2016. 9. 20.

Structure and Interpretation of Computer Programs

[Go to first, previous, next page; contents; index]

5.4 The Explicit-Control Evaluator

In section 5.1 we saw how to transform simple Scheme programs into
descriptions of register machines. We will now perform this transformation on a
more complex program, the metacircular evaluator of sections 4.1.1-4.1.4, which
shows how the behavior of a Scheme interpreter can be described in terms of the
procedures eval and apply. The explicit-control evaluator that we develop in this
section shows how the underlying procedure-calling and argument-passing
mechanisms used in the evaluation process can be described in terms of
operations on registers and stacks. In addition, the explicit-control evaluator can
serve as an implementation of a Scheme interpreter, written in a language that is
very similar to the native machine language of conventional computers. The
evaluator can be executed by the register-machine simulator of section 5.2.
Alternatively, it can be used as a starting point for building a machine-language
implementation of a Scheme evaluator, or even a special-purpose machine for
evaluating Scheme expressions. Figure 5.16 shows such a hardware
implementation: a silicon chip that acts as an evaluator for Scheme. The chip
designers started with the data-path and controller specifications for a register
machine similar to the evaluator described in this section and used design
automation programs to construct the integrated-circuit layout.1?

Registers and operations

In designing the explicit-control evaluator, we must specify the operations to be
used in our register machine. We described the metacircular evaluator in terms of
abstract syntax, using procedures such as quoted? and make-procedure. In
implementing the register machine, we could expand these procedures into
sequences of elementary list-structure memory operations, and implement these
operations on our register machine. However, this would make our evaluator very
long, obscuring the basic structure with details. To clarify the presentation, we will
include as primitive operations of the register machine the syntax procedures
given in section 4.1.2 and the procedures for representing environments and
other run-time data given in sections 4.1.3 and 4.1.4. In order to completely
specify an evaluator that could be programmed in a low-level machine language
or implemented in hardware, we would replace these operations by more
elementary operations, using the list-structure implementation we described in
section 5.3.
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Figure 5.16: A silicon-chip implementation of an evaluator for Scheme.

Our Scheme evaluator register machine includes a stack and seven registers: exp,
env, val, continue, proc, argl, and unev. Exp is used to hold the expression to be
evaluated, and env contains the environment in which the evaluation is to be
performed. At the end of an evaluation, val contains the value obtained by
evaluating the expression in the designated environment. The continue register is
used to implement recursion, as explained in section 5.1.4. (The evaluator needs
to call itself recursively, since evaluating an expression requires evaluating its
subexpressions.) The registers proc, argl, and unev are used in evaluating
combinations.

We will not provide a data-path diagram to show how the registers and
operations of the evaluator are connected, nor will we give the complete list of
machine operations. These are implicit in the evaluator's controller, which will be
presented in detail.

5.4.1 The Core of the Explicit-Control Evaluator

The central element in the evaluator is the sequence of instructions beginning at
eval-dispatch. This corresponds to the eval procedure of the metacircular evaluator
described in section 4.1.1. When the controller starts at eval-dispatch, it evaluates
the expression specified by exp in the environment specified by env. When
evaluation is complete, the controller will go to the entry point stored in continue,
and the val register will hold the value of the expression. As with the metacircular
eval, the structure of eval-dispatch is a case analysis on the syntactic type of the
expression to be evaluated.?

eval—-dispatch
(test (op self-evaluating?) (reg exp))
(branch (label ev-self-eval))
(test (op variable?) (reg exp))
(branch (label ev-variable))
(test (op quoted?) (reg exp))
(branch (label ev-quoted))
(test (op assignment?) (reg exp))
(branch (label ev-assignment))
(test (op definition?) (reg exp))
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(branch (label ev-definition))

(test (op if?) (reg exp))

(branch (label ev-if))

(test (op lambda?) (reg exp))

(branch (label ev-lambda))

(test (op begin?) (reg exp))

(branch (label ev-begin))

(test (op application?) (reg exp))
(branch (label ev-application))

(goto (label unknown-expression-type))

Evaluating simple expressions

Numbers and strings (which are self-evaluating), variables, quotations, and lambda
expressions have no subexpressions to be evaluated. For these, the evaluator
simply places the correct value in the val register and continues execution at the
entry point specified by continue. Evaluation of simple expressions is performed by
the following controller code:

ev-sel f-eval
(assign val (reg exp))
(goto (reg continue))

ev-variable
(assign val (op lookup-variable-value) (reg exp) (reg env))
(goto (reg continue))

ev-quoted
(assign val (op text-of—quotation) (reg exp))
(goto (reg continue))

ev—|lambda
(assign unev (op lambda—parameters) (reg exp))
(assign exp (op lambda—body) (reg exp))
(assign val (op make-procedure)

(reg unev) (reg exp) (reg env))

(goto (reg continue))

Observe how ev-lambda uses the unev and exp registers to hold the parameters and
body of the lambda expression so that they can be passed to the make-procedure
operation, along with the environment in env.

Evaluating procedure applications

A procedure application is specified by a combination containing an operator and
operands. The operator is a subexpression whose value is a procedure, and the
operands are subexpressions whose values are the arguments to which the
procedure should be applied. The metacircular eval handles applications by calling
itself recursively to evaluate each element of the combination, and then passing
the results to apply, which performs the actual procedure application. The explicit-
control evaluator does the same thing; these recursive calls are implemented by
goto instructions, together with use of the stack to save registers that will be
restored after the recursive call returns. Before each call we will be careful to
identify which registers must be saved (because their values will be needed
later).2L

We begin the evaluation of an application by evaluating the operator to produce
a procedure, which will later be applied to the evaluated operands. To evaluate
the operator, we move it to the exp register and go to eval-dispatch. The
environment in the env register is already the correct one in which to evaluate the
operator. However, we save env because we will need it later to evaluate the
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operands. We also extract the operands into unev and save this on the stack. We
set up continue SO that eval-dispatch will resume at ev-appl-did-operator after the
operator has been evaluated. First, however, we save the old value of continue,
which tells the controller where to continue after the application.

ev-application
(save continue)
(save env)
(assign unev (op operands) (reg exp))
(save unev)
(assign exp (op operator) (reg exp))
(assign continue (label ev-appl-did-operator))
(goto (label eval-dispatch))

Upon returning from evaluating the operator subexpression, we proceed to
evaluate the operands of the combination and to accumulate the resulting
arguments in a list, held in argl. First we restore the unevaluated operands and
the environment. We initialize argl to an empty list. Then we assign to the proc
register the procedure that was produced by evaluating the operator. If there are
no operands, we go directly to apply-dispatch. Otherwise we save proc on the stack
and start the argument-evaluation loop:22

ev-app|-did-operator
(restore unev) ; the operands
restore env)
assign argl (op empty-arglist))
assign proc (reg val)) ; the operator
test (op no-operands?) (reg unev))
branch (label apply-dispatch))
save proc)

o~~~ o~ —~ —

Each cycle of the argument-evaluation loop evaluates an operand from the list in
unev and accumulates the result into argl. To evaluate an operand, we place it in
the exp register and go to eval-dispatch, after setting continue so that execution will
resume with the argument-accumulation phase. But first we save the arguments
accumulated so far (held in argl), the environment (held in env), and the remaining
operands to be evaluated (held in unev). A special case is made for the evaluation
of the last operand, which is handled at ev-appl-last-arg.

ev—app |-operand—loop
(save argl)

(assign exp (op first—operand) (reg unev))

(test (op last-operand?) (reg unev))

(branch (label ev-appl-last-arg))

(save env)

(save unev)

(assign continue (label ev-appl-accumulate-arg))

(goto (label eval-dispatch))

When an operand has been evaluated, the value is accumulated into the list held
in argl. The operand is then removed from the list of unevaluated operands in
unev, and the argument-evaluation continues.

ev-appl-accumulate-arg
(restore unev)
(restore env)
(restore argl)
(assign argl (op adjoin-arg) (reg val) (reg argl))
(assign unev (op rest-operands) (reg unev))
(goto (label ev-appl-operand-loop))
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Evaluation of the last argument is handled differently. There is no need to save
the environment or the list of unevaluated operands before going to eval-dispatch,
since they will not be required after the last operand is evaluated. Thus, we return
from the evaluation to a special entry point ev-appl-accum-last-arg, which restores
the argument list, accumulates the new argument, restores the saved procedure,
and goes off to perform the application.2

ev-appl-last-arg
(assign continue (label ev-appl-accum-last-arg))
(goto (label eval-dispatch))
ev—appl-accum-last-arg
(restore argl)
(assign argl (op adjoin-arg) (reg val) (reg argl))
(restore proc)
(goto (label apply-dispatch))

The details of the argument-evaluation loop determine the order in which the
interpreter evaluates the operands of a combination (e.g., left to right or right to
left -- see exercise 3.8). This order is not determined by the metacircular
evaluator, which inherits its control structure from the underlying Scheme in
which it is implemented.24 Because the first-operand selector (used in ev-appl-
operand-loop to extract successive operands from unev) is implemented as car and
the rest-operands selector is implemented as cdr, the explicit-control evaluator will
evaluate the operands of a combination in left-to-right order.

Procedure application

The entry point apply-dispatch corresponds to the apply procedure of the
metacircular evaluator. By the time we get to apply-dispatch, the proc register
contains the procedure to apply and argl contains the list of evaluated arguments
to which it must be applied. The saved value of continue (originally passed to eval-
dispatch and saved at ev-application), which tells where to return with the result of
the procedure application, is on the stack. When the application is complete, the
controller transfers to the entry point specified by the saved continue, with the
result of the application in val. As with the metacircular apply, there are two cases
to consider. Either the procedure to be applied is a primitive or it is a compound
procedure.

apply-dispatch
(test (op primitive—procedure?) (reg proc))
(branch (label primitive—apply))
(test (op compound-procedure?) (reg proc))
(branch (label compound-apply))
(goto (label unknown-procedure-type))

We assume that each primitive is implemented so as to obtain its arguments
from argl and place its result in val. To specify how the machine handles
primitives, we would have to provide a sequence of controller instructions to
implement each primitive and arrange for primitive-apply to dispatch to the
instructions for the primitive identified by the contents of proc. Since we are
interested in the structure of the evaluation process rather than the details of the
primitives, we will instead just use an apply-primitive-procedure operation that
applies the procedure in proc to the arguments in argl. For the purpose of
simulating the evaluator with the simulator of section 5.2 we use the procedure
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apply-primitive-procedure, which calls on the underlying Scheme system to perform
the application, just as we did for the metacircular evaluator in section 4.1.4. After
computing the value of the primitive application, we restore continue and go to
the designated entry point.

primitive-apply
(assign val (op apply-primitive-procedure)
(reg proc)
(reg argl))
(restore continue)
(goto (reg continue))

To apply a compound procedure, we proceed just as with the metacircular
evaluator. We construct a frame that binds the procedure's parameters to the
arguments, use this frame to extend the environment carried by the procedure,
and evaluate in this extended environment the sequence of expressions that
forms the body of the procedure. Ev-sequence, described below in section 5.4.2,
handles the evaluation of the sequence.

compound-app |y
(assign unev (op procedure—parameters) (reg proc))
(assign env (op procedure—environment) (reg proc))
(assign env (op extend—environment)
(reg unev) (reg argl) (reg env))
(assign unev (op procedure-body) (reg proc))
(goto (label ev-sequence))

Compound-apply is the only place in the interpreter where the env register is ever
assigned a new value. Just as in the metacircular evaluator, the new environment
is constructed from the environment carried by the procedure, together with the
argument list and the corresponding list of variables to be bound.

5.4.2 Sequence Evaluation and Tail Recursion

The portion of the explicit-control evaluator at ev-sequence is analogous to the
metacircular evaluator's eval-sequence procedure. It handles sequences of
expressions in procedure bodies or in explicit begin expressions.

Explicit begin expressions are evaluated by placing the sequence of expressions to
be evaluated in unev, saving continue on the stack, and jumping to ev-sequence.

ev-begin
(assign unev (op begin-actions) (reg exp))
(save continue)
(goto (label ev-sequence))

The implicit sequences in procedure bodies are handled by jumping to ev-sequence
from compound-apply, at which point continue is already on the stack, having been
saved at ev-application.

The entries at ev-sequence and ev-sequence-continue form a loop that successively
evaluates each expression in a sequence. The list of unevaluated expressions is
kept in unev. Before evaluating each expression, we check to see if there are
additional expressions to be evaluated in the sequence. If so, we save the rest of
the unevaluated expressions (held in unev) and the environment in which these
must be evaluated (held in env) and call eval-dispatch to evaluate the expression.
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The two saved registers are restored upon the return from this evaluation, at ev-
sequence—cont inue.

The final expression in the sequence is handled differently, at the entry point ev-
sequence-last-exp. Since there are no more expressions to be evaluated after this
one, we need not save unev or env before going to eval-dispatch. The value of the
whole sequence is the value of the last expression, so after the evaluation of the
last expression there is nothing left to do except continue at the entry point
currently held on the stack (which was saved by ev-application or ev-begin.) Rather
than setting up continue to arrange for eval-dispatch to return here and then
restoring continue from the stack and continuing at that entry point, we restore
continue from the stack before going to eval-dispatch, so that eval-dispatch will
continue at that entry point after evaluating the expression.

ev-sequence
(assign exp (op first—exp) (reg unev))
(test (op last-exp?) (reg unev))
(branch (label ev-sequence-last—-exp))
(save unev)
(save env)
(assign continue (label ev-seqguence—continue))
(goto (label eval-dispatch))
ev-seqguence—-cont inue
(restore env)
(restore unev)
(assign unev (op rest—exps) (reg unev))
(goto (label ev-sequence))
ev-sequence-last-exp
(restore continue)
(goto (label eval-dispatch))

Tail recursion

In chapter 1 we said that the process described by a procedure such as

(define (sqgrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x)

x)))

is an iterative process. Even though the procedure is syntactically recursive
(defined in terms of itself), it is not logically necessary for an evaluator to save
information in passing from one call to sart-iter to the next.22 An evaluator that
can execute a procedure such as sart-iter without requiring increasing storage as
the procedure continues to call itself is called a tail-recursive evaluator. The
metacircular implementation of the evaluator in chapter 4 does not specify
whether the evaluator is tail-recursive, because that evaluator inherits its
mechanism for saving state from the underlying Scheme. With the explicit-control
evaluator, however, we can trace through the evaluation process to see when
procedure calls cause a net accumulation of information on the stack.

Our evaluator is tail-recursive, because in order to evaluate the final expression of
a sequence we transfer directly to eval-dispatch without saving any information on
the stack. Hence, evaluating the final expression in a sequence -- even if it is a
procedure call (as in sart-iter, where the if expression, which is the last
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expression in the procedure body, reduces to a call to sart-iter) -- will not cause
any information to be accumulated on the stack.2

If we did not think to take advantage of the fact that it was unnecessary to save
information in this case, we might have implemented eval-sequence by treating all

the expressions in a sequence in the same way -- saving the registers, evaluating
the expression, returning to restore the registers, and repeating this until all the

expressions have been evaluated:2.

ev-sequence
(test (op no—more-exps?) (reg unev))
(branch (label ev-sequence-end))
(assign exp (op first—exp) (reg unev))
(save unev)
(save env)
(assign continue (label ev-sequence—continue))
(goto (label eval-dispatch))
ev-seqguence—cont inue
(restore env)
(restore unev)
(assign unev (op rest—exps) (reg unev))
(goto (label ev-sequence))
ev-seguence—end
(restore continue)
(goto (reg continue))

This may seem like a minor change to our previous code for evaluation of a
sequence: The only difference is that we go through the save-restore cycle for the
last expression in a sequence as well as for the others. The interpreter will still
give the same value for any expression. But this change is fatal to the tail-
recursive implementation, because we must now return after evaluating the final
expression in a sequence in order to undo the (useless) register saves. These extra
saves will accumulate during a nest of procedure calls. Consequently, processes
such as sart-iter will require space proportional to the number of iterations rather
than requiring constant space. This difference can be significant. For example,
with tail recursion, an infinite loop can be expressed using only the procedure-call
mechanism:

(define (count n)
(newline)
(display n)
(count (+ n 1)))

Without tail recursion, such a procedure would eventually run out of stack space,
and expressing a true iteration would require some control mechanism other than
procedure call.

5.4.3 Conditionals, Assignments, and Definitions

As with the metacircular evaluator, special forms are handled by selectively
evaluating fragments of the expression. For an if expression, we must evaluate
the predicate and decide, based on the value of predicate, whether to evaluate
the consequent or the alternative.

Before evaluating the predicate, we save the if expression itself so that we can
later extract the consequent or alternative. We also save the environment, which
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we will need later in order to evaluate the consequent or the alternative, and we
save continue, which we will need later in order to return to the evaluation of the
expression that is waiting for the value of the if.

ev-if
(save exp) ; save expression for later
(save env)
(save continue)

(assign continue (label ev-if-decide))

(assign exp (op if-predicate) (reg exp))

(goto (label eval-dispatch))  evaluate the predicate

When we return from evaluating the predicate, we test whether it was true or
false and, depending on the result, place either the consequent or the alternative
in exp before going to eval-dispatch. Notice that restoring env and continue here sets
up eval-dispatch to have the correct environment and to continue at the right
place to receive the value of the if expression.

ev—if-decide
(restore continue)
(restore env)
(restore exp)
(test (op true?) (reg val))
(branch (label ev-if-consequent))

ev—if-alternative
(assign exp (op if-alternative) (reg exp))
(goto (label eval-dispatch))
ev—if-consequent
(assign exp (op if-consequent) (reg exp))
(goto (label eval-dispatch))

Assignments and definitions

Assignments are handled by ev-assignment, which is reached from eval-dispatch with
the assignment expression in exp. The code at ev-assignment first evaluates the value
part of the expression and then installs the new value in the environment. Set-
variable-value! is assumed to be available as a machine operation.

ev-assignment
(assign unev (op assignment-variable) (reg exp))
(save unev) ; save variable for later
(assign exp (op assignment-value) (reg exp))
(save env)
(save continue)
(assign continue (label ev-assignment-1))
(goto (label eval-dispatch)) ; evaluate the assignment value
ev-assignment—1
(restore continue)
(restore env)
(restore unev)
(perform
(op set-variable-value!) (reg unev) (reg val) (reg env))
(assign val (const ok))
(goto (reg continue))

Definitions are handled in a similar way:

ev-definition
(assign unev (op definition-variable) (reg exp))

(save unev) ; save variable for later
(assign exp (op definition—value) (reg exp))
(save env)
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(save continue)

(assign continue (label ev-definition-1))

(goto (label eval-dispatch)) ; evaluate the definition value
ev-definition-1

(restore continue)

(restore env)

(restore unev)

(perform

(op define-variable!) (reg unev) (reg val) (reg env))

(assign val (const ok))

(goto (reg continue))

Exercise 5.23. Extend the evaluator to handle derived expressions such as cond,
let, and so on (section 4.1.2). You may cheat" and assume that the syntax
transformers such as cond->if are available as machine operations.28

Exercise 5.24. Implement cond as a new basic special form without reducing it to
if. You will have to construct a loop that tests the predicates of successive cond
clauses until you find one that is true, and then use ev-sequence to evaluate the
actions of the clause.

Exercise 5.25. Modify the evaluator so that it uses normal-order evaluation,
based on the lazy evaluator of section 4.2.

5.4.4 Running the Evaluator

With the implementation of the explicit-control evaluator we come to the end of
a development, begun in chapter 1, in which we have explored successively more
precise models of the evaluation process. We started with the relatively informal
substitution model, then extended this in chapter 3 to the environment model,
which enabled us to deal with state and change. In the metacircular evaluator of
chapter 4, we used Scheme itself as a language for making more explicit the
environment structure constructed during evaluation of an expression. Now, with
register machines, we have taken a close look at the evaluator's mechanisms for
storage management, argument passing, and control. At each new level of
description, we have had to raise issues and resolve ambiguities that were not
apparent at the previous, less precise treatment of evaluation. To understand the
behavior of the explicit-control evaluator, we can simulate it and monitor its
performance.

We will install a driver loop in our evaluator machine. This plays the role of the
driver-loop procedure of section 4.1.4. The evaluator will repeatedly print a
prompt, read an expression, evaluate the expression by going to eval-dispatch, and
print the result. The following instructions form the beginning of the explicit-
control evaluator's controller sequence:2

read-eval-print—-Iloop

(perform (op initialize-stack))

(perform

(op prompt—for—input) (const ";;; EC-Eval input:"))

(assign exp (op read))

(assign env (op get—global-environment))

(assign continue (label print-result))

(goto (label eval-dispatch))
print-result

(perform

(op announce-output) (const

e o
’

; EC-Eval value:"))
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(perform (op user-print) (reg val))
(goto (label read-eval—-print-loop))

When we encounter an error in a procedure (such as the “unknown procedure
type error" indicated at apply-dispatch), we print an error message and return to
the driver loop.22

unknown—expression-type
(assign val (const unknown-expression-type-error))
(goto (label signal-error))
unknown-procedure-type
(restore continue) ; clean up stack (from apply—-dispatch)
(assign val (const unknown—procedure-type-error))
(goto (label signal-error))
signal-error
(perform (op user-print) (reg val))
(goto (label read-eval—-print—Iloop))

For the purposes of the simulation, we initialize the stack each time through the
driver loop, since it might not be empty after an error (such as an undefined
variable) interrupts an evaluation.21

If we combine all the code fragments presented in sections 5.4.1-5.4.4, we can
create an evaluator machine model that we can run using the register-machine
simulator of section 5.2.

(define eceval
(make-machine
'"(exp env val proc argl continue unev)
eceval-operations
i
read-eval-print-Iloop
<entire machine controller as given above>

)

We must define Scheme procedures to simulate the operations used as primitives
by the evaluator. These are the same procedures we used for the metacircular
evaluator in section 4.1, together with the few additional ones defined in
footnotes throughout section 5.4.

(define eceval-operations
(list (list 'self-evaluating? self-evaluating)
<complete list of operations for eceval machine>))

Finally, we can initialize the global environment and run the evaluator:

(define the—global-environment (setup-environment))

(start eceval)

;»5 EC-Eval input:

(define (append x y)
(if (null? x)

(cons (car x)
(append (cdr x) y))))

;»5 EC-Eval value:
ok
;55 EC-Eval input:
(append '(abc) '(de f))
;»5 EC-Eval value:
(abcdef)
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Of course, evaluating expressions in this way will take much longer than if we had

directly typed them into Scheme, because of the multiple levels of simulation

involved. Our expressions are evaluated by the explicit-control-evaluator machine,
which is being simulated by a Scheme program, which is itself being evaluated by

the Scheme interpreter.

Monitoring the performance of the evaluator

Simulation can be a powerful tool to guide the implementation of evaluators.
Simulations make it easy not only to explore variations of the register-machine
design but also to monitor the performance of the simulated evaluator. For
example, one important factor in performance is how efficiently the evaluator
uses the stack. We can observe the number of stack operations required to
evaluate various expressions by defining the evaluator register machine with the
version of the simulator that collects statistics on stack use (section 5.2.4), and
adding an instruction at the evaluator's print-result entry point to print the
statistics:

print-result
(perform (op print-stack-statistics)); added instruction
(perform
(op announce-output) (const
; same as before

e o
’

; EC-Eval value:"))

Interactions with the evaluator now look like this:

;s EC-Eval input:
(define (factorial n)
(if (=n1)
1
(= (factorial (= n 1)) n)))
(total-pushes = 3 maximum—depth = 3)
+5 EC-Eval value:
ok
»s EC-Eval input:
(factorial 5)
(total—-pushes = 144 maximum—depth = 28)
;»5 EC-Eval value:
120

Note that the driver loop of the evaluator reinitializes the stack at the start of
each interaction, so that the statistics printed will refer only to stack operations
used to evaluate the previous expression.

Exercise 5.26. Use the monitored stack to explore the tail-recursive property of
the evaluator (section 5.4.2). Start the evaluator and define the iterative factorial
procedure from section 1.2.1:

(define (factorial n)
(define (iter product counter)
(if (> counter n)
product
(iter (* counter product)
(+ counter 1))))
(iter 11))

Run the procedure with some small values of n. Record the maximum stack depth

and the number of pushes required to compute n! for each of these values.
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a. You will find that the maximum depth required to evaluate n! is independent of
n. What is that depth?

b. Determine from your data a formula in terms of n for the total number of push
operations used in evaluating n! for any n > 1. Note that the number of
operations used is a linear function of n and is thus determined by two constants.

Exercise 5.27. For comparison with exercise 5.26, explore the behavior of the
following procedure for computing factorials recursively:

(define (factorial n)
(if (=n1)
1
(» (factorial (= n 1)) n)))

By running this procedure with the monitored stack, determine, as a function of
n, the maximum depth of the stack and the total number of pushes used in
evaluating n! for n > 1. (Again, these functions will be linear.) Summarize your
experiments by filling in the following table with the appropriate expressions in
terms of n:

Maximum depth||Number of pushes

Recursive

factorial

[terative

factorial

The maximum depth is a measure of the amount of space used by the evaluator
in carrying out the computation, and the number of pushes correlates well with

the time required.

Exercise 5.28. Modify the definition of the evaluator by changing eval-sequence as
described in section 5.4.2 so that the evaluator is no longer tail-recursive. Rerun

your experiments from exercises 5.26 and 5.27 to demonstrate that both versions
of the factorial procedure now require space that grows linearly with their input.

Exercise 5.29. Monitor the stack operations in the tree-recursive Fibonacci
computation:

(define (fib n)
(if (<n2)
n
(+ (fib (= n 1)) (fib (= n 2)))))

a. Give a formula in terms of n for the maximum depth of the stack required to
compute Fib(n) for n > 2. Hint: In section 1.2.2 we argued that the space used by
this process grows linearly with n.

b. Give a formula for the total number of pushes used to compute Fib(n) for n >

2. You should find that the number of pushes (which correlates well with the time
used) grows exponentially with n. Hint: Let S(n) be the number of pushes used in

computing Fib(n). You should be able to argue that there is a formula that
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expresses S(n) in terms of S(n - 1), S(n - 2), and some fixed “overhead" constant k
that is independent of n. Give the formula, and say what k is. Then show that S(n)
can be expressed as a Fib(n + 1) + b and give the values of a and b.

Exercise 5.30. Our evaluator currently catches and signals only two kinds of
errors -- unknown expression types and unknown procedure types. Other errors
will take us out of the evaluator read-eval-print loop. When we run the evaluator
using the register-machine simulator, these errors are caught by the underlying
Scheme system. This is analogous to the computer crashing when a user program
makes an error.22 It is a large project to make a real error system work, but it is
well worth the effort to understand what is involved here.

a. Errors that occur in the evaluation process, such as an attempt to access an
unbound variable, could be caught by changing the lookup operation to make it
return a distinguished condition code, which cannot be a possible value of any
user variable. The evaluator can test for this condition code and then do what is
necessary to go to signal-error. Find all of the places in the evaluator where such
a change is necessary and fix them. This is lots of work.

b. Much worse is the problem of handling errors that are signaled by applying
primitive procedures, such as an attempt to divide by zero or an attempt to
extract the car of a symbol. In a professionally written high-quality system, each
primitive application is checked for safety as part of the primitive. For example,
every call to car could first check that the argument is a pair. If the argument is
not a pair, the application would return a distinguished condition code to the
evaluator, which would then report the failure. We could arrange for this in our
register-machine simulator by making each primitive procedure check for
applicability and returning an appropriate distinguished condition code on failure.
Then the primitive-apply code in the evaluator can check for the condition code
and go to signal-error if necessary. Build this structure and make it work. This is a
major project.

19 See Batali et al. 1982 for more information on the chip and the method by which it was designed.

20 In our controller, the dispatch is written as a sequence of test and branch instructions. Alternatively, it could
have been written in a data-directed style (and in a real system it probably would have been) to avoid the
need to perform sequential tests and to facilitate the definition of new expression types. A machine designed
to run Lisp would probably include a dispatch-on-type instruction that would efficiently execute such data-
directed dispatches.

21 This is an important but subtle point in translating algorithms from a procedural language, such as Lisp, to
a register-machine language. As an alternative to saving only what is needed, we could save all the registers
(except val) before each recursive call. This is called a framed-stack discipline. This would work but might
save more registers than necessary; this could be an important consideration in a system where stack
operations are expensive. Saving registers whose contents will not be needed later may also hold onto
useless data that could otherwise be garbage-collected, freeing space to be reused.

22 We add to the evaluator data-structure procedures in section 4.1.3 the following two procedures for
manipulating argument lists:
(define (empty-arglist) '())

(define (adjoin-arg arg arglist)
(append arglist (list arg)))

We also use an additional syntax procedure to test for the last operand in a combination:
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(define (last-operand? ops)
(nul1? (cdr ops)))

23 The optimization of treating the last operand specially is known as evlis tail recursion (see Wand 1980).
We could be somewhat more efficient in the argument evaluation loop if we made evaluation of the first
operand a special case too. This would permit us to postpone initializing argl until after evaluating the first
operand, so as to avoid saving argl in this case. The compiler in section 5.5 performs this optimization.
(Compare the construct-arglist procedure of section 5.5.3.)

24 The order of operand evaluation in the metacircular evaluator is determined by the order of evaluation of
the arguments to cons in the procedure list-of-values of section 4.1.1 (see exercise 4.1).

23 We saw in section 5.1 how to implement such a process with a register machine that had no stack; the
state of the process was stored in a fixed set of registers.

26 This implementation of tail recursion in ev-sequence is one variety of a well-known optimization technique
used by many compilers. In compiling a procedure that ends with a procedure call, one can replace the call
by a jump to the called procedure’s entry point. Building this strategy into the interpreter, as we have done
in this section, provides the optimization uniformly throughout the language.

27 \We can define no-more-exps? as follows:

(define (no-more-exps? seq) (null? seq))

28 This isn't really cheating. In an actual implementation built from scratch, we would use our explicit-control
evaluator to interpret a Scheme program that performs source-level transformations like cond—>if in a syntax
phase that runs before execution.

22 We assume here that read and the various printing operations are available as primitive machine
operations, which is useful for our simulation, but completely unrealistic in practice. These are actually
extremely complex operations. In practice, they would be implemented using low-level input-output
operations such as transferring single characters to and from a device.

To support the get-global-environment operation we define

(define the-global-environment (setup-environment))

(define (get-global-environment)
the—-global-environment)

30 There are other errors that we would like the interpreter to handle, but these are not so simple. See
exercise 5.30.

31 We could perform the stack initialization only after errors, but doing it in the driver loop will be
convenient for monitoring the evaluator's performance, as described below.

32 Regrettably, this is the normal state of affairs in conventional compiler-based language systems such as C.
In UNIX ™ the system “dumps core,” and in DOS/Windows ™ it becomes catatonic. The Macintosh ™
displays a picture of an exploding bomb and offers you the opportunity to reboot the computer -- if you're

lucky.
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