
2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­22.html 1/33

[Go to first, previous, next page;   contents;   index]

3.3  Modeling with Mutable Data

Chapter 2 dealt with compound data as a means for constructing computational
objects that have several parts, in order to model real-world objects that have
several aspects. In that chapter we introduced the discipline of data abstraction,
according to which data structures are specified in terms of constructors, which
create data objects, and selectors, which access the parts of compound data
objects. But we now know that there is another aspect of data that chapter 2 did
not address. The desire to model systems composed of objects that have
changing state leads us to the need to modify compound data objects, as well as
to construct and select from them. In order to model compound objects with
changing state, we will design data abstractions to include, in addition to
selectors and constructors, operations called mutators, which modify data objects.
For instance, modeling a banking system requires us to change account balances.
Thus, a data structure for representing bank accounts might admit an operation

(set-balance! <account> <new-value>)

that changes the balance of the designated account to the designated new value.
Data objects for which mutators are defined are known as mutable data objects.

Chapter 2 introduced pairs as a general-purpose ``glue'' for synthesizing
compound data. We begin this section by defining basic mutators for pairs, so
that pairs can serve as building blocks for constructing mutable data objects.
These mutators greatly enhance the representational power of pairs, enabling us
to build data structures other than the sequences and trees that we worked with
in section 2.2. We also present some examples of simulations in which complex
systems are modeled as collections of objects with local state.

3.3.1  Mutable List Structure

The basic operations on pairs -- cons, car, and cdr -- can be used to construct list
structure and to select parts from list structure, but they are incapable of
modifying list structure. The same is true of the list operations we have used so
far, such as append and list, since these can be defined in terms of cons, car, and
cdr. To modify list structures we need new operations.
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Figure 3.12:  Lists x: ((a b) c d) and y: (e f).

Figure 3.13:  Effect of (set-car! x y) on the lists in figure 3.12.

Figure 3.14:  Effect of (define z (cons y (cdr x))) on the lists in figure 3.12.

Figure 3.15:  Effect of (set-cdr! x y) on the lists in figure 3.12.

The primitive mutators for pairs are set-car! and set-cdr!. Set-car! takes two
arguments, the first of which must be a pair. It modifies this pair, replacing the car
pointer by a pointer to the second argument of set-car!.16

As an example, suppose that x is bound to the list ((a b) c d) and y to the list (e
f) as illustrated in figure 3.12. Evaluating the expression (set-car! x y) modifies the
pair to which x is bound, replacing its car by the value of y. The result of the
operation is shown in figure 3.13. The structure x has been modified and would
now be printed as ((e f) c d). The pairs representing the list (a b), identified by
the pointer that was replaced, are now detached from the original structure.17

Compare figure 3.13 with figure 3.14, which illustrates the result of executing
(define z (cons y (cdr x))) with x and y bound to the original lists of figure 3.12. The
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variable z is now bound to a new pair created by the cons operation; the list to
which x is bound is unchanged.

The set-cdr! operation is similar to set-car!. The only difference is that the cdr
pointer of the pair, rather than the car pointer, is replaced. The effect of executing
(set-cdr! x y) on the lists of figure 3.12 is shown in figure 3.15. Here the cdr
pointer of x has been replaced by the pointer to (e f). Also, the list (c d), which
used to be the cdr of x, is now detached from the structure.

Cons builds new list structure by creating new pairs, while set-car! and set-cdr!
modify existing pairs. Indeed, we could implement cons in terms of the two
mutators, together with a procedure get-new-pair, which returns a new pair that is
not part of any existing list structure. We obtain the new pair, set its car and cdr
pointers to the designated objects, and return the new pair as the result of the
cons.18

(define (cons x y)
  (let ((new (get-new-pair)))
    (set-car! new x)
    (set-cdr! new y)
    new))

Exercise 3.12.  The following procedure for appending lists was introduced in
section 2.2.1:

(define (append x y)
  (if (null? x)
      y
      (cons (car x) (append (cdr x) y))))

Append forms a new list by successively consing the elements of x onto y. The
procedure append! is similar to append, but it is a mutator rather than a constructor.
It appends the lists by splicing them together, modifying the final pair of x so that
its cdr is now y. (It is an error to call append! with an empty x.)

(define (append! x y)
  (set-cdr! (last-pair x) y)
  x)

Here last-pair is a procedure that returns the last pair in its argument:

(define (last-pair x)
  (if (null? (cdr x))
      x
      (last-pair (cdr x))))

Consider the interaction

(define x (list 'a 'b))
(define y (list 'c 'd))
(define z (append x y))
z
(a b c d)
(cdr x)
<response>
(define w (append! x y))
w
(a b c d)
(cdr x)
<response>
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What are the missing <response>s? Draw box-and-pointer diagrams to explain
your answer.

Exercise 3.13.  Consider the following make-cycle procedure, which uses the last-
pair procedure defined in exercise 3.12:

(define (make-cycle x)
  (set-cdr! (last-pair x) x)
  x)

Draw a box-and-pointer diagram that shows the structure z created by

(define z (make-cycle (list 'a 'b 'c)))

What happens if we try to compute (last-pair z)?

Exercise 3.14.  The following procedure is quite useful, although obscure:

(define (mystery x)
  (define (loop x y)
    (if (null? x)
        y
        (let ((temp (cdr x)))
          (set-cdr! x y)
          (loop temp x))))
  (loop x '()))

Loop uses the ``temporary'' variable temp to hold the old value of the cdr of x, since
the set-cdr! on the next line destroys the cdr. Explain what mystery does in general.
Suppose v is defined by (define v (list 'a 'b 'c 'd)). Draw the box-and-pointer
diagram that represents the list to which v is bound. Suppose that we now
evaluate (define w (mystery v)). Draw box-and-pointer diagrams that show the
structures v and w after evaluating this expression. What would be printed as the
values of v and w ?

Sharing and identity

We mentioned in section 3.1.3 the theoretical issues of ``sameness'' and ``change''
raised by the introduction of assignment. These issues arise in practice when
individual pairs are shared among different data objects. For example, consider
the structure formed by

(define x (list 'a 'b))
(define z1 (cons x x))

As shown in figure 3.16, z1 is a pair whose car and cdr both point to the same pair
x. This sharing of x by the car and cdr of z1 is a consequence of the
straightforward way in which cons is implemented. In general, using cons to
construct lists will result in an interlinked structure of pairs in which many
individual pairs are shared by many different structures.
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Figure 3.16:  The list z1 formed by (cons x x).

Figure 3.17:  The list z2 formed by (cons (list 'a 'b) (list 'a 'b)).

In contrast to figure 3.16, figure 3.17 shows the structure created by

(define z2 (cons (list 'a 'b) (list 'a 'b)))

In this structure, the pairs in the two (a b) lists are distinct, although the actual
symbols are shared.19

When thought of as a list, z1 and z2 both represent ``the same'' list, ((a b) a b). In
general, sharing is completely undetectable if we operate on lists using only cons,
car, and cdr. However, if we allow mutators on list structure, sharing becomes
significant. As an example of the difference that sharing can make, consider the
following procedure, which modifies the car of the structure to which it is applied:

(define (set-to-wow! x)
  (set-car! (car x) 'wow)
  x)

Even though z1 and z2 are ``the same'' structure, applying set-to-wow! to them
yields different results. With z1, altering the car also changes the cdr, because in z1
the car and the cdr are the same pair. With z2, the car and cdr are distinct, so set-
to-wow! modifies only the car:

z1
((a b) a b)

(set-to-wow! z1)
((wow b) wow b)

z2
((a b) a b)

(set-to-wow! z2)
((wow b) a b)

One way to detect sharing in list structures is to use the predicate eq?, which we
introduced in section 2.3.1 as a way to test whether two symbols are equal. More
generally, (eq? x y) tests whether x and y are the same object (that is, whether x
and y are equal as pointers). Thus, with z1 and z2 as defined in figures 3.16
and 3.17, (eq? (car z1) (cdr z1)) is true and (eq? (car z2) (cdr z2)) is false.

As will be seen in the following sections, we can exploit sharing to greatly extend
the repertoire of data structures that can be represented by pairs. On the other
hand, sharing can also be dangerous, since modifications made to structures will
also affect other structures that happen to share the modified parts. The mutation
operations set-car! and set-cdr! should be used with care; unless we have a good
understanding of how our data objects are shared, mutation can have
unanticipated results.20

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-16.html#%_sec_2.3.1


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­22.html 6/33

Exercise 3.15.  Draw box-and-pointer diagrams to explain the effect of set-to-wow!
on the structures z1 and z2 above.

Exercise 3.16.  Ben Bitdiddle decides to write a procedure to count the number
of pairs in any list structure. ``It's easy,'' he reasons. ``The number of pairs in any
structure is the number in the car plus the number in the cdr plus one more to
count the current pair.'' So Ben writes the following procedure:

(define (count-pairs x)
  (if (not (pair? x))
      0
      (+ (count-pairs (car x))
         (count-pairs (cdr x))
         1)))

Show that this procedure is not correct. In particular, draw box-and-pointer
diagrams representing list structures made up of exactly three pairs for which
Ben's procedure would return 3; return 4; return 7; never return at all.

Exercise 3.17.  Devise a correct version of the count-pairs procedure of
exercise 3.16 that returns the number of distinct pairs in any structure. (Hint:
Traverse the structure, maintaining an auxiliary data structure that is used to keep
track of which pairs have already been counted.)

Exercise 3.18.  Write a procedure that examines a list and determines whether it
contains a cycle, that is, whether a program that tried to find the end of the list
by taking successive cdrs would go into an infinite loop. Exercise 3.13 constructed
such lists.

Exercise 3.19.  Redo exercise 3.18 using an algorithm that takes only a constant
amount of space. (This requires a very clever idea.)

Mutation is just assignment

When we introduced compound data, we observed in section 2.1.3 that pairs can
be represented purely in terms of procedures:

(define (cons x y)
  (define (dispatch m)
    (cond ((eq? m 'car) x)
          ((eq? m 'cdr) y)
          (else (error "Undefined operation -- CONS" m))))
  dispatch)
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))

The same observation is true for mutable data. We can implement mutable data
objects as procedures using assignment and local state. For instance, we can
extend the above pair implementation to handle set-car! and set-cdr! in a manner
analogous to the way we implemented bank accounts using make-account in
section 3.1.1:

(define (cons x y)
  (define (set-x! v) (set! x v))
  (define (set-y! v) (set! y v))
  (define (dispatch m)
    (cond ((eq? m 'car) x)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_363
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_sec_2.1.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-20.html#%_sec_3.1.1


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­22.html 7/33

          ((eq? m 'cdr) y)
          ((eq? m 'set-car!) set-x!)
          ((eq? m 'set-cdr!) set-y!)
          (else (error "Undefined operation -- CONS" m))))
  dispatch)
(define (car z) (z 'car))
(define (cdr z) (z 'cdr))
(define (set-car! z new-value)
  ((z 'set-car!) new-value)
  z)
(define (set-cdr! z new-value)
  ((z 'set-cdr!) new-value)
  z)

Assignment is all that is needed, theoretically, to account for the behavior of
mutable data. As soon as we admit set! to our language, we raise all the issues,
not only of assignment, but of mutable data in general.21

Exercise 3.20.  Draw environment diagrams to illustrate the evaluation of the
sequence of expressions

(define x (cons 1 2))
(define z (cons x x))
(set-car! (cdr z) 17)
(car x)
17

using the procedural implementation of pairs given above. (Compare
exercise 3.11.)

3.3.2  Representing Queues

The mutators set-car! and set-cdr! enable us to use pairs to construct data
structures that cannot be built with cons, car, and cdr alone. This section shows
how to use pairs to represent a data structure called a queue. Section 3.3.3 will
show how to represent data structures called tables.

A queue is a sequence in which items are inserted at one end (called the rear of
the queue) and deleted from the other end (the front). Figure 3.18 shows an
initially empty queue in which the items a and b are inserted. Then a is removed, c
and d are inserted, and b is removed. Because items are always removed in the
order in which they are inserted, a queue is sometimes called a FIFO (first in, first
out) buffer.

Operation Resulting Queue
(define q (make-queue))

(insert-queue! q 'a) a

(insert-queue! q 'b) a b

(delete-queue! q) b

(insert-queue! q 'c) b c

(insert-queue! q 'd) b c d

(delete-queue! q) c d

Figure 3.18:  Queue operations.

In terms of data abstraction, we can regard a queue as defined by the following
set of operations:
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a constructor:
(make-queue)

returns an empty queue (a queue containing no items).

two selectors:
(empty-queue? <queue>)

tests if the queue is empty.
(front-queue <queue>)

returns the object at the front of the queue, signaling an error if the queue
is empty; it does not modify the queue.

two mutators:
(insert-queue! <queue> <item>)

inserts the item at the rear of the queue and returns the modified queue as
its value.
(delete-queue! <queue>)

removes the item at the front of the queue and returns the modified queue
as its value, signaling an error if the queue is empty before the deletion.

Because a queue is a sequence of items, we could certainly represent it as an
ordinary list; the front of the queue would be the car of the list, inserting an item
in the queue would amount to appending a new element at the end of the list,
and deleting an item from the queue would just be taking the cdr of the list.
However, this representation is inefficient, because in order to insert an item we
must scan the list until we reach the end. Since the only method we have for
scanning a list is by successive cdr operations, this scanning requires (n) steps for
a list of n items. A simple modification to the list representation overcomes this
disadvantage by allowing the queue operations to be implemented so that they
require (1) steps; that is, so that the number of steps needed is independent of
the length of the queue.

The difficulty with the list representation arises from the need to scan to find the
end of the list. The reason we need to scan is that, although the standard way of
representing a list as a chain of pairs readily provides us with a pointer to the
beginning of the list, it gives us no easily accessible pointer to the end. The
modification that avoids the drawback is to represent the queue as a list,
together with an additional pointer that indicates the final pair in the list. That
way, when we go to insert an item, we can consult the rear pointer and so avoid
scanning the list.

A queue is represented, then, as a pair of pointers, front-ptr and rear-ptr, which
indicate, respectively, the first and last pairs in an ordinary list. Since we would
like the queue to be an identifiable object, we can use cons to combine the two
pointers. Thus, the queue itself will be the cons of the two pointers. Figure 3.19
illustrates this representation.
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Figure 3.19:  Implementation of a queue as a list with front and rear pointers.

To define the queue operations we use the following procedures, which enable us
to select and to modify the front and rear pointers of a queue:

(define (front-ptr queue) (car queue))
(define (rear-ptr queue) (cdr queue))
(define (set-front-ptr! queue item) (set-car! queue item))
(define (set-rear-ptr! queue item) (set-cdr! queue item))

Now we can implement the actual queue operations. We will consider a queue to
be empty if its front pointer is the empty list:

(define (empty-queue? queue) (null? (front-ptr queue)))

The make-queue constructor returns, as an initially empty queue, a pair whose car
and cdr are both the empty list:

(define (make-queue) (cons '() '()))

To select the item at the front of the queue, we return the car of the pair
indicated by the front pointer:

(define (front-queue queue)
  (if (empty-queue? queue)
      (error "FRONT called with an empty queue" queue)
      (car (front-ptr queue))))

To insert an item in a queue, we follow the method whose result is indicated in
figure 3.20. We first create a new pair whose car is the item to be inserted and
whose cdr is the empty list. If the queue was initially empty, we set the front and
rear pointers of the queue to this new pair. Otherwise, we modify the final pair in
the queue to point to the new pair, and also set the rear pointer to the new pair.

Figure 3.20:  Result of using (insert-queue! q 'd) on the queue of figure 3.19.

(define (insert-queue! queue item)
  (let ((new-pair (cons item '())))
    (cond ((empty-queue? queue)
           (set-front-ptr! queue new-pair)
           (set-rear-ptr! queue new-pair)
           queue)
          (else
           (set-cdr! (rear-ptr queue) new-pair)
           (set-rear-ptr! queue new-pair)
           queue)))) 

To delete the item at the front of the queue, we merely modify the front pointer
so that it now points at the second item in the queue, which can be found by
following the cdr pointer of the first item (see figure 3.21):22
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Figure 3.21:  Result of using (delete-queue! q) on the queue of figure 3.20.

(define (delete-queue! queue)
  (cond ((empty-queue? queue)
         (error "DELETE! called with an empty queue" queue))
        (else
         (set-front-ptr! queue (cdr (front-ptr queue)))
         queue))) 

Exercise 3.21.  Ben Bitdiddle decides to test the queue implementation described
above. He types in the procedures to the Lisp interpreter and proceeds to try
them out:

(define q1 (make-queue))
(insert-queue! q1 'a)
((a) a)
(insert-queue! q1 'b)
((a b) b)
(delete-queue! q1)
((b) b)
(delete-queue! q1)
(() b)

``It's all wrong!'' he complains. ``The interpreter's response shows that the last
item is inserted into the queue twice. And when I delete both items, the second b
is still there, so the queue isn't empty, even though it's supposed to be.'' Eva Lu
Ator suggests that Ben has misunderstood what is happening. ``It's not that the
items are going into the queue twice,'' she explains. ``It's just that the standard
Lisp printer doesn't know how to make sense of the queue representation. If you
want to see the queue printed correctly, you'll have to define your own print
procedure for queues.'' Explain what Eva Lu is talking about. In particular, show
why Ben's examples produce the printed results that they do. Define a procedure
print-queue that takes a queue as input and prints the sequence of items in the
queue.

Exercise 3.22.  Instead of representing a queue as a pair of pointers, we can
build a queue as a procedure with local state. The local state will consist of
pointers to the beginning and the end of an ordinary list. Thus, the make-queue
procedure will have the form

(define (make-queue)
  (let ((front-ptr ...)
        (rear-ptr ...))
    <definitions of internal procedures>
    (define (dispatch m) ...)
    dispatch))

Complete the definition of make-queue and provide implementations of the queue
operations using this representation.
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Exercise 3.23.  A deque (``double-ended queue'') is a sequence in which items
can be inserted and deleted at either the front or the rear. Operations on deques
are the constructor make-deque, the predicate empty-deque?, selectors front-deque and
rear-deque, and mutators front-insert-deque!, rear-insert-deque!, front-delete-deque!, and
rear-delete-deque!. Show how to represent deques using pairs, and give
implementations of the operations.23 All operations should be accomplished in 
(1) steps.

3.3.3  Representing Tables

When we studied various ways of representing sets in chapter 2, we mentioned in
section 2.3.3 the task of maintaining a table of records indexed by identifying
keys. In the implementation of data-directed programming in section 2.4.3, we
made extensive use of two-dimensional tables, in which information is stored and
retrieved using two keys. Here we see how to build tables as mutable list
structures.

We first consider a one-dimensional table, in which each value is stored under a
single key. We implement the table as a list of records, each of which is
implemented as a pair consisting of a key and the associated value. The records
are glued together to form a list by pairs whose cars point to successive records.
These gluing pairs are called the backbone of the table. In order to have a place
that we can change when we add a new record to the table, we build the table as
a headed list. A headed list has a special backbone pair at the beginning, which
holds a dummy ``record'' -- in this case the arbitrarily chosen symbol *table*.
Figure 3.22 shows the box-and-pointer diagram for the table

a:  1
b:  2
c:  3

Figure 3.22:  A table represented as a headed list.

To extract information from a table we use the lookup procedure, which takes a
key as argument and returns the associated value (or false if there is no value
stored under that key). Lookup is defined in terms of the assoc operation, which
expects a key and a list of records as arguments. Note that assoc never sees the
dummy record. Assoc returns the record that has the given key as its car.24 Lookup
then checks to see that the resulting record returned by assoc is not false, and
returns the value (the cdr) of the record.

(define (lookup key table)
  (let ((record (assoc key (cdr table))))
    (if record
        (cdr record)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_3.3.3
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        false)))
(define (assoc key records)
  (cond ((null? records) false)
        ((equal? key (caar records)) (car records))
        (else (assoc key (cdr records)))))

To insert a value in a table under a specified key, we first use assoc to see if there
is already a record in the table with this key. If not, we form a new record by
consing the key with the value, and insert this at the head of the table's list of
records, after the dummy record. If there already is a record with this key, we set
the cdr of this record to the designated new value. The header of the table
provides us with a fixed location to modify in order to insert the new record.25

(define (insert! key value table)
  (let ((record (assoc key (cdr table))))
    (if record
        (set-cdr! record value)
        (set-cdr! table
                  (cons (cons key value) (cdr table)))))
  'ok)

To construct a new table, we simply create a list containing the symbol *table*:

(define (make-table)
  (list '*table*))

Two-dimensional tables

In a two-dimensional table, each value is indexed by two keys. We can construct
such a table as a one-dimensional table in which each key identifies a subtable.
Figure 3.23 shows the box-and-pointer diagram for the table

math:
    +:  43
    -:  45
    *:  42
letters:
    a:  97
    b:  98

which has two subtables. (The subtables don't need a special header symbol,
since the key that identifies the subtable serves this purpose.)
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Figure 3.23:  A two-dimensional table.

When we look up an item, we use the first key to identify the correct subtable.
Then we use the second key to identify the record within the subtable.

(define (lookup key-1 key-2 table)
  (let ((subtable (assoc key-1 (cdr table))))
    (if subtable
        (let ((record (assoc key-2 (cdr subtable))))
          (if record
              (cdr record)
              false))
        false)))

To insert a new item under a pair of keys, we use assoc to see if there is a
subtable stored under the first key. If not, we build a new subtable containing the
single record (key-2, value) and insert it into the table under the first key. If a
subtable already exists for the first key, we insert the new record into this
subtable, using the insertion method for one-dimensional tables described above:

(define (insert! key-1 key-2 value table)
  (let ((subtable (assoc key-1 (cdr table))))
    (if subtable
        (let ((record (assoc key-2 (cdr subtable))))
          (if record
              (set-cdr! record value)
              (set-cdr! subtable
                        (cons (cons key-2 value)
                              (cdr subtable)))))
        (set-cdr! table
                  (cons (list key-1
                              (cons key-2 value))
                        (cdr table)))))
  'ok)

Creating local tables

The lookup and insert! operations defined above take the table as an argument.
This enables us to use programs that access more than one table. Another way to
deal with multiple tables is to have separate lookup and insert! procedures for
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each table. We can do this by representing a table procedurally, as an object that
maintains an internal table as part of its local state. When sent an appropriate
message, this ``table object'' supplies the procedure with which to operate on the
internal table. Here is a generator for two-dimensional tables represented in this
fashion:

(define (make-table)
  (let ((local-table (list '*table*)))
    (define (lookup key-1 key-2)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (cdr record)
                  false))
            false)))
    (define (insert! key-1 key-2 value)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (set-cdr! record value)
                  (set-cdr! subtable
                            (cons (cons key-2 value)
                                  (cdr subtable)))))
            (set-cdr! local-table
                      (cons (list key-1
                                  (cons key-2 value))
                            (cdr local-table)))))
      'ok)    
    (define (dispatch m)
      (cond ((eq? m 'lookup-proc) lookup)
            ((eq? m 'insert-proc!) insert!)
            (else (error "Unknown operation -- TABLE" m))))
    dispatch))

Using make-table, we could implement the get and put operations used in
section 2.4.3 for data-directed programming, as follows:

(define operation-table (make-table))
(define get (operation-table 'lookup-proc))
(define put (operation-table 'insert-proc!))

Get takes as arguments two keys, and put takes as arguments two keys and a
value. Both operations access the same local table, which is encapsulated within
the object created by the call to make-table.

Exercise 3.24.  In the table implementations above, the keys are tested for
equality using equal? (called by assoc). This is not always the appropriate test. For
instance, we might have a table with numeric keys in which we don't need an
exact match to the number we're looking up, but only a number within some
tolerance of it. Design a table constructor make-table that takes as an argument a
same-key? procedure that will be used to test ``equality'' of keys. Make-table should
return a dispatch procedure that can be used to access appropriate lookup and
insert! procedures for a local table.

Exercise 3.25.  Generalizing one- and two-dimensional tables, show how to
implement a table in which values are stored under an arbitrary number of keys
and different values may be stored under different numbers of keys. The lookup
and insert! procedures should take as input a list of keys used to access the table.
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Exercise 3.26.  To search a table as implemented above, one needs to scan
through the list of records. This is basically the unordered list representation of
section 2.3.3. For large tables, it may be more efficient to structure the table in a
different manner. Describe a table implementation where the (key, value) records
are organized using a binary tree, assuming that keys can be ordered in some
way (e.g., numerically or alphabetically). (Compare exercise 2.66 of chapter 2.)

Exercise 3.27.  Memoization (also called tabulation) is a technique that enables a
procedure to record, in a local table, values that have previously been computed.
This technique can make a vast difference in the performance of a program. A
memoized procedure maintains a table in which values of previous calls are
stored using as keys the arguments that produced the values. When the
memoized procedure is asked to compute a value, it first checks the table to see
if the value is already there and, if so, just returns that value. Otherwise, it
computes the new value in the ordinary way and stores this in the table. As an
example of memoization, recall from section 1.2.2 the exponential process for
computing Fibonacci numbers:

(define (fib n)
  (cond ((= n 0) 0)
        ((= n 1) 1)
        (else (+ (fib (- n 1))
                 (fib (- n 2))))))

The memoized version of the same procedure is

(define memo-fib
  (memoize (lambda (n)
             (cond ((= n 0) 0)
                   ((= n 1) 1)
                   (else (+ (memo-fib (- n 1))
                            (memo-fib (- n 2))))))))

where the memoizer is defined as

(define (memoize f)
  (let ((table (make-table)))
    (lambda (x)
      (let ((previously-computed-result (lookup x table)))
        (or previously-computed-result
            (let ((result (f x)))
              (insert! x result table)
              result))))))

Draw an environment diagram to analyze the computation of (memo-fib 3). Explain
why memo-fib computes the nth Fibonacci number in a number of steps
proportional to n. Would the scheme still work if we had simply defined memo-fib
to be (memoize fib)?

3.3.4  A Simulator for Digital Circuits

Designing complex digital systems, such as computers, is an important
engineering activity. Digital systems are constructed by interconnecting simple
elements. Although the behavior of these individual elements is simple, networks
of them can have very complex behavior. Computer simulation of proposed
circuit designs is an important tool used by digital systems engineers. In this
section we design a system for performing digital logic simulations. This system
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typifies a kind of program called an event-driven simulation, in which actions
(``events'') trigger further events that happen at a later time, which in turn trigger
more events, and so so.

Our computational model of a circuit will be composed of objects that
correspond to the elementary components from which the circuit is constructed.
There are wires, which carry digital signals. A digital signal may at any moment
have only one of two possible values, 0 and 1. There are also various types of
digital function boxes, which connect wires carrying input signals to other output
wires. Such boxes produce output signals computed from their input signals. The
output signal is delayed by a time that depends on the type of the function box.
For example, an inverter is a primitive function box that inverts its input. If the
input signal to an inverter changes to 0, then one inverter-delay later the inverter
will change its output signal to 1. If the input signal to an inverter changes to 1,
then one inverter-delay later the inverter will change its output signal to 0. We
draw an inverter symbolically as in figure 3.24. An and-gate, also shown in
figure 3.24, is a primitive function box with two inputs and one output. It drives
its output signal to a value that is the logical and of the inputs. That is, if both of
its input signals become 1, then one and-gate-delay time later the and-gate will
force its output signal to be 1; otherwise the output will be 0. An or-gate is a
similar two-input primitive function box that drives its output signal to a value
that is the logical or of the inputs. That is, the output will become 1 if at least
one of the input signals is 1; otherwise the output will become 0.

Figure 3.24:  Primitive functions in the digital logic simulator.

We can connect primitive functions together to construct more complex
functions. To accomplish this we wire the outputs of some function boxes to the
inputs of other function boxes. For example, the half-adder circuit shown in
figure 3.25 consists of an or-gate, two and-gates, and an inverter. It takes two
input signals, A and B, and has two output signals, S and C. S will become 1
whenever precisely one of A and B is 1, and C will become 1 whenever A and B
are both 1. We can see from the figure that, because of the delays involved, the
outputs may be generated at different times. Many of the difficulties in the
design of digital circuits arise from this fact.

Figure 3.25:  A half-adder circuit.

We will now build a program for modeling the digital logic circuits we wish to
study. The program will construct computational objects modeling the wires,
which will ``hold'' the signals. Function boxes will be modeled by procedures that
enforce the correct relationships among the signals.
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One basic element of our simulation will be a procedure make-wire, which
constructs wires. For example, we can construct six wires as follows:

(define a (make-wire))
(define b (make-wire))
(define c (make-wire))

(define d (make-wire))
(define e (make-wire))
(define s (make-wire))

We attach a function box to a set of wires by calling a procedure that constructs
that kind of box. The arguments to the constructor procedure are the wires to be
attached to the box. For example, given that we can construct and-gates, or-
gates, and inverters, we can wire together the half-adder shown in figure 3.25:

(or-gate a b d)
ok

(and-gate a b c)
ok

(inverter c e)
ok

(and-gate d e s)
ok

Better yet, we can explicitly name this operation by defining a procedure half-
adder that constructs this circuit, given the four external wires to be attached to
the half-adder:

(define (half-adder a b s c)
  (let ((d (make-wire)) (e (make-wire)))
    (or-gate a b d)
    (and-gate a b c)
    (inverter c e)
    (and-gate d e s)
    'ok))

The advantage of making this definition is that we can use half-adder itself as a
building block in creating more complex circuits. Figure 3.26, for example, shows
a full-adder composed of two half-adders and an or-gate.26 We can construct a
full-adder as follows:

(define (full-adder a b c-in sum c-out)
  (let ((s (make-wire))
        (c1 (make-wire))
        (c2 (make-wire)))
    (half-adder b c-in s c1)
    (half-adder a s sum c2)
    (or-gate c1 c2 c-out)
    'ok))

Having defined full-adder as a procedure, we can now use it as a building block
for creating still more complex circuits. (For example, see exercise 3.30.)
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Figure 3.26:  A full-adder circuit.

In essence, our simulator provides us with the tools to construct a language of
circuits. If we adopt the general perspective on languages with which we
approached the study of Lisp in section 1.1, we can say that the primitive function
boxes form the primitive elements of the language, that wiring boxes together
provides a means of combination, and that specifying wiring patterns as
procedures serves as a means of abstraction.

Primitive function boxes

The primitive function boxes implement the ``forces'' by which a change in the
signal on one wire influences the signals on other wires. To build function boxes,
we use the following operations on wires:

(get-signal <wire>)

returns the current value of the signal on the wire.

(set-signal! <wire> <new value>)

changes the value of the signal on the wire to the new value.

(add-action! <wire> <procedure of no arguments>)

asserts that the designated procedure should be run whenever the signal on
the wire changes value. Such procedures are the vehicles by which changes
in the signal value on the wire are communicated to other wires.

In addition, we will make use of a procedure after-delay that takes a time delay
and a procedure to be run and executes the given procedure after the given
delay.

Using these procedures, we can define the primitive digital logic functions. To
connect an input to an output through an inverter, we use add-action! to associate
with the input wire a procedure that will be run whenever the signal on the input
wire changes value. The procedure computes the logical-not of the input signal,
and then, after one inverter-delay, sets the output signal to be this new value:

(define (inverter input output)
  (define (invert-input)
    (let ((new-value (logical-not (get-signal input))))
      (after-delay inverter-delay
                   (lambda ()
                     (set-signal! output new-value)))))
  (add-action! input invert-input)
  'ok)
(define (logical-not s)
  (cond ((= s 0) 1)
        ((= s 1) 0)
        (else (error "Invalid signal" s))))
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An and-gate is a little more complex. The action procedure must be run if either
of the inputs to the gate changes. It computes the logical-and (using a procedure
analogous to logical-not) of the values of the signals on the input wires and sets
up a change to the new value to occur on the output wire after one and-gate-delay.

(define (and-gate a1 a2 output)
  (define (and-action-procedure)
    (let ((new-value
           (logical-and (get-signal a1) (get-signal a2))))
      (after-delay and-gate-delay
                   (lambda ()
                     (set-signal! output new-value)))))
  (add-action! a1 and-action-procedure)
  (add-action! a2 and-action-procedure)
  'ok)

Exercise 3.28.  Define an or-gate as a primitive function box. Your or-gate
constructor should be similar to and-gate.

Exercise 3.29.  Another way to construct an or-gate is as a compound digital
logic device, built from and-gates and inverters. Define a procedure or-gate that
accomplishes this. What is the delay time of the or-gate in terms of and-gate-delay
and inverter-delay?

Exercise 3.30.  Figure 3.27 shows a ripple-carry adder formed by stringing
together n full-adders. This is the simplest form of parallel adder for adding two
n-bit binary numbers. The inputs A1, A2, A3, ..., An and B1, B2, B3, ..., Bn are the

two binary numbers to be added (each Ak and Bk is a 0 or a 1). The circuit

generates S1, S2, S3, ..., Sn, the n bits of the sum, and C, the carry from the

addition. Write a procedure ripple-carry-adder that generates this circuit. The
procedure should take as arguments three lists of n wires each -- the Ak, the Bk,

and the Sk -- and also another wire C. The major drawback of the ripple-carry

adder is the need to wait for the carry signals to propagate. What is the delay
needed to obtain the complete output from an n-bit ripple-carry adder,
expressed in terms of the delays for and-gates, or-gates, and inverters?

Figure 3.27:  A ripple-carry adder for n-bit numbers.

Representing wires

A wire in our simulation will be a computational object with two local state
variables: a signal-value (initially taken to be 0) and a collection of action-procedures
to be run when the signal changes value. We implement the wire, using message-
passing style, as a collection of local procedures together with a dispatch
procedure that selects the appropriate local operation, just as we did with the
simple bank-account object in section  3.1.1:
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(define (make-wire)
  (let ((signal-value 0) (action-procedures '()))
    (define (set-my-signal! new-value)
      (if (not (= signal-value new-value))
          (begin (set! signal-value new-value)
                 (call-each action-procedures))
          'done))
    (define (accept-action-procedure! proc)
      (set! action-procedures (cons proc action-procedures))
      (proc))
    (define (dispatch m)
      (cond ((eq? m 'get-signal) signal-value)
            ((eq? m 'set-signal!) set-my-signal!)
            ((eq? m 'add-action!) accept-action-procedure!)
            (else (error "Unknown operation -- WIRE" m))))
    dispatch))

The local procedure set-my-signal! tests whether the new signal value changes the
signal on the wire. If so, it runs each of the action procedures, using the following
procedure call-each, which calls each of the items in a list of no-argument
procedures:

(define (call-each procedures)
  (if (null? procedures)
      'done
      (begin
        ((car procedures))
        (call-each (cdr procedures)))))

The local procedure accept-action-procedure! adds the given procedure to the list of
procedures to be run, and then runs the new procedure once. (See exercise 3.31.)

With the local dispatch procedure set up as specified, we can provide the following
procedures to access the local operations on wires:27

(define (get-signal wire)
  (wire 'get-signal))
(define (set-signal! wire new-value)
  ((wire 'set-signal!) new-value))
(define (add-action! wire action-procedure)
  ((wire 'add-action!) action-procedure))

Wires, which have time-varying signals and may be incrementally attached to
devices, are typical of mutable objects. We have modeled them as procedures
with local state variables that are modified by assignment. When a new wire is
created, a new set of state variables is allocated (by the let expression in make-wire)
and a new dispatch procedure is constructed and returned, capturing the
environment with the new state variables.

The wires are shared among the various devices that have been connected to
them. Thus, a change made by an interaction with one device will affect all the
other devices attached to the wire. The wire communicates the change to its
neighbors by calling the action procedures provided to it when the connections
were established.

The agenda

The only thing needed to complete the simulator is after-delay. The idea here is
that we maintain a data structure, called an agenda, that contains a schedule of
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things to do. The following operations are defined for agendas:

(make-agenda)

returns a new empty agenda.

(empty-agenda? <agenda>)

is true if the specified agenda is empty.

(first-agenda-item <agenda>)

returns the first item on the agenda.

(remove-first-agenda-item! <agenda>)

modifies the agenda by removing the first item.

(add-to-agenda! <time> <action> <agenda>)

modifies the agenda by adding the given action procedure to be run at the
specified time.

(current-time <agenda>)

returns the current simulation time.

The particular agenda that we use is denoted by the-agenda. The procedure after-
delay adds new elements to the-agenda:

(define (after-delay delay action)
  (add-to-agenda! (+ delay (current-time the-agenda))
                  action
                  the-agenda))

The simulation is driven by the procedure propagate, which operates on the-agenda,
executing each procedure on the agenda in sequence. In general, as the
simulation runs, new items will be added to the agenda, and propagate will
continue the simulation as long as there are items on the agenda:

(define (propagate)
  (if (empty-agenda? the-agenda)
      'done
      (let ((first-item (first-agenda-item the-agenda)))
        (first-item)
        (remove-first-agenda-item! the-agenda)
        (propagate))))

A sample simulation

The following procedure, which places a ``probe'' on a wire, shows the simulator
in action. The probe tells the wire that, whenever its signal changes value, it
should print the new signal value, together with the current time and a name that
identifies the wire:

(define (probe name wire)
  (add-action! wire
               (lambda ()        
                 (newline)
                 (display name)
                 (display " ")
                 (display (current-time the-agenda))
                 (display "  New-value = ")
                 (display (get-signal wire)))))
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We begin by initializing the agenda and specifying delays for the primitive
function boxes:

(define the-agenda (make-agenda))
(define inverter-delay 2)
(define and-gate-delay 3)
(define or-gate-delay 5)

Now we define four wires, placing probes on two of them:

(define input-1 (make-wire))
(define input-2 (make-wire))
(define sum (make-wire))
(define carry (make-wire))
(probe 'sum sum)
sum 0  New-value = 0
(probe 'carry carry)
carry 0  New-value = 0

Next we connect the wires in a half-adder circuit (as in figure 3.25), set the signal
on input-1 to 1, and run the simulation:

(half-adder input-1 input-2 sum carry)
ok
(set-signal! input-1 1)
done
(propagate)
sum 8  New-value = 1
done

The sum signal changes to 1 at time 8. We are now eight time units from the
beginning of the simulation. At this point, we can set the signal on input-2 to 1
and allow the values to propagate:

(set-signal! input-2 1)
done
(propagate)
carry 11  New-value = 1
sum 16  New-value = 0
done

The carry changes to 1 at time 11 and the sum changes to 0 at time 16.

Exercise 3.31.   The internal procedure accept-action-procedure! defined in make-wire
specifies that when a new action procedure is added to a wire, the procedure is
immediately run. Explain why this initialization is necessary. In particular, trace
through the half-adder example in the paragraphs above and say how the
system's response would differ if we had defined accept-action-procedure! as

(define (accept-action-procedure! proc)
  (set! action-procedures (cons proc action-procedures)))

Implementing the agenda

Finally, we give details of the agenda data structure, which holds the procedures
that are scheduled for future execution.

The agenda is made up of time segments. Each time segment is a pair consisting
of a number (the time) and a queue (see exercise 3.32) that holds the procedures
that are scheduled to be run during that time segment.
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(define (make-time-segment time queue)
  (cons time queue))
(define (segment-time s) (car s))
(define (segment-queue s) (cdr s))

We will operate on the time-segment queues using the queue operations
described in section 3.3.2.

The agenda itself is a one-dimensional table of time segments. It differs from the
tables described in section 3.3.3 in that the segments will be sorted in order of
increasing time. In addition, we store the current time (i.e., the time of the last
action that was processed) at the head of the agenda. A newly constructed
agenda has no time segments and has a current time of 0:28

(define (make-agenda) (list 0))
(define (current-time agenda) (car agenda))
(define (set-current-time! agenda time)
  (set-car! agenda time))
(define (segments agenda) (cdr agenda))
(define (set-segments! agenda segments)
  (set-cdr! agenda segments))
(define (first-segment agenda) (car (segments agenda)))
(define (rest-segments agenda) (cdr (segments agenda)))

An agenda is empty if it has no time segments:

(define (empty-agenda? agenda)
  (null? (segments agenda)))

To add an action to an agenda, we first check if the agenda is empty. If so, we
create a time segment for the action and install this in the agenda. Otherwise, we
scan the agenda, examining the time of each segment. If we find a segment for
our appointed time, we add the action to the associated queue. If we reach a
time later than the one to which we are appointed, we insert a new time segment
into the agenda just before it. If we reach the end of the agenda, we must create
a new time segment at the end.

(define (add-to-agenda! time action agenda)
  (define (belongs-before? segments)
    (or (null? segments)
        (< time (segment-time (car segments)))))
  (define (make-new-time-segment time action)
    (let ((q (make-queue)))
      (insert-queue! q action)
      (make-time-segment time q)))
  (define (add-to-segments! segments)
    (if (= (segment-time (car segments)) time)
        (insert-queue! (segment-queue (car segments))
                       action)
        (let ((rest (cdr segments)))
          (if (belongs-before? rest)
              (set-cdr!
               segments
               (cons (make-new-time-segment time action)
                     (cdr segments)))
              (add-to-segments! rest)))))
  (let ((segments (segments agenda)))
    (if (belongs-before? segments)
        (set-segments!
         agenda
         (cons (make-new-time-segment time action)
               segments))
        (add-to-segments! segments))))
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The procedure that removes the first item from the agenda deletes the item at
the front of the queue in the first time segment. If this deletion makes the time
segment empty, we remove it from the list of segments:29

(define (remove-first-agenda-item! agenda)
  (let ((q (segment-queue (first-segment agenda))))
    (delete-queue! q)
    (if (empty-queue? q)
        (set-segments! agenda (rest-segments agenda)))))

The first agenda item is found at the head of the queue in the first time segment.
Whenever we extract an item, we also update the current time:30

(define (first-agenda-item agenda)
  (if (empty-agenda? agenda)
      (error "Agenda is empty -- FIRST-AGENDA-ITEM")
      (let ((first-seg (first-segment agenda)))
        (set-current-time! agenda (segment-time first-seg))
        (front-queue (segment-queue first-seg)))))

Exercise 3.32.  The procedures to be run during each time segment of the
agenda are kept in a queue. Thus, the procedures for each segment are called in
the order in which they were added to the agenda (first in, first out). Explain why
this order must be used. In particular, trace the behavior of an and-gate whose
inputs change from 0,1 to 1,0 in the same segment and say how the behavior
would differ if we stored a segment's procedures in an ordinary list, adding and
removing procedures only at the front (last in, first out).

3.3.5  Propagation of Constraints

Computer programs are traditionally organized as one-directional computations,
which perform operations on prespecified arguments to produce desired outputs.
On the other hand, we often model systems in terms of relations among
quantities. For example, a mathematical model of a mechanical structure might
include the information that the deflection d of a metal rod is related to the force
F on the rod, the length L of the rod, the cross-sectional area A, and the elastic
modulus E via the equation

Such an equation is not one-directional. Given any four of the quantities, we can
use it to compute the fifth. Yet translating the equation into a traditional
computer language would force us to choose one of the quantities to be
computed in terms of the other four. Thus, a procedure for computing the area A
could not be used to compute the deflection d, even though the computations of
A and d arise from the same equation.31

In this section, we sketch the design of a language that enables us to work in
terms of relations themselves. The primitive elements of the language are
primitive constraints, which state that certain relations hold between quantities.
For example, (adder a b c) specifies that the quantities a, b, and c must be related
by the equation a + b = c, (multiplier x y z) expresses the constraint xy = z, and
(constant 3.14 x) says that the value of x must be 3.14.
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Our language provides a means of combining primitive constraints in order to
express more complex relations. We combine constraints by constructing
constraint networks, in which constraints are joined by connectors. A connector is
an object that ``holds'' a value that may participate in one or more constraints.
For example, we know that the relationship between Fahrenheit and Celsius
temperatures is

Such a constraint can be thought of as a network consisting of primitive adder,
multiplier, and constant constraints (figure 3.28). In the figure, we see on the left
a multiplier box with three terminals, labeled m1, m2, and p. These connect the
multiplier to the rest of the network as follows: The m1 terminal is linked to a
connector C, which will hold the Celsius temperature. The m2 terminal is linked to
a connector w, which is also linked to a constant box that holds 9. The p terminal,
which the multiplier box constrains to be the product of m1 and m2, is linked to
the p terminal of another multiplier box, whose m2 is connected to a constant 5
and whose m1 is connected to one of the terms in a sum.

Figure 3.28:  The relation 9C = 5(F - 32) expressed as a constraint network.

Computation by such a network proceeds as follows: When a connector is given a
value (by the user or by a constraint box to which it is linked), it awakens all of its
associated constraints (except for the constraint that just awakened it) to inform
them that it has a value. Each awakened constraint box then polls its connectors
to see if there is enough information to determine a value for a connector. If so,
the box sets that connector, which then awakens all of its associated constraints,
and so on. For instance, in conversion between Celsius and Fahrenheit, w, x, and y
are immediately set by the constant boxes to 9, 5, and 32, respectively. The
connectors awaken the multipliers and the adder, which determine that there is
not enough information to proceed. If the user (or some other part of the
network) sets C to a value (say 25), the leftmost multiplier will be awakened, and
it will set u to 25 · 9 = 225. Then u awakens the second multiplier, which sets v to
45, and v awakens the adder, which sets F to 77.

Using the constraint system

To use the constraint system to carry out the temperature computation outlined
above, we first create two connectors, C and F, by calling the constructor make-
connector, and link C and F in an appropriate network:

(define C (make-connector))
(define F (make-connector))
(celsius-fahrenheit-converter C F)
ok

The procedure that creates the network is defined as follows:
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(define (celsius-fahrenheit-converter c f)
  (let ((u (make-connector))
        (v (make-connector))
        (w (make-connector))
        (x (make-connector))
        (y (make-connector)))
    (multiplier c w u)
    (multiplier v x u)
    (adder v y f)
    (constant 9 w)
    (constant 5 x)
    (constant 32 y)
    'ok))

This procedure creates the internal connectors u, v, w, x, and y, and links them as
shown in figure 3.28 using the primitive constraint constructors adder, multiplier,
and constant. Just as with the digital-circuit simulator of section 3.3.4, expressing
these combinations of primitive elements in terms of procedures automatically
provides our language with a means of abstraction for compound objects.

To watch the network in action, we can place probes on the connectors C and F,
using a probe procedure similar to the one we used to monitor wires in
section 3.3.4. Placing a probe on a connector will cause a message to be printed
whenever the connector is given a value:

(probe "Celsius temp" C)
(probe "Fahrenheit temp" F)

Next we set the value of C to 25. (The third argument to set-value! tells C that this
directive comes from the user.)

(set-value! C 25 'user)
Probe: Celsius temp = 25
Probe: Fahrenheit temp = 77
done

The probe on C awakens and reports the value. C also propagates its value
through the network as described above. This sets F to 77, which is reported by
the probe on F.

Now we can try to set F to a new value, say 212:

(set-value! F 212 'user)
Error! Contradiction (77 212)

The connector complains that it has sensed a contradiction: Its value is 77, and
someone is trying to set it to 212. If we really want to reuse the network with
new values, we can tell C to forget its old value:

(forget-value! C 'user)
Probe: Celsius temp = ?
Probe: Fahrenheit temp = ?
done

C finds that the user, who set its value originally, is now retracting that value, so C
agrees to lose its value, as shown by the probe, and informs the rest of the
network of this fact. This information eventually propagates to F, which now finds
that it has no reason for continuing to believe that its own value is 77. Thus, F
also gives up its value, as shown by the probe.
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Now that F has no value, we are free to set it to 212:

(set-value! F 212 'user)
Probe: Fahrenheit temp = 212
Probe: Celsius temp = 100
done

This new value, when propagated through the network, forces C to have a value
of 100, and this is registered by the probe on C. Notice that the very same
network is being used to compute C given F and to compute F given C. This
nondirectionality of computation is the distinguishing feature of constraint-based
systems.

Implementing the constraint system

The constraint system is implemented via procedural objects with local state, in a
manner very similar to the digital-circuit simulator of section 3.3.4. Although the
primitive objects of the constraint system are somewhat more complex, the
overall system is simpler, since there is no concern about agendas and logic
delays.

The basic operations on connectors are the following:

(has-value? <connector>)

tells whether the connector has a value.

(get-value <connector>)

returns the connector's current value.

(set-value! <connector> <new-value> <informant>)

indicates that the informant is requesting the connector to set its value to
the new value.

(forget-value! <connector> <retractor>)

tells the connector that the retractor is requesting it to forget its value.

(connect <connector> <new-constraint>)

tells the connector to participate in the new constraint.

The connectors communicate with the constraints by means of the procedures
inform-about-value, which tells the given constraint that the connector has a value,
and inform-about-no-value, which tells the constraint that the connector has lost its
value.

Adder constructs an adder constraint among summand connectors a1 and a2 and a
sum connector. An adder is implemented as a procedure with local state (the
procedure me below):

(define (adder a1 a2 sum)
  (define (process-new-value)
    (cond ((and (has-value? a1) (has-value? a2))
           (set-value! sum
                       (+ (get-value a1) (get-value a2))
                       me))
          ((and (has-value? a1) (has-value? sum))
           (set-value! a2
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                       (- (get-value sum) (get-value a1))
                       me))
          ((and (has-value? a2) (has-value? sum))
           (set-value! a1
                       (- (get-value sum) (get-value a2))
                       me))))
  (define (process-forget-value)
    (forget-value! sum me)
    (forget-value! a1 me)
    (forget-value! a2 me)
    (process-new-value))
  (define (me request)
    (cond ((eq? request 'I-have-a-value)  
           (process-new-value))
          ((eq? request 'I-lost-my-value) 
           (process-forget-value))
          (else 
           (error "Unknown request -- ADDER" request))))
  (connect a1 me)
  (connect a2 me)
  (connect sum me)
  me)

Adder connects the new adder to the designated connectors and returns it as its
value. The procedure me, which represents the adder, acts as a dispatch to the
local procedures. The following ``syntax interfaces'' (see footnote 27 in
section 3.3.4) are used in conjunction with the dispatch:

(define (inform-about-value constraint)
  (constraint 'I-have-a-value))
(define (inform-about-no-value constraint)
  (constraint 'I-lost-my-value))

The adder's local procedure process-new-value is called when the adder is informed
that one of its connectors has a value. The adder first checks to see if both a1 and
a2 have values. If so, it tells sum to set its value to the sum of the two addends.
The informant argument to set-value! is me, which is the adder object itself. If a1 and
a2 do not both have values, then the adder checks to see if perhaps a1 and sum
have values. If so, it sets a2 to the difference of these two. Finally, if a2 and sum
have values, this gives the adder enough information to set a1. If the adder is told
that one of its connectors has lost a value, it requests that all of its connectors
now lose their values. (Only those values that were set by this adder are actually
lost.) Then it runs process-new-value. The reason for this last step is that one or
more connectors may still have a value (that is, a connector may have had a value
that was not originally set by the adder), and these values may need to be
propagated back through the adder.

A multiplier is very similar to an adder. It will set its product to 0 if either of the
factors is 0, even if the other factor is not known.

(define (multiplier m1 m2 product)
  (define (process-new-value)
    (cond ((or (and (has-value? m1) (= (get-value m1) 0))
               (and (has-value? m2) (= (get-value m2) 0)))
           (set-value! product 0 me))
          ((and (has-value? m1) (has-value? m2))
           (set-value! product
                       (* (get-value m1) (get-value m2))
                       me))
          ((and (has-value? product) (has-value? m1))
           (set-value! m2
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                       (/ (get-value product) (get-value m1))
                       me))
          ((and (has-value? product) (has-value? m2))
           (set-value! m1
                       (/ (get-value product) (get-value m2))
                       me))))
  (define (process-forget-value)
    (forget-value! product me)
    (forget-value! m1 me)
    (forget-value! m2 me)
    (process-new-value))
  (define (me request)
    (cond ((eq? request 'I-have-a-value)
           (process-new-value))
          ((eq? request 'I-lost-my-value)
           (process-forget-value))
          (else
           (error "Unknown request -- MULTIPLIER" request))))
  (connect m1 me)
  (connect m2 me)
  (connect product me)
  me)

A constant constructor simply sets the value of the designated connector. Any I-
have-a-value or I-lost-my-value message sent to the constant box will produce an
error.

(define (constant value connector)
  (define (me request)
    (error "Unknown request -- CONSTANT" request))
  (connect connector me)
  (set-value! connector value me)
  me)

Finally, a probe prints a message about the setting or unsetting of the designated
connector:

(define (probe name connector)
  (define (print-probe value)
    (newline)
    (display "Probe: ")
    (display name)
    (display " = ")
    (display value))
  (define (process-new-value)
    (print-probe (get-value connector)))
  (define (process-forget-value)
    (print-probe "?"))
  (define (me request)
    (cond ((eq? request 'I-have-a-value)
           (process-new-value))
          ((eq? request 'I-lost-my-value)
           (process-forget-value))
          (else
           (error "Unknown request -- PROBE" request))))
  (connect connector me)
  me)

Representing connectors

A connector is represented as a procedural object with local state variables value,
the current value of the connector; informant, the object that set the connector's
value; and constraints, a list of the constraints in which the connector participates.
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(define (make-connector)
  (let ((value false) (informant false) (constraints '()))
    (define (set-my-value newval setter)
      (cond ((not (has-value? me))
             (set! value newval)
             (set! informant setter)
             (for-each-except setter
                              inform-about-value
                              constraints))
            ((not (= value newval))
             (error "Contradiction" (list value newval)))
            (else 'ignored)))
    (define (forget-my-value retractor)
      (if (eq? retractor informant)
          (begin (set! informant false)
                 (for-each-except retractor
                                  inform-about-no-value
                                  constraints))
          'ignored))
    (define (connect new-constraint)
      (if (not (memq new-constraint constraints))
          (set! constraints 
                (cons new-constraint constraints)))
      (if (has-value? me)
          (inform-about-value new-constraint))
      'done)
    (define (me request)
      (cond ((eq? request 'has-value?)
             (if informant true false))
            ((eq? request 'value) value)
            ((eq? request 'set-value!) set-my-value)
            ((eq? request 'forget) forget-my-value)
            ((eq? request 'connect) connect)
            (else (error "Unknown operation -- CONNECTOR"
                         request))))
    me))

The connector's local procedure set-my-value is called when there is a request to
set the connector's value. If the connector does not currently have a value, it will
set its value and remember as informant the constraint that requested the value to
be set.32 Then the connector will notify all of its participating constraints except
the constraint that requested the value to be set. This is accomplished using the
following iterator, which applies a designated procedure to all items in a list
except a given one:

(define (for-each-except exception procedure list)
  (define (loop items)
    (cond ((null? items) 'done)
          ((eq? (car items) exception) (loop (cdr items)))
          (else (procedure (car items))
                (loop (cdr items)))))
  (loop list))

If a connector is asked to forget its value, it runs the local procedure forget-my-
value, which first checks to make sure that the request is coming from the same
object that set the value originally. If so, the connector informs its associated
constraints about the loss of the value.

The local procedure connect adds the designated new constraint to the list of
constraints if it is not already in that list. Then, if the connector has a value, it
informs the new constraint of this fact.
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The connector's procedure me serves as a dispatch to the other internal
procedures and also represents the connector as an object. The following
procedures provide a syntax interface for the dispatch:

(define (has-value? connector)
  (connector 'has-value?))
(define (get-value connector)
  (connector 'value))
(define (set-value! connector new-value informant)
  ((connector 'set-value!) new-value informant))
(define (forget-value! connector retractor)
  ((connector 'forget) retractor))
(define (connect connector new-constraint)
  ((connector 'connect) new-constraint))

Exercise 3.33.  Using primitive multiplier, adder, and constant constraints, define
a procedure averager that takes three connectors a, b, and c as inputs and
establishes the constraint that the value of c is the average of the values of a and
b.

Exercise 3.34.  Louis Reasoner wants to build a squarer, a constraint device with
two terminals such that the value of connector b on the second terminal will
always be the square of the value a on the first terminal. He proposes the
following simple device made from a multiplier:

(define (squarer a b)
  (multiplier a a b))

There is a serious flaw in this idea. Explain.

Exercise 3.35.  Ben Bitdiddle tells Louis that one way to avoid the trouble in
exercise 3.34 is to define a squarer as a new primitive constraint. Fill in the
missing portions in Ben's outline for a procedure to implement such a constraint:

(define (squarer a b)
  (define (process-new-value)
    (if (has-value? b)
        (if (< (get-value b) 0)
            (error "square less than 0 -- SQUARER" (get-value b))
            <alternative1>)
        <alternative2>))
  (define (process-forget-value) <body1>)
  (define (me request) <body2>)
  <rest of definition>
  me)

Exercise 3.36.  Suppose we evaluate the following sequence of expressions in the
global environment:

(define a (make-connector))
(define b (make-connector))
(set-value! a 10 'user)

At some time during evaluation of the set-value!, the following expression from
the connector's local procedure is evaluated:

(for-each-except setter inform-about-value constraints)

Draw an environment diagram showing the environment in which the above
expression is evaluated.
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Exercise 3.37.  The celsius-fahrenheit-converter procedure is cumbersome when
compared with a more expression-oriented style of definition, such as

(define (celsius-fahrenheit-converter x)
  (c+ (c* (c/ (cv 9) (cv 5))
          x)
      (cv 32)))
(define C (make-connector))
(define F (celsius-fahrenheit-converter C))

Here c+, c*, etc. are the ``constraint'' versions of the arithmetic operations. For
example, c+ takes two connectors as arguments and returns a connector that is
related to these by an adder constraint:

(define (c+ x y)
  (let ((z (make-connector)))
    (adder x y z)
    z))

Define analogous procedures c-, c*, c/, and cv (constant value) that enable us to
define compound constraints as in the converter example above.33

16 Set-car! and set-cdr! return implementation-dependent values. Like set!, they should be used only for their
effect.

17 We see from this that mutation operations on lists can create ``garbage'' that is not part of any accessible
structure. We will see in section 5.3.2 that Lisp memory-management systems include a garbage collector,
which identifies and recycles the memory space used by unneeded pairs.

18 Get-new-pair is one of the operations that must be implemented as part of the memory management
required by a Lisp implementation. We will discuss this in section 5.3.1.

19 The two pairs are distinct because each call to cons returns a new pair. The symbols are shared; in Scheme
there is a unique symbol with any given name. Since Scheme provides no way to mutate a symbol, this
sharing is undetectable. Note also that the sharing is what enables us to compare symbols using eq?, which
simply checks equality of pointers.

20 The subtleties of dealing with sharing of mutable data objects reflect the underlying issues of ``sameness''
and ``change'' that were raised in section 3.1.3. We mentioned there that admitting change to our language
requires that a compound object must have an ``identity'' that is something different from the pieces from
which it is composed. In Lisp, we consider this ``identity'' to be the quality that is tested by eq?, i.e., by
equality of pointers. Since in most Lisp implementations a pointer is essentially a memory address, we are
``solving the problem'' of defining the identity of objects by stipulating that a data object ``itself'' is the
information stored in some particular set of memory locations in the computer. This suffices for simple Lisp
programs, but is hardly a general way to resolve the issue of ``sameness'' in computational models.

21 On the other hand, from the viewpoint of implementation, assignment requires us to modify the
environment, which is itself a mutable data structure. Thus, assignment and mutation are equipotent: Each
can be implemented in terms of the other.

22 If the first item is the final item in the queue, the front pointer will be the empty list after the deletion,
which will mark the queue as empty; we needn't worry about updating the rear pointer, which will still point
to the deleted item, because empty-queue? looks only at the front pointer.

23 Be careful not to make the interpreter try to print a structure that contains cycles. (See exercise 3.13.)

24 Because assoc uses equal?, it can recognize keys that are symbols, numbers, or list structure.

25 Thus, the first backbone pair is the object that represents the table ``itself''; that is, a pointer to the table is
a pointer to this pair. This same backbone pair always starts the table. If we did not arrange things in this
way, insert! would have to return a new value for the start of the table when it added a new record.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-33.html#%_sec_5.3.2
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26 A full-adder is a basic circuit element used in adding two binary numbers. Here A and B are the bits at
corresponding positions in the two numbers to be added, and Cin is the carry bit from the addition one

place to the right. The circuit generates SUM, which is the sum bit in the corresponding position, and Cout,

which is the carry bit to be propagated to the left.

27 These procedures are simply syntactic sugar that allow us to use ordinary procedural syntax to access the
local procedures of objects. It is striking that we can interchange the role of ``procedures'' and ``data'' in such
a simple way. For example, if we write (wire 'get-signal) we think of wire as a procedure that is called with the
message get-signal as input. Alternatively, writing (get-signal wire) encourages us to think of wire as a data
object that is the input to a procedure get-signal. The truth of the matter is that, in a language in which we
can deal with procedures as objects, there is no fundamental difference between ``procedures'' and ``data,''
and we can choose our syntactic sugar to allow us to program in whatever style we choose.

28 The agenda is a headed list, like the tables in section 3.3.3, but since the list is headed by the time, we do
not need an additional dummy header (such as the *table* symbol used with tables).

29 Observe that the if expression in this procedure has no <alternative> expression. Such a ``one-armed if
statement'' is used to decide whether to do something, rather than to select between two expressions. An if
expression returns an unspecified value if the predicate is false and there is no <alternative>.

30 In this way, the current time will always be the time of the action most recently processed. Storing this
time at the head of the agenda ensures that it will still be available even if the associated time segment has
been deleted.

31 Constraint propagation first appeared in the incredibly forward-looking SKETCHPAD system of Ivan
Sutherland (1963). A beautiful constraint-propagation system based on the Smalltalk language was
developed by Alan Borning (1977) at Xerox Palo Alto Research Center. Sussman, Stallman, and Steele applied
constraint propagation to electrical circuit analysis (Sussman and Stallman 1975; Sussman and Steele 1980).
TK!Solver (Konopasek and Jayaraman 1984) is an extensive modeling environment based on constraints.

32 The setter might not be a constraint. In our temperature example, we used user as the setter.

33 The expression-oriented format is convenient because it avoids the need to name the intermediate
expressions in a computation. Our original formulation of the constraint language is cumbersome in the
same way that many languages are cumbersome when dealing with operations on compound data. For
example, if we wanted to compute the product (a + b) · (c + d), where the variables represent vectors, we
could work in ``imperative style,'' using procedures that set the values of designated vector arguments but
do not themselves return vectors as values:

(v-sum a b temp1)
(v-sum c d temp2)
(v-prod temp1 temp2 answer)

Alternatively, we could deal with expressions, using procedures that return vectors as values, and thus avoid
explicitly mentioning temp1 and temp2:

(define answer (v-prod (v-sum a b) (v-sum c d)))

Since Lisp allows us to return compound objects as values of procedures, we can transform our imperative-
style constraint language into an expression-oriented style as shown in this exercise. In languages that are
impoverished in handling compound objects, such as Algol, Basic, and Pascal (unless one explicitly uses
Pascal pointer variables), one is usually stuck with the imperative style when manipulating compound objects.
Given the advantage of the expression-oriented format, one might ask if there is any reason to have
implemented the system in imperative style, as we did in this section. One reason is that the non-expression-
oriented constraint language provides a handle on constraint objects (e.g., the value of the adder procedure)
as well as on connector objects. This is useful if we wish to extend the system with new operations that
communicate with constraints directly rather than only indirectly via operations on connectors. Although it is
easy to implement the expression-oriented style in terms of the imperative implementation, it is very difficult
to do the converse.
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