2016. 9. 20.

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

2.5 Systems with Generic Operations

In the previous section, we saw how to design systems in which data objects can
be represented in more than one way. The key idea is to link the code that
specifies the data operations to the several representations by means of generic
interface procedures. Now we will see how to use this same idea not only to
define operations that are generic over different representations but also to
define operations that are generic over different kinds of arguments. We have
already seen several different packages of arithmetic operations: the primitive
arithmetic (+, -, =, /) built into our language, the rational-number arithmetic (add-
rat, sub-rat, mul-rat, div-rat) of section 2.1.1, and the complex-number arithmetic
that we implemented in section 2.4.3. We will now use data-directed techniques
to construct a package of arithmetic operations that incorporates all the
arithmetic packages we have already constructed.

Figure 2.23 shows the structure of the system we shall build. Notice the
abstraction barriers. From the perspective of someone using “numbers," there is a
single procedure add that operates on whatever numbers are supplied. Add is part
of a generic interface that allows the separate ordinary-arithmetic, rational-
arithmetic, and complex-arithmetic packages to be accessed uniformly by
programs that use numbers. Any individual arithmetic package (such as the
complex package) may itself be accessed through generic procedures (such as
add-complex) that combine packages designed for different representations (such as
rectangular and polar). Moreover, the structure of the system is additive, so that
one can design the individual arithmetic packages separately and combine them
to produce a generic arithmetic system.

Programs that use numbers

I add sub mul divl

Generic anthmetic package

add—rat sub—rat add—conplex sub—ocomplesx
: :

" |mul—-ekat div—rat mul—conplex div—complex
Rational Complex adthmetic Ordinacy
arthmetic arthmetic
Rectangular Polac

List structure and primitive maching arthmetic

Figure 2.23: Generic arithmetic system.

2.5.1 Generic Arithmetic Operations

The task of designing generic arithmetic operations is analogous to that of
designing the generic complex-number operations. We would like, for instance, to
have a generic addition procedure add that acts like ordinary primitive addition +

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

1122

https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-19.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_2.5
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_sec_2.1.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html#%_sec_2.4.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_2.5.1

2016. 9. 20.

Structure and Interpretation of Computer Programs

on ordinary numbers, like add-rat on rational numbers, and like add-complex on
complex numbers. We can implement add, and the other generic arithmetic
operations, by following the same strategy we used in section 2.4.3 to implement
the generic selectors for complex numbers. We will attach a type tag to each kind
of number and cause the generic procedure to dispatch to an appropriate
package according to the data type of its arguments.

The generic arithmetic procedures are defined as follows:

(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))

We begin by installing a package for handling ordinary numbers, that is, the
primitive numbers of our language. We will tag these with the symbol scheme-
number. The arithmetic operations in this package are the primitive arithmetic
procedures (so there is no need to define extra procedures to handle the
untagged numbers). Since these operations each take two arguments, they are
installed in the table keyed by the list (scheme-number scheme-number):

(define (instal l-scheme—-number-package)
(define (tag x)
(attach-tag 'scheme—number x))

(put 'add '(scheme—number scheme—number)
(lambda (x y) (tag (+ x y))))

(put 'sub '(scheme-number scheme—number)
(lambda (x y) (tag (= x y))))

(put 'mul '(scheme—number scheme—number)
(lambda (x y) (tag (* x y))))

(put 'div '(scheme-number scheme—number)
(lambda (x y) (tag (/ x y))))

(put 'make 'scheme—number
(lambda (x) (tag x)))

'done)

Users of the Scheme-number package will create (tagged) ordinary numbers by
means of the procedure:

(define (make-scheme—number n)
((get 'make 'scheme-number) n))

Now that the framework of the generic arithmetic system is in place, we can
readily include new kinds of numbers. Here is a package that performs rational
arithmetic. Notice that, as a benefit of additivity, we can use without modification
the rational-number code from section 2.1.1 as the internal procedures in the
package:

(define (install-rational-package)
; internal procedures
(define (numer x) (car x))
(define (denom x) (cdr x))
(define (make-rat n d)
(let ((g (gcd n d)))
(cons (/ ng) (/dg))))
(define (add-rat x vy)
(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(» (denom x) (denom y))))
(define (sub-rat x y)
(make-rat (= (* (numer x) (denom y))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

2/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html#%_sec_2.4.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_sec_2.1.1

2016. 9. 20. Structure and Interpretation of Computer Programs

(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (mul-rat x y)
(make-rat (* (numer x) (numer y))
(» (denom x) (denom y))))
(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))
;5 interface to rest of the system
(define (tag x) (attach-tag 'rational x))
(put 'add '(rational rational)
(lambda (x y) (tag (add-rat x y))))
(put 'sub '(rational rational)
(lambda (x y) (tag (sub-rat x y))))
(put 'mul '(rational rational)
(lambda (x y) (tag (mul-rat x y))))
(put 'div '(rational rational)
(lambda (x y) (tag (div-rat x y))))

(put 'make 'rational
(lambda (n d) (tag (make-rat n d))))
"done)
(define (make-rational n d)
((get 'make 'rational) n d))

We can install a similar package to handle complex numbers, using the tag
complex. In creating the package, we extract from the table the operations make-
from-real-imag and make-from-mag-ang that were defined by the rectangular and polar
packages. Additivity permits us to use, as the internal operations, the same add-
complex, sub—complex, mul-complex, and div-complex procedures from section 2.4.1.

(define (instal l-complex—package)
;> imported procedures from rectangular and polar packages
(define (make—from-real—imag x y)
((get 'make—from-real—-imag 'rectangular) x y))
(define (make—from-mag-ang r a)
((get 'make—from-mag-ang 'polar) r a))
;» internal procedures
(define (add-complex z1 z2)
(make-from-real-imag (+ (real-part z1) (real-part z2))
(+ (imag-part z1) (imag-part z2))))
(define (sub—complex z1 z2)
(make-from-real-imag (
(
(define (mul-complex z1 z2)
(make-from-mag—ang (* (magnitude z1) (magnitude z2))
(+ (angle z1) (angle z2))))
(define (div-complex z1 z2)
(make—-from-mag-ang (/ (magnitude z1) (magnitude z2))
(- (angle z1) (angle z2))))
; interface to rest of the system
(define (tag z) (attach-tag 'complex z))
(put 'add '(complex complex)
(lambda (z1 z2) (tag (add-complex z1 z2))))
(put 'sub '(complex complex)
(lambda (z1 z2) (tag (sub-complex z1 z2))))
(put 'mul '(complex complex)
(lambda (z1 z2) (tag (mul-complex z1 z2))))
(put 'div '(complex complex)
(lambda (z1 z2) (tag (div-complex z1 z2))))
(put 'make—from-real—-imag 'complex
(lambda (x y) (tag (make—from-real—imag x y))))
(put 'make—from-mag-ang 'complex
(lambda (r a) (tag (make—from-mag-ang r a))))
'done)

real-part z1) (real-part z2))

-
- (imag—part z1) (imag-part z2))))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

3/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html#%_sec_2.4.1

2016. 9. 20. Structure and Interpretation of Computer Programs

Programs outside the complex-number package can construct complex numbers
either from real and imaginary parts or from magnitudes and angles. Notice how
the underlying procedures, originally defined in the rectangular and polar
packages, are exported to the complex package, and exported from there to the
outside world.

(define (make—complex—from-real—imag x y)
((get 'make—from-real—imag 'complex) x y))

(define (make-complex—from-mag-ang r a)
((get 'make—from-mag-ang 'complex) r a))

What we have here is a two-level tag system. A typical complex number, such as
3 + 4i in rectangular form, would be represented as shown in figure 2.24. The
outer tag (complex) is used to direct the number to the complex package. Once
within the complex package, the next tag (rectangular) is used to direct the
number to the rectangular package. In a large and complicated system there
might be many levels, each interfaced with the next by means of generic
operations. As a data object is passed “downward," the outer tag that is used to
direct it to the appropriate package is stripped off (by applying contents) and the
next level of tag (if any) becomes visible to be used for further dispatching.

Figure 2.24: Representation of 3 + 4i in rectangular form.

In the above packages, we used add-rat, add-complex, and the other arithmetic
procedures exactly as originally written. Once these definitions are internal to
different installation procedures, however, they no longer need names that are
distinct from each other: we could simply name them add, sub, mul, and div in both
packages.

Exercise 2.77. Louis Reasoner tries to evaluate the expression (magnitude z) where
z is the object shown in figure 2.24. To his surprise, instead of the answer 5 he
gets an error message from apply-generic, saying there is no method for the
operation magnitude on the types (complex). He shows this interaction to Alyssa P.
Hacker, who says "The problem is that the complex-number selectors were never
defined for complex numbers, just for polar and rectangular numbers. All you have to
do to make this work is add the following to the complex package:"

('‘real-part '(complex) real-part)
(put 'imag-part '(complex) imag-part)
(I
(I

~— —

magnitude '(complex) magnitude)
put 'angle '(complex) angle)

Describe in detail why this works. As an example, trace through all the procedures
called in evaluating the expression (magnitude z) where z is the object shown in
figure 2.24. In particular, how many times is apply-generic invoked? What
procedure is dispatched to in each case?

Exercise 2.78. The internal procedures in the scheme-number package are essentially

nothing more than calls to the primitive procedures +, -, etc. It was not possible

to use the primitives of the language directly because our type-tag system
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 4/22

2016. 9. 20.

Structure and Interpretation of Computer Programs

requires that each data object have a type attached to it. In fact, however, all Lisp
implementations do have a type system, which they use internally. Primitive
predicates such as symbol? and number? determine whether data objects have
particular types. Modify the definitions of type-tag, contents, and attach-tag from
section 2.4.2 so that our generic system takes advantage of Scheme's internal
type system. That is to say, the system should work as before except that ordinary
numbers should be represented simply as Scheme numbers rather than as pairs
whose car is the symbol scheme-number.

Exercise 2.79. Define a generic equality predicate equ? that tests the equality of
two numbers, and install it in the generic arithmetic package. This operation
should work for ordinary numbers, rational numbers, and complex numbers.

Exercise 2.80. Define a generic predicate =zero? that tests if its argument is zero,
and install it in the generic arithmetic package. This operation should work for
ordinary numbers, rational numbers, and complex numbers.

2.5.2 Combining Data of Different Types

We have seen how to define a unified arithmetic system that encompasses
ordinary numbers, complex numbers, rational numbers, and any other type of
number we might decide to invent, but we have ignored an important issue. The
operations we have defined so far treat the different data types as being
completely independent. Thus, there are separate packages for adding, say, two
ordinary numbers, or two complex numbers. What we have not yet considered is
the fact that it is meaningful to define operations that cross the type boundaries,
such as the addition of a complex number to an ordinary number. We have gone
to great pains to introduce barriers between parts of our programs so that they
can be developed and understood separately. We would like to introduce the
cross-type operations in some carefully controlled way, so that we can support
them without seriously violating our module boundaries.

One way to handle cross-type operations is to design a different procedure for
each possible combination of types for which the operation is valid. For example,
we could extend the complex-number package so that it provides a procedure for
adding complex numbers to ordinary numbers and installs this in the table using

the tag (complex scheme-number):42

; to be included in the complex package
(define (add-complex—to—schemenum z x)
(make—from-real—imag (+ (real-part z) x)
(imag-part z)))
(put 'add '(complex scheme-number)
(lambda (z x) (tag (add-complex—to—schemenum z x))))

This technique works, but it is cumbersome. With such a system, the cost of
introducing a new type is not just the construction of the package of procedures
for that type but also the construction and installation of the procedures that
implement the cross-type operations. This can easily be much more code than is
needed to define the operations on the type itself. The method also undermines
our ability to combine separate packages additively, or least to limit the extent to
which the implementors of the individual packages need to take account of other

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 5/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html#%_sec_2.4.2
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_2.5.2

2016. 9. 20.

Structure and Interpretation of Computer Programs

packages. For instance, in the example above, it seems reasonable that handling
mixed operations on complex numbers and ordinary numbers should be the
responsibility of the complex-number package. Combining rational numbers and
complex numbers, however, might be done by the complex package, by the
rational package, or by some third package that uses operations extracted from
these two packages. Formulating coherent policies on the division of
responsibility among packages can be an overwhelming task in designing systems
with many packages and many cross-type operations.

Coercion

In the general situation of completely unrelated operations acting on completely
unrelated types, implementing explicit cross-type operations, cumbersome though
it may be, is the best that one can hope for. Fortunately, we can usually do better
by taking advantage of additional structure that may be latent in our type system.
Often the different data types are not completely independent, and there may be
ways by which objects of one type may be viewed as being of another type. This
process is called coercion. For example, if we are asked to arithmetically combine
an ordinary number with a complex number, we can view the ordinary number as
a complex number whose imaginary part is zero. This transforms the problem to
that of combining two complex numbers, which can be handled in the ordinary
way by the complex-arithmetic package.

In general, we can implement this idea by designing coercion procedures that
transform an object of one type into an equivalent object of another type. Here is
a typical coercion procedure, which transforms a given ordinary number to a
complex number with that real part and zero imaginary part:

(define (scheme-number—>complex n)
(make—-complex—from-real—-imag (contents n) 0))

We install these coercion procedures in a special coercion table, indexed under
the names of the two types:

(put—-coercion 'scheme-number 'complex scheme—number—->complex)

(We assume that there are put-coercion and get-coercion procedures available for
manipulating this table.) Generally some of the slots in the table will be empty,
because it is not generally possible to coerce an arbitrary data object of each
type into all other types. For example, there is no way to coerce an arbitrary
complex number to an ordinary number, so there will be no general complex-
>scheme-number procedure included in the table.

Once the coercion table has been set up, we can handle coercion in a uniform
manner by modifying the apply-generic procedure of section 2.4.3. When asked to
apply an operation, we first check whether the operation is defined for the
arguments' types, just as before. If so, we dispatch to the procedure found in the
operation-and-type table. Otherwise, we try coercion. For simplicity, we consider
only the case where there are two arguments.22 We check the coercion table to
see if objects of the first type can be coerced to the second type. If so, we coerce
the first argument and try the operation again. If objects of the first type cannot
in general be coerced to the second type, we try the coercion the other way

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 6/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_284
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html#%_sec_2.4.3

2016. 9. 20. Structure and Interpretation of Computer Programs

around to see if there is a way to coerce the second argument to the type of the
first argument. Finally, if there is no known way to coerce either type to the other
type, we give up. Here is the procedure:

(define (apply-generic op . args)
(let ((type—tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(if (= (length args) 2)
(let ((typel (car type-tags))
(type2 (cadr type-tags))
(al (car args))
(a2 (cadr args)))
(let ((t1->t2 (get-coercion typel type?))
(t2—>t1 (get—coercion type2 typel)))
(cond (t1—>t2
(apply-generic op (t1->t2 al) a2))
(t2->11
(apply-generic op al (t2—>t1 a2)))
(else
(error "No method for these types"
(list op type-tags))))))
(error "No method for these types"
(list op type-tags)))))))

This coercion scheme has many advantages over the method of defining explicit
cross-type operations, as outlined above. Although we still need to write coercion

procedures to relate the types (possibly n® procedures for a system with n types),
we need to write only one procedure for each pair of types rather than a different
procedure for each collection of types and each generic operation.2l What we are
counting on here is the fact that the appropriate transformation between types
depends only on the types themselves, not on the operation to be applied.

On the other hand, there may be applications for which our coercion scheme is
not general enough. Even when neither of the objects to be combined can be
converted to the type of the other it may still be possible to perform the
operation by converting both objects to a third type. In order to deal with such
complexity and still preserve modularity in our programs, it is usually necessary to
build systems that take advantage of still further structure in the relations among
types, as we discuss next.

Hierarchies of types

The coercion scheme presented above relied on the existence of natural relations
between pairs of types. Often there is more “global" structure in how the
different types relate to each other. For instance, suppose we are building a
generic arithmetic system to handle integers, rational numbers, real numbers, and
complex numbers. In such a system, it is quite natural to regard an integer as a
special kind of rational number, which is in turn a special kind of real number,
which is in turn a special kind of complex number. What we actually have is a so-
called hierarchy of types, in which, for example, integers are a subtype of rational
numbers (i.e., any operation that can be applied to a rational number can
automatically be applied to an integer). Conversely, we say that rational numbers
form a supertype of integers. The particular hierarchy we have here is of a very

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 7122

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_287

2016. 9. 20.

Structure and Interpretation of Computer Programs

simple kind, in which each type has at most one supertype and at most one
subtype. Such a structure, called a tower, is illustrated in figure 2.25.

complex

cational

integer

Figure 2.25: A tower of types.

If we have a tower structure, then we can greatly simplify the problem of adding
a new type to the hierarchy, for we need only specify how the new type is
embedded in the next supertype above it and how it is the supertype of the type
below it. For example, if we want to add an integer to a complex number, we
need not explicitly define a special coercion procedure integer->complex. Instead, we
define how an integer can be transformed into a rational number, how a rational
number is transformed into a real number, and how a real number is transformed
into a complex number. We then allow the system to transform the integer into a
complex number through these steps and then add the two complex numbers.

We can redesign our apply-generic procedure in the following way: For each type,
we need to supply a raise procedure, which “raises" objects of that type one level
in the tower. Then when the system is required to operate on objects of different
types it can successively raise the lower types until all the objects are at the same
level in the tower. (Exercises 2.83 and 2.84 concern the details of implementing
such a strategy.)

Another advantage of a tower is that we can easily implement the notion that
every type “inherits" all operations defined on a supertype. For instance, if we do
not supply a special procedure for finding the real part of an integer, we should
nevertheless expect that real-part will be defined for integers by virtue of the fact
that integers are a subtype of complex numbers. In a tower, we can arrange for
this to happen in a uniform way by modifying apply-generic. If the required
operation is not directly defined for the type of the object given, we raise the
object to its supertype and try again. We thus crawl up the tower, transforming
our argument as we go, until we either find a level at which the desired operation
can be performed or hit the top (in which case we give up).

Yet another advantage of a tower over a more general hierarchy is that it gives us
a simple way to “lower" a data object to the simplest representation. For
example, if we add 2 + 3i to 4 - 3i, it would be nice to obtain the answer as the
integer 6 rather than as the complex number 6 + Oi. Exercise 2.85 discusses a way
to implement such a lowering operation. (The trick is that we need a general way
to distinguish those objects that can be lowered, such as 6 + 0i, from those that
cannot, such as 6 + 2i.)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 8/22

2016. 9. 20.

Structure and Interpretation of Computer Programs

polygon
quadcilateral
tl:apcznid Lite

toangle

/ \ pacallelogram
isosceles fght
tiangle tiangle

rectangle thombus

equilatecal isosceles \ /

T.rianglc IflghT. squarc
triangle

Figure 2.26: Relations among types of geometric figures.

Inadequacies of hierarchies

If the data types in our system can be naturally arranged in a tower, this greatly
simplifies the problems of dealing with generic operations on different types, as
we have seen. Unfortunately, this is usually not the case. Figure 2.26 illustrates a
more complex arrangement of mixed types, this one showing relations among
different types of geometric figures. We see that, in general, a type may have
more than one subtype. Triangles and quadrilaterals, for instance, are both
subtypes of polygons. In addition, a type may have more than one supertype. For
example, an isosceles right triangle may be regarded either as an isosceles
triangle or as a right triangle. This multiple-supertypes issue is particularly thorny,
since it means that there is no unique way to “raise" a type in the hierarchy.
Finding the “correct" supertype in which to apply an operation to an object may
involve considerable searching through the entire type network on the part of a
procedure such as apply-generic. Since there generally are multiple subtypes for a
type, there is a similar problem in coercing a value “down" the type hierarchy.
Dealing with large numbers of interrelated types while still preserving modularity
in the design of large systems is very difficult, and is an area of much current
research.2

Exercise 2.81. Louis Reasoner has noticed that apply-generic may try to coerce the
arguments to each other's type even if they already have the same type.
Therefore, he reasons, we need to put procedures in the coercion table to
"coerce" arguments of each type to their own type. For example, in addition to
the scheme-number—>complex coercion shown above, he would do:

(define (scheme—-number—>scheme—number n) n)

(define (complex—>complex z) z)

(put-coercion 'scheme-number 'scheme—-number
scheme—-number—>scheme—number)

(put-coercion 'complex 'complex complex—>complex)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

9/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_288

2016. 9. 20. Structure and Interpretation of Computer Programs

a. With Louis's coercion procedures installed, what happens if apply-generic is
called with two arguments of type scheme-number or two arguments of type complex
for an operation that is not found in the table for those types? For example,
assume that we've defined a generic exponentiation operation:

(define (exp x y) (apply-generic 'exp x y))

and have put a procedure for exponentiation in the Scheme-number package but
not in any other package:

;» following added to Scheme-number package
(put 'exp '(scheme—number scheme—number)
(lambda (x y) (tag (expt x y)))) ; using primitive expt

What happens if we call exp with two complex numbers as arguments?

b. Is Louis correct that something had to be done about coercion with arguments
of the same type, or does apply-generic work correctly as is?

c. Modify apply-generic so that it doesn't try coercion if the two arguments have
the same type.

Exercise 2.82. Show how to generalize apply-generic to handle coercion in the
general case of multiple arguments. One strategy is to attempt to coerce all the
arguments to the type of the first argument, then to the type of the second
argument, and so on. Give an example of a situation where this strategy (and
likewise the two-argument version given above) is not sufficiently general. (Hint:
Consider the case where there are some suitable mixed-type operations present
in the table that will not be tried.)

Exercise 2.83. Suppose you are designing a generic arithmetic system for
dealing with the tower of types shown in figure 2.25: integer, rational, real,
complex. For each type (except complex), design a procedure that raises objects
of that type one level in the tower. Show how to install a generic raise operation
that will work for each type (except complex).

Exercise 2.84. Using the raise operation of exercise 2.83, modify the apply-generic
procedure so that it coerces its arguments to have the same type by the method
of successive raising, as discussed in this section. You will need to devise a way to
test which of two types is higher in the tower. Do this in a manner that is
“compatible” with the rest of the system and will not lead to problems in adding
new levels to the tower.

Exercise 2.85. This section mentioned a method for “simplifying" a data object
by lowering it in the tower of types as far as possible. Design a procedure drop
that accomplishes this for the tower described in exercise 2.83. The key is to
decide, in some general way, whether an object can be lowered. For example, the
complex number 1.5 + 0i can be lowered as far as real, the complex number 1 +
0i can be lowered as far as integer, and the complex number 2 + 3i cannot be
lowered at all. Here is a plan for determining whether an object can be lowered:
Begin by defining a generic operation project that “pushes" an object down in the
tower. For example, projecting a complex number would involve throwing away
the imaginary part. Then a number can be dropped if, when we project it and

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 10/22

2016. 9. 20. Structure and Interpretation of Computer Programs

raise the result back to the type we started with, we end up with something equal
to what we started with. Show how to implement this idea in detail, by writing a
drop procedure that drops an object as far as possible. You will need to design the
various projection operations® and install project as a generic operation in the
system. You will also need to make use of a generic equality predicate, such as
described in exercise 2.79. Finally, use drop to rewrite apply-generic from

exercise 2.84 so that it “simplifies"” its answers.

Exercise 2.86. Suppose we want to handle complex numbers whose real parts,
imaginary parts, magnitudes, and angles can be either ordinary numbers, rational
numbers, or other numbers we might wish to add to the system. Describe and
implement the changes to the system needed to accommodate this. You will have
to define operations such as sine and cosine that are generic over ordinary
numbers and rational numbers.

2.5.3 Example: Symbolic Algebra

The manipulation of symbolic algebraic expressions is a complex process that
illustrates many of the hardest problems that occur in the design of large-scale
systems. An algebraic expression, in general, can be viewed as a hierarchical
structure, a tree of operators applied to operands. We can construct algebraic
expressions by starting with a set of primitive objects, such as constants and
variables, and combining these by means of algebraic operators, such as addition
and multiplication. As in other languages, we form abstractions that enable us to
refer to compound objects in simple terms. Typical abstractions in symbolic
algebra are ideas such as linear combination, polynomial, rational function, or
trigonometric function. We can regard these as compound “types," which are
often useful for directing the processing of expressions. For example, we could
describe the expression

rF sn(y? + 1) + £ cos 2y + cos(y® — 247

as a polynomial in x with coefficients that are trigonometric functions of
polynomials in y whose coefficients are integers.

We will not attempt to develop a complete algebraic-manipulation system here.
Such systems are exceedingly complex programs, embodying deep algebraic
knowledge and elegant algorithms. What we will do is look at a simple but
important part of algebraic manipulation: the arithmetic of polynomials. We will
illustrate the kinds of decisions the designer of such a system faces, and how to
apply the ideas of abstract data and generic operations to help organize this
effort.

Arithmetic on polynomials

Our first task in designing a system for performing arithmetic on polynomials is
to decide just what a polynomial is. Polynomials are normally defined relative to
certain variables (the indeterminates of the polynomial). For simplicity, we will
restrict ourselves to polynomials having just one indeterminate (univariate
polynomials).22 We will define a polynomial to be a sum of terms, each of which
is either a coefficient, a power of the indeterminate, or a product of a coefficient

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 11/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_2.5.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_297

2016. 9. 20.

Structure and Interpretation of Computer Programs

and a power of the indeterminate. A coefficient is defined as an algebraic
expression that is not dependent upon the indeterminate of the polynomial. For
example,

e’ +3r 47

is a simple polynomial in x, and

(¥ + 1+ (2r +1

is a polynomial in x whose coefficients are polynomials in y.

Already we are skirting some thorny issues. Is the first of these polynomials the

same as the polynomial 5y2 + 3y + 7, or not? A reasonable answer might be
“yes, if we are considering a polynomial purely as a mathematical function, but
no, if we are considering a polynomial to be a syntactic form." The second
polynomial is algebraically equivalent to a polynomial in y whose coefficients are
polynomials in x. Should our system recognize this, or not? Furthermore, there are
other ways to represent a polynomial -- for example, as a product of factors, or
(for a univariate polynomial) as the set of roots, or as a listing of the values of the
polynomial at a specified set of points.2> We can finesse these questions by
deciding that in our algebraic-manipulation system a “polynomial” will be a
particular syntactic form, not its underlying mathematical meaning.

Now we must consider how to go about doing arithmetic on polynomials. In this
simple system, we will consider only addition and multiplication. Moreover, we
will insist that two polynomials to be combined must have the same
indeterminate.

We will approach the design of our system by following the familiar discipline of
data abstraction. We will represent polynomials using a data structure called a
poly, which consists of a variable and a collection of terms. We assume that we
have selectors variable and term-1ist that extract those parts from a poly and a
constructor make-poly that assembles a poly from a given variable and a term list. A
variable will be just a symbol, so we can use the same-variable? procedure of
section 2.3.2 to compare variables. The following procedures define addition and
multiplication of polys:

(define (add-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make-poly (variable p1)
(add-terms (term-list p1)
(term-1list p2)))
(error "Polys not in same var — ADD-POLY"
(list p1p2))))
(define (mul-poly p1 p2)
(if (same-variable? (variable p1) (variable p2))
(make—poly (variable p1)
(mul-terms (term-list p1)
(term-list p2)))
(error "Polys not in same var — MUL-POLY"
(list p1p2))))

To incorporate polynomials into our generic arithmetic system, we need to supply
them with type tags. We'll use the tag polynomial, and install appropriate
operations on tagged polynomials in the operation table. We'll embed all our

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

12/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-16.html#%_sec_2.3.2

2016. 9. 20. Structure and Interpretation of Computer Programs

code in an installation procedure for the polynomial package, similar to the ones
in section 2.5.1:

(define (install-polynomial-package)
;» internal procedures
;» representation of poly
(define (make-poly variable term-list)
(cons variable term-list))
(define (variable p) (car p))
(define (term-list p) (cdr p))
<procedures same-variable? and variable? from section 2.3.2>
;> representation of terms and term lists
<procedures adjoin-term ...coeff from text below>

;5 continued on next page

(define (add-poly p1 p2) ...)
<procedures used by add-poly>
(define (mul-poly p1 p2) ...)
<procedures used by mul-poly>
; interface to rest of the system

(define (tag p) (attach-tag 'polynomial p))
(put 'add '(polynomial polynomial)

(lambda (p1 p2) (tag (add-poly p1 p2))))
(put 'mul '(polynomial polynomial)

(lambda (p1 p2) (tag (mul-poly p1 p2))))
(put 'make 'polynomial

(lambda (var terms) (tag (make—-poly var terms))))
"done)

Polynomial addition is performed termwise. Terms of the same order (i.e., with
the same power of the indeterminate) must be combined. This is done by
forming a new term of the same order whose coefficient is the sum of the
coefficients of the addends. Terms in one addend for which there are no terms of
the same order in the other addend are simply accumulated into the sum
polynomial being constructed.

In order to manipulate term lists, we will assume that we have a constructor the-
empty-termlist that returns an empty term list and a constructor adjoin-term that
adjoins a new term to a term list. We will also assume that we have a predicate
empty-termlist? that tells if a given term list is empty, a selector first-term that
extracts the highest-order term from a term list, and a selector rest-terms that
returns all but the highest-order term. To manipulate terms, we will suppose that
we have a constructor make-term that constructs a term with given order and
coefficient, and selectors order and coeff that return, respectively, the order and
the coefficient of the term. These operations allow us to consider both terms and
term lists as data abstractions, whose concrete representations we can worry
about separately.

Here is the procedure that constructs the term list for the sum of two
polynomials:2®

dd-terms L1 L2)
empty-termlist? L1) L2)

(define (a
(
(empty-termlist? L2) L1)
e
(

(cond

—~ o~ —~ —

|se
let ((t1 (first-term L1)) (t2 (first-term L2)))
(cond ((> (order t1) (order t2))

(adjoin-term

t1 (add-terms (rest-terms L1) L2)))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 13/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-16.html#%_sec_2.3.2

2016. 9. 20.

Structure and Interpretation of Computer Programs

((< (order t1) (order t2))
(adjoin-term
t2 (add-terms L1 (rest-terms L2))))
(else
(adjoin-term
(make-term (order t1)
add (coeff t1) (coeff t2)))
rest-terms L1)

rest-terms L2)))))))))

(add-terms

—~ o~ —~ —

The most important point to note here is that we used the generic addition
procedure add to add together the coefficients of the terms being combined. This
has powerful consequences, as we will see below.

In order to multiply two term lists, we multiply each term of the first list by all the
terms of the other list, repeatedly using mul-term-by-all-terms, which multiplies a
given term by all terms in a given term list. The resulting term lists (one for each
term of the first list) are accumulated into a sum. Multiplying two terms forms a
term whose order is the sum of the orders of the factors and whose coefficient is
the product of the coefficients of the factors:

(define (mul-terms L1 L2)
(if (empty-termlist? L1)
(the—empty-termlist)
(add-terms (mul-term-by-all-terms (first-term L1) L2)
(mul-terms (rest-terms L1) L2))))
(define (mul-term-by-all-terms t1 L)
(if (empty-termlist? L)
(the-empty—-termlist)
(let ((t2 (first-termL)))
(adjoin-term
(make—-term (+ (order t1) (order t2))
(mul (coeff t1) (coeff t2)))
(mul-term-by-al -terms t1 (rest-terms L))))))

This is really all there is to polynomial addition and multiplication. Notice that,
since we operate on terms using the generic procedures add and mul, our
polynomial package is automatically able to handle any type of coefficient that is
known about by the generic arithmetic package. If we include a coercion
mechanism such as one of those discussed in section 2.5.2, then we also are
automatically able to handle operations on polynomials of different coefficient
types, such as

7

31? + (5 + 2§)

[Br+ (243 +7] |+

Because we installed the polynomial addition and multiplication procedures add-
poly and mul-poly in the generic arithmetic system as the add and mul operations for
type polynomial, our system is also automatically able to handle polynomial
operations such as

[+ 122+ (2 + 10 + (= 1] [y — 2z + (o + 7))

The reason is that when the system tries to combine coefficients, it will dispatch
through add and mul. Since the coefficients are themselves polynomials (in y), these
will be combined using add-poly and mul-poly. The result is a kind of “data-directed
recursion” in which, for example, a call to mul-poly will result in recursive calls to
mul-poly in order to multiply the coefficients. If the coefficients of the coefficients

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

14/22

2016. 9. 20. Structure and Interpretation of Computer Programs

were themselves polynomials (as might be used to represent polynomials in three
variables), the data direction would ensure that the system would follow through

another level of recursive calls, and so on through as many levels as the structure
of the data dictates.2.

Representing term lists

Finally, we must confront the job of implementing a good representation for term
lists. A term list is, in effect, a set of coefficients keyed by the order of the term.
Hence, any of the methods for representing sets, as discussed in section 2.3.3,
can be applied to this task. On the other hand, our procedures add-terms and mul-
terms always access term lists sequentially from highest to lowest order. Thus, we
will use some kind of ordered list representation.

How should we structure the list that represents a term list? One consideration is
the “density" of the polynomials we intend to manipulate. A polynomial is said to
be dense if it has nonzero coefficients in terms of most orders. If it has many
zero terms it is said to be sparse. For example,

A P4t a3t -5

is a dense polynomial, whereas
B: %4741

IS sparse.

The term lists of dense polynomials are most efficiently represented as lists of the
coefficients. For example, A above would be nicely represented as (12 0 3 -2 -5).
The order of a term in this representation is the length of the sublist beginning
with that term's coefficient, decremented by 1.28 This would be a terrible
representation for a sparse polynomial such as B: There would be a giant list of
zeros punctuated by a few lonely nonzero terms. A more reasonable
representation of the term list of a sparse polynomial is as a list of the nonzero
terms, where each term is a list containing the order of the term and the
coefficient for that order. In such a scheme, polynomial B is efficiently represented
as ((100 1) (2 2) (0 1)). As most polynomial manipulations are performed on
sparse polynomials, we will use this method. We will assume that term lists are
represented as lists of terms, arranged from highest-order to lowest-order term.
Once we have made this decision, implementing the selectors and constructors
for terms and term lists is straightforward:22

(define (adjoin-term term term—1list)
(if (=zero? (coeff term))

term-list

(cons term term-1list)))
(define (the—empty-termlist) '())
(define (first-term term-list) (car term-list))
(define (rest-terms term-list) (cdr term—list))
(define (empty-termlist? term—-list) (null? term-list))
(define (make-term order coeff) (list order coeff))
(define (order term) (car term))
(define (coeff term) (cadr term))

where =zero? is as defined in exercise 2.80. (See also exercise 2.87 below.)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 15/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_302
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-16.html#%_sec_2.3.3

2016. 9. 20.

Structure and Interpretation of Computer Programs

Users of the polynomial package will create (tagged) polynomials by means of
the procedure:

(define (make—polynomial var terms)
((get 'make 'polynomial) var terms))

Exercise 2.87. Install =zero? for polynomials in the generic arithmetic package.
This will allow adjoin-term to work for polynomials with coefficients that are
themselves polynomials.

Exercise 2.88. Extend the polynomial system to include subtraction of
polynomials. (Hint: You may find it helpful to define a generic negation
operation.)

Exercise 2.89. Define procedures that implement the term-list representation
described above as appropriate for dense polynomials.

Exercise 2.90. Suppose we want to have a polynomial system that is efficient for
both sparse and dense polynomials. One way to do this is to allow both kinds of
term-list representations in our system. The situation is analogous to the
complex-number example of section 2.4, where we allowed both rectangular and
polar representations. To do this we must distinguish different types of term lists
and make the operations on term lists generic. Redesign the polynomial system
to implement this generalization. This is a major effort, not a local change.

Exercise 2.91. A univariate polynomial can be divided by another one to
produce a polynomial quotient and a polynomial remainder. For example,

P11

r?—1

=r*+r, remainder r — 1

Division can be performed via long division. That is, divide the highest-order term
of the dividend by the highest-order term of the divisor. The result is the first
term of the quotient. Next, multiply the result by the divisor, subtract that from
the dividend, and produce the rest of the answer by recursively dividing the
difference by the divisor. Stop when the order of the divisor exceeds the order of
the dividend and declare the dividend to be the remainder. Also, if the dividend
ever becomes zero, return zero as both quotient and remainder.

We can design a div-poly procedure on the model of add-poly and mul-poly. The
procedure checks to see if the two polys have the same variable. If so, div-poly
strips off the variable and passes the problem to div-terms, which performs the
division operation on term lists. Div-poly finally reattaches the variable to the result
supplied by div-terms. It is convenient to design div-terms to compute both the
quotient and the remainder of a division. Div-terms can take two term lists as
arguments and return a list of the quotient term list and the remainder term list.

Complete the following definition of div-terms by filling in the missing expressions.
Use this to implement div—poly, which takes two polys as arguments and returns a
list of the quotient and remainder polys.

(define (div-terms L1 L2)
(if (empty-termlist? L1)
(list (the—empty-termlist) (the-empty-termlist))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

16/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html#%_sec_2.4

2016. 9. 20.

Structure and Interpretation of Computer Programs

(let ((t1 (first-term L1))
(t2 (first-term L2)))
(if (> (order t2) (order t1))
(list (the—empty-termlist) L1)
(let ((new-c (div (coeff t1) (coeff t2)))
(new-o (- (order t1) (order t2))))
(let ((rest-of-result
<compute rest of result recursively>

)

<form complete result>

))))))

Hierarchies of types in symbolic algebra

Our polynomial system illustrates how objects of one type (polynomials) may in
fact be complex objects that have objects of many different types as parts. This
poses no real difficulty in defining generic operations. We need only install
appropriate generic operations for performing the necessary manipulations of the
parts of the compound types. In fact, we saw that polynomials form a kind of
“recursive data abstraction,"” in that parts of a polynomial may themselves be
polynomials. Our generic operations and our data-directed programming style
can handle this complication without much trouble.

On the other hand, polynomial algebra is a system for which the data types
cannot be naturally arranged in a tower. For instance, it is possible to have
polynomials in x whose coefficients are polynomials in y. It is also possible to
have polynomials in y whose coefficients are polynomials in x. Neither of these
types is “above'" the other in any natural way, yet it is often necessary to add
together elements from each set. There are several ways to do this. One
possibility is to convert one polynomial to the type of the other by expanding
and rearranging terms so that both polynomials have the same principal variable.
One can impose a towerlike structure on this by ordering the variables and thus
always converting any polynomial to a “canonical form" with the highest-priority
variable dominant and the lower-priority variables buried in the coefficients. This
strategy works fairly well, except that the conversion may expand a polynomial
unnecessarily, making it hard to read and perhaps less efficient to work with. The
tower strategy is certainly not natural for this domain or for any domain where
the user can invent new types dynamically using old types in various combining
forms, such as trigonometric functions, power series, and integrals.

It should not be surprising that controlling coercion is a serious problem in the
design of large-scale algebraic-manipulation systems. Much of the complexity of
such systems is concerned with relationships among diverse types. Indeed, it is
fair to say that we do not yet completely understand coercion. In fact, we do not
yet completely understand the concept of a data type. Nevertheless, what we
know provides us with powerful structuring and modularity principles to support
the design of large systems.

Exercise 2.92. By imposing an ordering on variables, extend the polynomial
package so that addition and multiplication of polynomials works for polynomials
in different variables. (This is not easy!)

Extended exercise: Rational functions

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

17/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_310
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_312

2016. 9. 20. Structure and Interpretation of Computer Programs
We can extend our generic arithmetic system to include rational functions. These
are “fractions" whose numerator and denominator are polynomials, such as

r+1
P-1

The system should be able to add, subtract, multiply, and divide rational
functions, and to perform such computations as

I+1+ r P4 13r41
2-1 -1 rHyrer-r-1

(Here the sum has been simplified by removing common factors. Ordinary “cross
multiplication" would have produced a fourth-degree polynomial over a fifth-
degree polynomial.)

If we modify our rational-arithmetic package so that it uses generic operations,
then it will do what we want, except for the problem of reducing fractions to
lowest terms.

Exercise 2.93. Modify the rational-arithmetic package to use generic operations,
but change make-rat so that it does not attempt to reduce fractions to lowest
terms. Test your system by calling make-rational on two polynomials to produce a
rational function

(define p1 (make-polynomial 'x '
(define p2 (make-polynomial 'x '
(define rf (make-rational p2 p1))

Now add rf to itself, using add. You will observe that this addition procedure does
not reduce fractions to lowest terms.

We can reduce polynomial fractions to lowest terms using the same idea we used
with integers: modifying make-rat to divide both the numerator and the
denominator by their greatest common divisor. The notion of “greatest common
divisor" makes sense for polynomials. In fact, we can compute the GCD of two
polynomials using essentially the same Euclid's Algorithm that works for
integers.8 The integer version is

(define (gcd a b)
(if (=b0)
a
(ged b (remainder a b))))

Using this, we could make the obvious modification to define a GCD operation
that works on term lists:

(define (gcd-terms a b)
(if (empty-termlist? b)
a
(gcd-terms b (remainder—terms a b))))

where remainder-terms picks out the remainder component of the list returned by
the term-list division operation div-terms that was implemented in exercise 2.91.

Exercise 2.94. Using div-terms, implement the procedure remainder-terms and use
this to define gcd-terms as above. Now write a procedure ged-poly that computes

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 18/22

2016. 9. 20. Structure and Interpretation of Computer Programs

the polynomial GCD of two polys. (The procedure should signal an error if the
two polys are not in the same variable.) Install in the system a generic operation
greatest-common—divisor that reduces to ged-poly for polynomials and to ordinary ged
for ordinary numbers. As a test, try

(define p1 (make-polynomial 'x '((4 1) (3 -1) (2 -2) (1 2))))
(define p2 (make-polynomial 'x '((3 1
(greatest—common-divisor pi p2)

and check your result by hand.
Exercise 2.95. Define P4, P, and P3 to be the polynomials

B -1 41
By 11£747
B 13r 45

Now define Qq to be the product of Py and P, and Q, to be the product of P4
and P3, and use greatest-common-divisor (exercise 2.94) to compute the GCD of Q4
and Q. Note that the answer is not the same as Pq. This example introduces
noninteger operations into the computation, causing difficulties with the GCD

algorithm & To understand what is happening, try tracing gcd-terms while
computing the GCD or try performing the division by hand.

We can solve the problem exhibited in exercise 2.95 if we use the following
modification of the GCD algorithm (which really works only in the case of
polynomials with integer coefficients). Before performing any polynomial division
in the GCD computation, we multiply the dividend by an integer constant factor,
chosen to guarantee that no fractions will arise during the division process. Our
answer will thus differ from the actual GCD by an integer constant factor, but this
does not matter in the case of reducing rational functions to lowest terms; the
GCD will be used to divide both the numerator and denominator, so the integer
constant factor will cancel out.

More precisely, if P and Q are polynomials, let O1 be the order of P (i.e., the
order of the largest term of P) and let O, be the order of Q. Let ¢ be the leading

coefficient of Q. Then it can be shown that, if we multiply P by the integerizing

factor c1*01 02, the resulting polynomial can be divided by Q by using the div-

terms algorithm without introducing any fractions. The operation of multiplying the
dividend by this constant and then dividing is sometimes called the
pseudodivision of P by Q. The remainder of the division is called the
pseudoremainder.

Exercise 2.96. a. Implement the procedure pseudoremainder-terms, which is just
like remainder-terms except that it multiplies the dividend by the integerizing factor
described above before calling div-terms. Modify gcd-terms to use pseudoremainder-
terms, and verify that greatest-common-divisor now produces an answer with integer
coefficients on the example in exercise 2.95.

b. The GCD now has integer coefficients, but they are larger than those of Pj.

Modify gcd-terms so that it removes common factors from the coefficients of the
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 19/22

2016. 9. 20. Structure and Interpretation of Computer Programs

answer by dividing all the coefficients by their (integer) greatest common divisor.
Thus, here is how to reduce a rational function to lowest terms:

e Compute the GCD of the numerator and denominator, using the version of
ged-terms from exercise 2.96.

e When you obtain the GCD, multiply both numerator and denominator by
the same integerizing factor before dividing through by the GCD, so that
division by the GCD will not introduce any noninteger coefficients. As the
factor you can use the leading coefficient of the GCD raised to the power 1
+ Oq - Oy, where O, is the order of the GCD and O4 is the maximum of the

orders of the numerator and denominator. This will ensure that dividing the
numerator and denominator by the GCD will not introduce any fractions.

e The result of this operation will be a numerator and denominator with
integer coefficients. The coefficients will normally be very large because of
all of the integerizing factors, so the last step is to remove the redundant
factors by computing the (integer) greatest common divisor of all the
coefficients of the numerator and the denominator and dividing through by
this factor.

Exercise 2.97. a. Implement this algorithm as a procedure reduce-terms that takes
two term lists n and d as arguments and returns a list nn, dd, which are n and d
reduced to lowest terms via the algorithm given above. Also write a procedure
reduce-poly, analogous to add-poly, that checks to see if the two polys have the
same variable. If so, reduce-poly strips off the variable and passes the problem to
reduce-terms, then reattaches the variable to the two term lists supplied by reduce-
terms.

b. Define a procedure analogous to reduce-terms that does what the original make-
rat did for integers:

(define (reduce-integers n d)
(let ((g (ged n d)))
(list (/ ng) (/ dg))))

and define reduce as a generic operation that calls apply-generic to dispatch to
either reduce-poly (for polynomial arguments) or reduce-integers (for scheme-number
arguments). You can now easily make the rational-arithmetic package reduce
fractions to lowest terms by having make-rat call reduce before combining the given
numerator and denominator to form a rational number. The system now handles
rational expressions in either integers or polynomials. To test your program, try
the example at the beginning of this extended exercise:

(define p1
(define p2
(define p3
(define p4

(make-polynomial
(make-polynomial
(make-polynomial
(make-polynomial

(define rf1 (make-rational p1 p2))
(define rf2 (make-rational p3 p4))

(add rf1 rf2)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html 20/22

2016. 9. 20.

Structure and Interpretation of Computer Programs

See if you get the correct answer, correctly reduced to lowest terms.

The GCD computation is at the heart of any system that does operations on
rational functions. The algorithm used above, although mathematically
straightforward, is extremely slow. The slowness is due partly to the large number
of division operations and partly to the enormous size of the intermediate
coefficients generated by the pseudodivisions. One of the active areas in the
development of algebraic-manipulation systems is the design of better algorithms
for computing polynomial GCDs.2

43 We also have to supply an almost identical procedure to handle the types (scheme-number complex).
20 See exercise 2.82 for generalizations.

21 If we are clever, we can usually get by with fewer than n? coercion procedures. For instance, if we know
how to convert from type 1 to type 2 and from type 2 to type 3, then we can use this knowledge to convert
from type 1 to type 3. This can greatly decrease the number of coercion procedures we need to supply
explicitly when we add a new type to the system. If we are willing to build the required amount of
sophistication into our system, we can have it search the “graph" of relations among types and automatically
generate those coercion procedures that can be inferred from the ones that are supplied explicitly.

22 This statement, which also appears in the first edition of this book, is just as true now as it was when we
wrote it twelve years ago. Developing a useful, general framework for expressing the relations among
different types of entities (what philosophers call “ontology") seems intractably difficult. The main difference
between the confusion that existed ten years ago and the confusion that exists now is that now a variety of
inadequate ontological theories have been embodied in a plethora of correspondingly inadequate
programming languages. For example, much of the complexity of object-oriented programming languages --
and the subtle and confusing differences among contemporary object-oriented languages -- centers on the
treatment of generic operations on interrelated types. Our own discussion of computational objects in
chapter 3 avoids these issues entirely. Readers familiar with object-oriented programming will notice that we
have much to say in chapter 3 about local state, but we do not even mention “classes™ or “inheritance." In
fact, we suspect that these problems cannot be adequately addressed in terms of computer-language design
alone, without also drawing on work in knowledge representation and automated reasoning.

23 A real number can be projected to an integer using the round primitive, which returns the closest integer to
its argument.

24 On the other hand, we will allow polynomials whose coefficients are themselves polynomials in other
variables. This will give us essentially the same representational power as a full multivariate system, although
it does lead to coercion problems, as discussed below.

23 For univariate polynomials, giving the value of a polynomial at a given set of points can be a particularly

good representation. This makes polynomial arithmetic extremely simple. To obtain, for example, the sum of
two polynomials represented in this way, we need only add the values of the polynomials at corresponding

points. To transform back to a more familiar representation, we can use the Lagrange interpolation formula,
which shows how to recover the coefficients of a polynomial of degree n given the values of the polynomial
at n + 1 points.

26 This operation is very much like the ordered union-set operation we developed in exercise 2.62. In fact, if
we think of the terms of the polynomial as a set ordered according to the power of the indeterminate, then
the program that produces the term list for a sum is almost identical to union-set.

2 To make this work completely smoothly, we should also add to our generic arithmetic system the ability
to coerce a “number"” to a polynomial by regarding it as a polynomial of degree zero whose coefficient is
the number. This is necessary if we are going to perform operations such as

[+ (y+1r+5] + [+ 2r +1]
which requires adding the coefficient y + 1 to the coefficient 2.

28 |n these polynomial examples, we assume that we have implemented the generic arithmetic system using
the type mechanism suggested in exercise 2.78. Thus, coefficients that are ordinary numbers will be

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

21/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-16.html#%_thm_2.62

2016. 9. 20.

Structure and Interpretation of Computer Programs
represented as the numbers themselves rather than as pairs whose car is the symbol scheme-number.
29 Although we are assuming that term lists are ordered, we have implemented adjoin-term to simply cons the

new term onto the existing term list. We can get away with this so long as we guarantee that the procedures
(such as add-terms) that use adjoin-term always call it with a higher-order term than appears in the list. If we

did not want to make such a guarantee, we could have implemented adjoin-term to be similar to the adjoin-set

constructor for the ordered-list representation of sets (exercise 2.61).

80 The fact that Euclid's Algorithm works for polynomials is formalized in algebra by saying that polynomials
form a kind of algebraic domain called a Euclidean ring. A Euclidean ring is a domain that admits addition,
subtraction, and commutative multiplication, together with a way of assigning to each element x of the ring
a positive integer “measure” m(x) with the properties that m(xy)> m(x) for any nonzero x and y and that,
given any x and y, there exists a g such that y = gx + r and either r = 0 or m(r)< m(x). From an abstract
point of view, this is what is needed to prove that Euclid's Algorithm works. For the domain of integers, the
measure m of an integer is the absolute value of the integer itself. For the domain of polynomials, the
measure of a polynomial is its degree.

81 In an implementation like MIT Scheme, this produces a polynomial that is indeed a divisor of Qq and Q,
but with rational coefficients. In many other Scheme systems, in which division of integers can produce
limited-precision decimal numbers, we may fail to get a valid divisor.

%2 One extremely efficient and elegant method for computing polynomial GCDs was discovered by Richard
Zippel (1979). The method is a probabilistic algorithm, as is the fast test for primality that we discussed in
chapter 1. Zippel's book (1993) describes this method, together with other ways to compute polynomial
GCDs.

[Go to first, previous, next page; contents; index]

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-18.html

22/22

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-16.html#%_thm_2.61
https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-19.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start

