
2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 1/10

[Go to first, previous, next page;   contents;   index]

4.2  Variations on a Scheme -- Lazy Evaluation

Now that we have an evaluator expressed as a Lisp program, we can experiment
with alternative choices in language design simply by modifying the evaluator.
Indeed, new languages are often invented by first writing an evaluator that
embeds the new language within an existing high-level language. For example, if
we wish to discuss some aspect of a proposed modification to Lisp with another
member of the Lisp community, we can supply an evaluator that embodies the
change. The recipient can then experiment with the new evaluator and send back
comments as further modifications. Not only does the high-level implementation
base make it easier to test and debug the evaluator; in addition, the embedding
enables the designer to snarf31 features from the underlying language, just as our
embedded Lisp evaluator uses primitives and control structure from the
underlying Lisp. Only later (if ever) need the designer go to the trouble of
building a complete implementation in a low-level language or in hardware. In
this section and the next we explore some variations on Scheme that provide
significant additional expressive power.

4.2.1  Normal Order and Applicative Order

In section 1.1, where we began our discussion of models of evaluation, we noted
that Scheme is an applicative-order language, namely, that all the arguments to
Scheme procedures are evaluated when the procedure is applied. In contrast,
normal-order languages delay evaluation of procedure arguments until the actual
argument values are needed. Delaying evaluation of procedure arguments until
the last possible moment (e.g., until they are required by a primitive operation) is
called lazy evaluation.32 Consider the procedure

(define (try a b)
  (if (= a 0) 1 b))

Evaluating (try 0 (/ 1 0)) generates an error in Scheme. With lazy evaluation, there
would be no error. Evaluating the expression would return 1, because the
argument (/ 1 0) would never be evaluated.

An example that exploits lazy evaluation is the definition of a procedure unless

(define (unless condition usual-value exceptional-value)
  (if condition exceptional-value usual-value))

that can be used in expressions such as

(unless (= b 0)
        (/ a b)
        (begin (display "exception: returning 0")
               0))

This won't work in an applicative-order language because both the usual value
and the exceptional value will be evaluated before unless is called (compare
exercise 1.6). An advantage of lazy evaluation is that some procedures, such as

https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-28.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_4.2
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_4.2.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_thm_1.6


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 2/10

unless, can do useful computation even if evaluation of some of their arguments
would produce errors or would not terminate.

If the body of a procedure is entered before an argument has been evaluated we
say that the procedure is non-strict in that argument. If the argument is evaluated
before the body of the procedure is entered we say that the procedure is strict in
that argument.33 In a purely applicative-order language, all procedures are strict
in each argument. In a purely normal-order language, all compound procedures
are non-strict in each argument, and primitive procedures may be either strict or
non-strict. There are also languages (see exercise 4.31) that give programmers
detailed control over the strictness of the procedures they define.

A striking example of a procedure that can usefully be made non-strict is cons (or,
in general, almost any constructor for data structures). One can do useful
computation, combining elements to form data structures and operating on the
resulting data structures, even if the values of the elements are not known. It
makes perfect sense, for instance, to compute the length of a list without
knowing the values of the individual elements in the list. We will exploit this idea
in section 4.2.3 to implement the streams of chapter 3 as lists formed of non-
strict cons pairs.

Exercise 4.25.  Suppose that (in ordinary applicative-order Scheme) we define
unless as shown above and then define factorial in terms of unless as

(define (factorial n)
  (unless (= n 1)
          (* n (factorial (- n 1)))
          1))

What happens if we attempt to evaluate (factorial 5)? Will our definitions work in
a normal-order language?

Exercise 4.26.  Ben Bitdiddle and Alyssa P. Hacker disagree over the importance
of lazy evaluation for implementing things such as unless. Ben points out that it's
possible to implement unless in applicative order as a special form. Alyssa
counters that, if one did that, unless would be merely syntax, not a procedure that
could be used in conjunction with higher-order procedures. Fill in the details on
both sides of the argument. Show how to implement unless as a derived
expression (like cond or let), and give an example of a situation where it might be
useful to have unless available as a procedure, rather than as a special form.

4.2.2  An Interpreter with Lazy Evaluation

In this section we will implement a normal-order language that is the same as
Scheme except that compound procedures are non-strict in each argument.
Primitive procedures will still be strict. It is not difficult to modify the evaluator of
section 4.1.1 so that the language it interprets behaves this way. Almost all the
required changes center around procedure application.

The basic idea is that, when applying a procedure, the interpreter must determine
which arguments are to be evaluated and which are to be delayed. The delayed
arguments are not evaluated; instead, they are transformed into objects called

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_4.2.2
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1.1


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 3/10

thunks.34 The thunk must contain the information required to produce the value
of the argument when it is needed, as if it had been evaluated at the time of the
application. Thus, the thunk must contain the argument expression and the
environment in which the procedure application is being evaluated.

The process of evaluating the expression in a thunk is called forcing.35 In general,
a thunk will be forced only when its value is needed: when it is passed to a
primitive procedure that will use the value of the thunk; when it is the value of a
predicate of a conditional; and when it is the value of an operator that is about
to be applied as a procedure. One design choice we have available is whether or
not to memoize thunks, as we did with delayed objects in section 3.5.1. With
memoization, the first time a thunk is forced, it stores the value that is computed.
Subsequent forcings simply return the stored value without repeating the
computation. We'll make our interpreter memoize, because this is more efficient
for many applications. There are tricky considerations here, however.36

Modifying the evaluator

The main difference between the lazy evaluator and the one in section 4.1 is in
the handling of procedure applications in eval and apply.

The application? clause of eval becomes

((application? exp)
 (apply (actual-value (operator exp) env)
        (operands exp)
        env))

This is almost the same as the application? clause of eval in section 4.1.1. For lazy
evaluation, however, we call apply with the operand expressions, rather than the
arguments produced by evaluating them. Since we will need the environment to
construct thunks if the arguments are to be delayed, we must pass this as well.
We still evaluate the operator, because apply needs the actual procedure to be
applied in order to dispatch on its type (primitive versus compound) and apply it.

Whenever we need the actual value of an expression, we use

(define (actual-value exp env)
  (force-it (eval exp env)))

instead of just eval, so that if the expression's value is a thunk, it will be forced.

Our new version of apply is also almost the same as the version in section 4.1.1.
The difference is that eval has passed in unevaluated operand expressions: For
primitive procedures (which are strict), we evaluate all the arguments before
applying the primitive; for compound procedures (which are non-strict) we delay
all the arguments before applying the procedure.

(define (apply procedure arguments env)
  (cond ((primitive-procedure? procedure)
         (apply-primitive-procedure
          procedure
          (list-of-arg-values arguments env)))  ; changed
        ((compound-procedure? procedure)
         (eval-sequence

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_583
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1.1


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 4/10

          (procedure-body procedure)
          (extend-environment
           (procedure-parameters procedure)
           (list-of-delayed-args arguments env) ; changed
           (procedure-environment procedure))))
        (else
         (error
          "Unknown procedure type -- APPLY" procedure))))

The procedures that process the arguments are just like list-of-values from
section 4.1.1, except that list-of-delayed-args delays the arguments instead of
evaluating them, and list-of-arg-values uses actual-value instead of eval:

(define (list-of-arg-values exps env)
  (if (no-operands? exps)
      '()
      (cons (actual-value (first-operand exps) env)
            (list-of-arg-values (rest-operands exps)
                                env))))
(define (list-of-delayed-args exps env)
  (if (no-operands? exps)
      '()
      (cons (delay-it (first-operand exps) env)
            (list-of-delayed-args (rest-operands exps)
                                  env))))

The other place we must change the evaluator is in the handling of if, where we
must use actual-value instead of eval to get the value of the predicate expression
before testing whether it is true or false:

(define (eval-if exp env)
  (if (true? (actual-value (if-predicate exp) env))
      (eval (if-consequent exp) env)
      (eval (if-alternative exp) env)))

Finally, we must change the driver-loop procedure (section 4.1.4) to use actual-value
instead of eval, so that if a delayed value is propagated back to the read-eval-
print loop, it will be forced before being printed. We also change the prompts to
indicate that this is the lazy evaluator:

(define input-prompt ";;; L-Eval input:")
(define output-prompt ";;; L-Eval value:")
(define (driver-loop)
  (prompt-for-input input-prompt)
  (let ((input (read)))
    (let ((output
           (actual-value input the-global-environment)))
      (announce-output output-prompt)
      (user-print output)))
  (driver-loop))

With these changes made, we can start the evaluator and test it. The successful
evaluation of the try expression discussed in section 4.2.1 indicates that the
interpreter is performing lazy evaluation:

(define the-global-environment (setup-environment))
(driver-loop)
;;; L-Eval input:
(define (try a b)
  (if (= a 0) 1 b))
;;; L-Eval value:
ok
;;; L-Eval input:

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1.4


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 5/10

(try 0 (/ 1 0))
;;; L-Eval value:
1

Representing thunks

Our evaluator must arrange to create thunks when procedures are applied to
arguments and to force these thunks later. A thunk must package an expression
together with the environment, so that the argument can be produced later. To
force the thunk, we simply extract the expression and environment from the
thunk and evaluate the expression in the environment. We use actual-value rather
than eval so that in case the value of the expression is itself a thunk, we will force
that, and so on, until we reach something that is not a thunk:

(define (force-it obj)
  (if (thunk? obj)
      (actual-value (thunk-exp obj) (thunk-env obj))
      obj))

One easy way to package an expression with an environment is to make a list
containing the expression and the environment. Thus, we create a thunk as
follows:

(define (delay-it exp env)
  (list 'thunk exp env))

(define (thunk? obj)
  (tagged-list? obj 'thunk))

(define (thunk-exp thunk) (cadr thunk))

(define (thunk-env thunk) (caddr thunk))

Actually, what we want for our interpreter is not quite this, but rather thunks that
have been memoized. When a thunk is forced, we will turn it into an evaluated
thunk by replacing the stored expression with its value and changing the thunk tag
so that it can be recognized as already evaluated.37

(define (evaluated-thunk? obj)
  (tagged-list? obj 'evaluated-thunk))

(define (thunk-value evaluated-thunk) (cadr evaluated-thunk))
(define (force-it obj)
  (cond ((thunk? obj)
         (let ((result (actual-value
                        (thunk-exp obj)
                        (thunk-env obj))))
           (set-car! obj 'evaluated-thunk)
           (set-car! (cdr obj) result)  ; replace exp with its value
           (set-cdr! (cdr obj) '())     ; forget unneeded env
           result))
        ((evaluated-thunk? obj)
         (thunk-value obj))
        (else obj)))

Notice that the same delay-it procedure works both with and without
memoization.

Exercise 4.27.  Suppose we type in the following definitions to the lazy evaluator:

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_584


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 6/10

(define count 0)
(define (id x)
  (set! count (+ count 1))
  x)

Give the missing values in the following sequence of interactions, and explain
your answers.38

(define w (id (id 10)))
;;; L-Eval input:
count
;;; L-Eval value:
<response>
;;; L-Eval input:
w
;;; L-Eval value:
<response>
;;; L-Eval input:
count
;;; L-Eval value:
<response>

Exercise 4.28.  Eval uses actual-value rather than eval to evaluate the operator
before passing it to apply, in order to force the value of the operator. Give an
example that demonstrates the need for this forcing.

Exercise 4.29.  Exhibit a program that you would expect to run much more slowly
without memoization than with memoization. Also, consider the following
interaction, where the id procedure is defined as in exercise 4.27 and count starts
at 0:

(define (square x)
  (* x x))
;;; L-Eval input:
(square (id 10))
;;; L-Eval value:
<response>
;;; L-Eval input:
count
;;; L-Eval value:
<response>

Give the responses both when the evaluator memoizes and when it does not.

Exercise 4.30.  Cy D. Fect, a reformed C programmer, is worried that some side
effects may never take place, because the lazy evaluator doesn't force the
expressions in a sequence. Since the value of an expression in a sequence other
than the last one is not used (the expression is there only for its effect, such as
assigning to a variable or printing), there can be no subsequent use of this value
(e.g., as an argument to a primitive procedure) that will cause it to be forced. Cy
thus thinks that when evaluating sequences, we must force all expressions in the
sequence except the final one. He proposes to modify eval-sequence from
section 4.1.1 to use actual-value rather than eval:

(define (eval-sequence exps env)
  (cond ((last-exp? exps) (eval (first-exp exps) env))
        (else (actual-value (first-exp exps) env)
              (eval-sequence (rest-exps exps) env))))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html#%_sec_4.1.1


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 7/10

a. Ben Bitdiddle thinks Cy is wrong. He shows Cy the for-each procedure described
in exercise 2.23, which gives an important example of a sequence with side
effects:

(define (for-each proc items)
  (if (null? items)
      'done
      (begin (proc (car items))
             (for-each proc (cdr items)))))

He claims that the evaluator in the text (with the original eval-sequence) handles
this correctly:

;;; L-Eval input:
(for-each (lambda (x) (newline) (display x))
          (list 57 321 88))
57
321
88
;;; L-Eval value:
done

Explain why Ben is right about the behavior of for-each.

b. Cy agrees that Ben is right about the for-each example, but says that that's not
the kind of program he was thinking about when he proposed his change to eval-
sequence. He defines the following two procedures in the lazy evaluator:

(define (p1 x)
  (set! x (cons x '(2)))
  x)

(define (p2 x)
  (define (p e)
    e
    x)
  (p (set! x (cons x '(2)))))

What are the values of (p1 1) and (p2 1) with the original eval-sequence? What
would the values be with Cy's proposed change to eval-sequence?

c. Cy also points out that changing eval-sequence as he proposes does not affect
the behavior of the example in part a. Explain why this is true.

d. How do you think sequences ought to be treated in the lazy evaluator? Do you
like Cy's approach, the approach in the text, or some other approach?

Exercise 4.31.  The approach taken in this section is somewhat unpleasant,
because it makes an incompatible change to Scheme. It might be nicer to
implement lazy evaluation as an upward-compatible extension, that is, so that
ordinary Scheme programs will work as before. We can do this by extending the
syntax of procedure declarations to let the user control whether or not arguments
are to be delayed. While we're at it, we may as well also give the user the choice
between delaying with and without memoization. For example, the definition

(define (f a (b lazy) c (d lazy-memo))
  ...)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-15.html#%_thm_2.23


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 8/10

would define f to be a procedure of four arguments, where the first and third
arguments are evaluated when the procedure is called, the second argument is
delayed, and the fourth argument is both delayed and memoized. Thus, ordinary
procedure definitions will produce the same behavior as ordinary Scheme, while
adding the lazy-memo declaration to each parameter of every compound procedure
will produce the behavior of the lazy evaluator defined in this section. Design and
implement the changes required to produce such an extension to Scheme. You
will have to implement new syntax procedures to handle the new syntax for
define. You must also arrange for eval or apply to determine when arguments are
to be delayed, and to force or delay arguments accordingly, and you must
arrange for forcing to memoize or not, as appropriate.

4.2.3  Streams as Lazy Lists

In section 3.5.1, we showed how to implement streams as delayed lists. We
introduced special forms delay and cons-stream, which allowed us to construct a
``promise'' to compute the cdr of a stream, without actually fulfilling that promise
until later. We could use this general technique of introducing special forms
whenever we need more control over the evaluation process, but this is awkward.
For one thing, a special form is not a first-class object like a procedure, so we
cannot use it together with higher-order procedures.39 Additionally, we were
forced to create streams as a new kind of data object similar but not identical to
lists, and this required us to reimplement many ordinary list operations (map, append,
and so on) for use with streams.

With lazy evaluation, streams and lists can be identical, so there is no need for
special forms or for separate list and stream operations. All we need to do is to
arrange matters so that cons is non-strict. One way to accomplish this is to extend
the lazy evaluator to allow for non-strict primitives, and to implement cons as one
of these. An easier way is to recall (section 2.1.3) that there is no fundamental
need to implement cons as a primitive at all. Instead, we can represent pairs as
procedures:40

(define (cons x y)
  (lambda (m) (m x y)))
(define (car z)
  (z (lambda (p q) p)))
(define (cdr z)
  (z (lambda (p q) q)))

In terms of these basic operations, the standard definitions of the list operations
will work with infinite lists (streams) as well as finite ones, and the stream
operations can be implemented as list operations. Here are some examples:

(define (list-ref items n)
  (if (= n 0)
      (car items)
      (list-ref (cdr items) (- n 1))))
(define (map proc items)
  (if (null? items)
      '()
      (cons (proc (car items))
            (map proc (cdr items)))))
(define (scale-list items factor)
  (map (lambda (x) (* x factor))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_4.2.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_sec_2.1.3


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 9/10

       items))
(define (add-lists list1 list2)
  (cond ((null? list1) list2)
        ((null? list2) list1)
        (else (cons (+ (car list1) (car list2))
                    (add-lists (cdr list1) (cdr list2))))))
(define ones (cons 1 ones))
(define integers (cons 1 (add-lists ones integers)))
;;; L-Eval input:
(list-ref integers 17)
;;; L-Eval value:
18

Note that these lazy lists are even lazier than the streams of chapter 3: The car of
the list, as well as the cdr, is delayed.41 In fact, even accessing the car or cdr of a
lazy pair need not force the value of a list element. The value will be forced only
when it is really needed -- e.g., for use as the argument of a primitive, or to be
printed as an answer.

Lazy pairs also help with the problem that arose with streams in section 3.5.4,
where we found that formulating stream models of systems with loops may
require us to sprinkle our programs with explicit delay operations, beyond the
ones supplied by cons-stream. With lazy evaluation, all arguments to procedures are
delayed uniformly. For instance, we can implement procedures to integrate lists
and solve differential equations as we originally intended in section 3.5.4:

(define (integral integrand initial-value dt)
  (define int
    (cons initial-value
          (add-lists (scale-list integrand dt)
                    int)))
  int)
(define (solve f y0 dt)
  (define y (integral dy y0 dt))
  (define dy (map f y))
  y)
;;; L-Eval input:
(list-ref (solve (lambda (x) x) 1 0.001) 1000)
;;; L-Eval value:
2.716924

Exercise 4.32.  Give some examples that illustrate the difference between the
streams of chapter 3 and the ``lazier'' lazy lists described in this section. How can
you take advantage of this extra laziness?

Exercise 4.33.  Ben Bitdiddle tests the lazy list implementation given above by
evaluating the expression

(car '(a b c))

To his surprise, this produces an error. After some thought, he realizes that the
``lists'' obtained by reading in quoted expressions are different from the lists
manipulated by the new definitions of cons, car, and cdr. Modify the evaluator's
treatment of quoted expressions so that quoted lists typed at the driver loop will
produce true lazy lists.

Exercise 4.34.  Modify the driver loop for the evaluator so that lazy pairs and lists
will print in some reasonable way. (What are you going to do about infinite lists?)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5.4
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5.4


2016. 9. 20. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/full­text/book/book­Z­H­27.html 10/10

You may also need to modify the representation of lazy pairs so that the
evaluator can identify them in order to print them.

31 Snarf: ``To grab, especially a large document or file for the purpose of using it either with or without the
owner's permission.'' Snarf down: ``To snarf, sometimes with the connotation of absorbing, processing, or
understanding.'' (These definitions were snarfed from Steele et al. 1983. See also Raymond 1993.)

32 The difference between the ``lazy'' terminology and the ``normal-order'' terminology is somewhat fuzzy.
Generally, ``lazy'' refers to the mechanisms of particular evaluators, while ``normal-order'' refers to the
semantics of languages, independent of any particular evaluation strategy. But this is not a hard-and-fast
distinction, and the two terminologies are often used interchangeably.

33 The ``strict'' versus ``non-strict'' terminology means essentially the same thing as ``applicative-order'' versus
``normal-order,'' except that it refers to individual procedures and arguments rather than to the language as
a whole. At a conference on programming languages you might hear someone say, ``The normal-order
language Hassle has certain strict primitives. Other procedures take their arguments by lazy evaluation.''

34 The word thunk was invented by an informal working group that was discussing the implementation of
call-by-name in Algol 60. They observed that most of the analysis of (``thinking about'') the expression could
be done at compile time; thus, at run time, the expression would already have been ``thunk'' about
(Ingerman et al. 1960).

35 This is analogous to the use of force on the delayed objects that were introduced in chapter 3 to
represent streams. The critical difference between what we are doing here and what we did in chapter 3 is
that we are building delaying and forcing into the evaluator, and thus making this uniform and automatic
throughout the language.

36 Lazy evaluation combined with memoization is sometimes referred to as call-by-need argument passing,
in contrast to call-by-name argument passing. (Call-by-name, introduced in Algol 60, is similar to non-
memoized lazy evaluation.) As language designers, we can build our evaluator to memoize, not to memoize,
or leave this an option for programmers (exercise 4.31). As you might expect from chapter 3, these choices
raise issues that become both subtle and confusing in the presence of assignments. (See exercises 4.27
and 4.29.) An excellent article by Clinger (1982) attempts to clarify the multiple dimensions of confusion that
arise here.

37 Notice that we also erase the env from the thunk once the expression's value has been computed. This
makes no difference in the values returned by the interpreter. It does help save space, however, because
removing the reference from the thunk to the env once it is no longer needed allows this structure to be
garbage-collected and its space recycled, as we will discuss in section 5.3.

Similarly, we could have allowed unneeded environments in the memoized delayed objects of section 3.5.1
to be garbage-collected, by having memo-proc do something like (set! proc '()) to discard the procedure proc
(which includes the environment in which the delay was evaluated) after storing its value.

38 This exercise demonstrates that the interaction between lazy evaluation and side effects can be very
confusing. This is just what you might expect from the discussion in chapter 3.

39 This is precisely the issue with the unless procedure, as in exercise 4.26.

40 This is the procedural representation described in exercise 2.4. Essentially any procedural representation
(e.g., a message-passing implementation) would do as well. Notice that we can install these definitions in the
lazy evaluator simply by typing them at the driver loop. If we had originally included cons, car, and cdr as
primitives in the global environment, they will be redefined. (Also see exercises 4.33 and 4.34.)

41 This permits us to create delayed versions of more general kinds of list structures, not just sequences.
Hughes 1990 discusses some applications of ``lazy trees.''

[Go to first, previous, next page;   contents;   index]

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-33.html#%_sec_5.3
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-24.html#%_sec_3.5.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_thm_2.4
https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-26.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-28.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start

