))))
(define (make-from-mag-ang-polar r a)
  (attach-tag 'polar (cons r a)))

Each generic selector is implemented as a procedure that checks the tag of its
argument and calls the appropriate procedure for handling data of that type. For
example, to obtain the real part of a complex number, real-part examines the tag
to determine whether to use Ben's real-part-rectangular or Alyssa's real-part-polar. In
either case, we use contents to extract the bare, untagged datum and send this to
the rectangular or polar procedure as required:

(define (real-part z)
  (cond ((rectangular? z) 
         (real-part-rectangular (contents z)))
        ((polar? z)
         (real-part-polar (contents z)))
        (else (error "Unknown type -- REAL-PART" z))))
(define (imag-part z)
  (cond ((rectangular? z)
         (imag-part-rectangular (contents z)))
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        ((polar? z)
         (imag-part-polar (contents z)))
        (else (error "Unknown type -- IMAG-PART" z))))
(define (magnitude z)
  (cond ((rectangular? z)
         (magnitude-rectangular (contents z)))
        ((polar? z)
         (magnitude-polar (contents z)))
        (else (error "Unknown type -- MAGNITUDE" z))))
(define (angle z)
  (cond ((rectangular? z)
         (angle-rectangular (contents z)))
        ((polar? z)
         (angle-polar (contents z)))
        (else (error "Unknown type -- ANGLE" z))))

To implement the complex-number arithmetic operations, we can use the same
procedures add-complex, sub-complex, mul-complex, and div-complex from section 2.4.1,
because the selectors they call are generic, and so will work with either
representation. For example, the procedure add-complex is still

(define (add-complex z1 z2)
  (make-from-real-imag (+ (real-part z1) (real-part z2))
                       (+ (imag-part z1) (imag-part z2))))

Finally, we must choose whether to construct complex numbers using Ben's
representation or Alyssa's representation. One reasonable choice is to construct
rectangular numbers whenever we have real and imaginary parts and to construct
polar numbers whenever we have magnitudes and angles:

(define (make-from-real-imag x y)
  (make-from-real-imag-rectangular x y))
(define (make-from-mag-ang r a)
  (make-from-mag-ang-polar r a))

Figure 2.21:  Structure of the generic complex-arithmetic system.

The resulting complex-number system has the structure shown in figure 2.21. The
system has been decomposed into three relatively independent parts: the
complex-number-arithmetic operations, Alyssa's polar implementation, and Ben's
rectangular implementation. The polar and rectangular implementations could
have been written by Ben and Alyssa working separately, and both of these can
be used as underlying representations by a third programmer implementing the
complex-arithmetic procedures in terms of the abstract constructor/selector
interface.

Since each data object is tagged with its type, the selectors operate on the data
in a generic manner. That is, each selector is defined to have a behavior that
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depends upon the particular type of data it is applied to. Notice the general
mechanism for interfacing the separate representations: Within a given
representation implementation (say, Alyssa's polar package) a complex number is
an untyped pair (magnitude, angle). When a generic selector operates on a
number of polar type, it strips off the tag and passes the contents on to Alyssa's
code. Conversely, when Alyssa constructs a number for general use, she tags it
with a type so that it can be appropriately recognized by the higher-level
procedures. This discipline of stripping off and attaching tags as data objects are
passed from level to level can be an important organizational strategy, as we shall
see in section 2.5.

2.4.3  Data-Directed Programming and Additivity

The general strategy of checking the type of a datum and calling an appropriate
procedure is called dispatching on type. This is a powerful strategy for obtaining
modularity in system design. On the other hand, implementing the dispatch as in
section 2.4.2 has two significant weaknesses. One weakness is that the generic
interface procedures (real-part, imag-part, magnitude, and angle) must know about all
the different representations. For instance, suppose we wanted to incorporate a
new representation for complex numbers into our complex-number system. We
would need to identify this new representation with a type, and then add a clause
to each of the generic interface procedures to check for the new type and apply
the appropriate selector for that representation.

Another weakness of the technique is that even though the individual
representations can be designed separately, we must guarantee that no two
procedures in the entire system have the same name. This is why Ben and Alyssa
had to change the names of their original procedures from section 2.4.1.

The issue underlying both of these weaknesses is that the technique for
implementing generic interfaces is not additive. The person implementing the
generic selector procedures must modify those procedures each time a new
representation is installed, and the people interfacing the individual
representations must modify their code to avoid name conflicts. In each of these
cases, the changes that must be made to the code are straightforward, but they
must be made nonetheless, and this is a source of inconvenience and error. This
is not much of a problem for the complex-number system as it stands, but
suppose there were not two but hundreds of different representations for
complex numbers. And suppose that there were many generic selectors to be
maintained in the abstract-data interface. Suppose, in fact, that no one
programmer knew all the interface procedures or all the representations. The
problem is real and must be addressed in such programs as large-scale data-
base-management systems.

What we need is a means for modularizing the system design even further. This is
provided by the programming technique known as data-directed programming.
To understand how data-directed programming works, begin with the
observation that whenever we deal with a set of generic operations that are
common to a set of different types we are, in effect, dealing with a two-
dimensional table that contains the possible operations on one axis and the
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possible types on the other axis. The entries in the table are the procedures that
implement each operation for each type of argument presented. In the complex-
number system developed in the previous section, the correspondence between
operation name, data type, and actual procedure was spread out among the
various conditional clauses in the generic interface procedures. But the same
information could have been organized in a table, as shown in figure 2.22.

Data-directed programming is the technique of designing programs to work with
such a table directly. Previously, we implemented the mechanism that interfaces
the complex-arithmetic code with the two representation packages as a set of
procedures that each perform an explicit dispatch on type. Here we will
implement the interface as a single procedure that looks up the combination of
the operation name and argument type in the table to find the correct procedure
to apply, and then applies it to the contents of the argument. If we do this, then
to add a new representation package to the system we need not change any
existing procedures; we need only add new entries to the table.

Figure 2.22:  Table of operations for the complex-number system.

To implement this plan, assume that we have two procedures, put and get, for
manipulating the operation-and-type table:

(put <op> <type> <item>)

installs the <item> in the table, indexed by the <op> and the <type>.

(get <op> <type>)

looks up the <op>, <type> entry in the table and returns the item found there.
If no item is found, get returns false.

For now, we can assume that put and get are included in our language. In
chapter 3 (section 3.3.3, exercise 3.24) we will see how to implement these and
other operations for manipulating tables.

Here is how data-directed programming can be used in the complex-number
system. Ben, who developed the rectangular representation, implements his code
just as he did originally. He defines a collection of procedures, or a package, and
interfaces these to the rest of the system by adding entries to the table that tell
the system how to operate on rectangular numbers. This is accomplished by
calling the following procedure:

(define (install-rectangular-package)
  ;; internal procedures
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-22.html#%_sec_3.3.3
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    (sqrt (+ (square (real-part z))
             (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (make-from-mag-ang r a) 
    (cons (* r (cos a)) (* r (sin a))))
  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'make-from-real-imag 'rectangular 
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'rectangular 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

Notice that the internal procedures here are the same procedures from
section 2.4.1 that Ben wrote when he was working in isolation. No changes are
necessary in order to interface them to the rest of the system. Moreover, since
these procedure definitions are internal to the installation procedure, Ben needn't
worry about name conflicts with other procedures outside the rectangular
package. To interface these to the rest of the system, Ben installs his real-part
procedure under the operation name real-part and the type (rectangular), and
similarly for the other selectors.45 The interface also defines the constructors to be
used by the external system.46 These are identical to Ben's internally defined
constructors, except that they attach the tag.

Alyssa's polar package is analogous:

(define (install-polar-package)
  ;; internal procedures
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (make-from-real-imag x y) 
    (cons (sqrt (+ (square x) (square y)))
          (atan y x)))
  ;; interface to the rest of the system
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'make-from-real-imag 'polar
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'polar 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

Even though Ben and Alyssa both still use their original procedures defined with
the same names as each other's (e.g., real-part), these definitions are now internal
to different procedures (see section 1.1.8), so there is no name conflict.

The complex-arithmetic selectors access the table by means of a general
``operation'' procedure called apply-generic, which applies a generic operation to
some arguments. Apply-generic looks in the table under the name of the operation

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.8


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­17.html#%_sec_2.4 11/14

and the types of the arguments and applies the resulting procedure if one is
present:47

(define (apply-generic op . args)
  (let ((type-tags (map type-tag args)))
    (let ((proc (get op type-tags)))
      (if proc
          (apply proc (map contents args))
          (error
            "No method for these types -- APPLY-GENERIC"
            (list op type-tags))))))

Using apply-generic, we can define our generic selectors as follows:

(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))

Observe that these do not change at all if a new representation is added to the
system.

We can also extract from the table the constructors to be used by the programs
external to the packages in making complex numbers from real and imaginary
parts and from magnitudes and angles. As in section 2.4.2, we construct
rectangular numbers whenever we have real and imaginary parts, and polar
numbers whenever we have magnitudes and angles:

(define (make-from-real-imag x y)
  ((get 'make-from-real-imag 'rectangular) x y))
(define (make-from-mag-ang r a)
  ((get 'make-from-mag-ang 'polar) r a))

Exercise 2.73.  Section 2.3.2 described a program that performs symbolic
differentiation:

(define (deriv exp var)
  (cond ((number? exp) 0)
        ((variable? exp) (if (same-variable? exp var) 1 0))
        ((sum? exp)
         (make-sum (deriv (addend exp) var)
                   (deriv (augend exp) var)))
        ((product? exp)
         (make-sum
           (make-product (multiplier exp)
                         (deriv (multiplicand exp) var))
           (make-product (deriv (multiplier exp) var)
                         (multiplicand exp))))
        <more rules can be added here>
        (else (error "unknown expression type -- DERIV" exp))))

We can regard this program as performing a dispatch on the type of the
expression to be differentiated. In this situation the ``type tag'' of the datum is
the algebraic operator symbol (such as +) and the operation being performed is
deriv. We can transform this program into data-directed style by rewriting the
basic derivative procedure as

(define (deriv exp var)
   (cond ((number? exp) 0)
         ((variable? exp) (if (same-variable? exp var) 1 0))
         (else ((get 'deriv (operator exp)) (operands exp)
                                            var))))
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(define (operator exp) (car exp))
(define (operands exp) (cdr exp))

a.  Explain what was done above. Why can't we assimilate the predicates number?
and same-variable? into the data-directed dispatch?

b.  Write the procedures for derivatives of sums and products, and the auxiliary
code required to install them in the table used by the program above.

c.  Choose any additional differentiation rule that you like, such as the one for
exponents (exercise 2.56), and install it in this data-directed system.

d.  In this simple algebraic manipulator the type of an expression is the algebraic
operator that binds it together. Suppose, however, we indexed the procedures in
the opposite way, so that the dispatch line in deriv looked like

((get (operator exp) 'deriv) (operands exp) var)

What corresponding changes to the derivative system are required?

Exercise 2.74.  Insatiable Enterprises, Inc., is a highly decentralized conglomerate
company consisting of a large number of independent divisions located all over
the world. The company's computer facilities have just been interconnected by
means of a clever network-interfacing scheme that makes the entire network
appear to any user to be a single computer. Insatiable's president, in her first
attempt to exploit the ability of the network to extract administrative information
from division files, is dismayed to discover that, although all the division files have
been implemented as data structures in Scheme, the particular data structure
used varies from division to division. A meeting of division managers is hastily
called to search for a strategy to integrate the files that will satisfy headquarters'
needs while preserving the existing autonomy of the divisions.

Show how such a strategy can be implemented with data-directed programming.
As an example, suppose that each division's personnel records consist of a single
file, which contains a set of records keyed on employees' names. The structure of
the set varies from division to division. Furthermore, each employee's record is
itself a set (structured differently from division to division) that contains
information keyed under identifiers such as address and salary. In particular:

a.  Implement for headquarters a get-record procedure that retrieves a specified
employee's record from a specified personnel file. The procedure should be
applicable to any division's file. Explain how the individual divisions' files should
be structured. In particular, what type information must be supplied?

b.  Implement for headquarters a get-salary procedure that returns the salary
information from a given employee's record from any division's personnel file.
How should the record be structured in order to make this operation work?

c.  Implement for headquarters a find-employee-record procedure. This should search
all the divisions' files for the record of a given employee and return the record.
Assume that this procedure takes as arguments an employee's name and a list of
all the divisions' files.
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d.  When Insatiable takes over a new company, what changes must be made in
order to incorporate the new personnel information into the central system?

Message passing

The key idea of data-directed programming is to handle generic operations in
programs by dealing explicitly with operation-and-type tables, such as the table
in figure 2.22. The style of programming we used in section 2.4.2 organized the
required dispatching on type by having each operation take care of its own
dispatching. In effect, this decomposes the operation-and-type table into rows,
with each generic operation procedure representing a row of the table.

An alternative implementation strategy is to decompose the table into columns
and, instead of using ``intelligent operations'' that dispatch on data types, to work
with ``intelligent data objects'' that dispatch on operation names. We can do this
by arranging things so that a data object, such as a rectangular number, is
represented as a procedure that takes as input the required operation name and
performs the operation indicated. In such a discipline, make-from-real-imag could be
written as

(define (make-from-real-imag x y)
  (define (dispatch op)
    (cond ((eq? op 'real-part) x)
          ((eq? op 'imag-part) y)
          ((eq? op 'magnitude)
           (sqrt (+ (square x) (square y))))
          ((eq? op 'angle) (atan y x))
          (else
           (error "Unknown op -- MAKE-FROM-REAL-IMAG" op))))
  dispatch)

The corresponding apply-generic procedure, which applies a generic operation to
an argument, now simply feeds the operation's name to the data object and lets
the object do the work:48

(define (apply-generic op arg) (arg op))

Note that the value returned by make-from-real-imag is a procedure -- the internal
dispatch procedure. This is the procedure that is invoked when apply-generic
requests an operation to be performed.

This style of programming is called message passing. The name comes from the
image that a data object is an entity that receives the requested operation name
as a ``message.'' We have already seen an example of message passing in
section 2.1.3, where we saw how cons, car, and cdr could be defined with no data
objects but only procedures. Here we see that message passing is not a
mathematical trick but a useful technique for organizing systems with generic
operations. In the remainder of this chapter we will continue to use data-directed
programming, rather than message passing, to discuss generic arithmetic
operations. In chapter 3 we will return to message passing, and we will see that it
can be a powerful tool for structuring simulation programs.

Exercise 2.75.  Implement the constructor make-from-mag-ang in message-passing
style. This procedure should be analogous to the make-from-real-imag procedure
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given above.

Exercise 2.76.  As a large system with generic operations evolves, new types of
data objects or new operations may be needed. For each of the three strategies -
- generic operations with explicit dispatch, data-directed style, and message-
passing-style -- describe the changes that must be made to a system in order to
add new types or new operations. Which organization would be most appropriate
for a system in which new types must often be added? Which would be most
appropriate for a system in which new operations must often be added?

43 In actual computational systems, rectangular form is preferable to polar form most of the time because of
roundoff errors in conversion between rectangular and polar form. This is why the complex-number example
is unrealistic. Nevertheless, it provides a clear illustration of the design of a system using generic operations
and a good introduction to the more substantial systems to be developed later in this chapter.

44 The arctangent function referred to here, computed by Scheme's atan procedure, is defined so as to take
two arguments y and x and to return the angle whose tangent is y/x. The signs of the arguments determine
the quadrant of the angle.

45 We use the list (rectangular) rather than the symbol rectangular to allow for the possibility of operations
with multiple arguments, not all of the same type.

46 The type the constructors are installed under needn't be a list because a constructor is always used to
make an object of one particular type.

47 Apply-generic uses the dotted-tail notation described in exercise 2.20, because different generic operations
may take different numbers of arguments. In apply-generic, op has as its value the first argument to apply-
generic and args has as its value a list of the remaining arguments.

Apply-generic also uses the primitive procedure apply, which takes two arguments, a procedure and a list. Apply
applies the procedure, using the elements in the list as arguments. For example,

(apply + (list 1 2 3 4))

returns 10.

48 One limitation of this organization is it permits only generic procedures of one argument.
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