SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification

Eunhwan Park⁴, Jong-Hyeon Lee⁴, Donghyeon Jeon, Seonhoon Kim, Inho Kang, Seung-Hoon Na

Introduction

Fact verification task aims to automatically classify a human-generated • claim into "Supported", "Refuted", or "Not Enough Info" based on retrieved evidence sentences from Wikipedia.

- Graph reasoning may suffer from:
 - Unit-biased reasoning; when relying on a single type of semantic unit for nodes of a graph, the semantic interaction between claim and evidence is restricted to a single graph type.
 - Over-smoothing; causing all node representations to converge to a stationary point at the extreme.

Our Approach

Semantic-level graph reasoning

 $+ W_{0}^{(l)} h_{i}^{(l)}$

Semantic-level graph reasoning employs a relational graph convolutional network defined as:

$$\begin{split} & \boldsymbol{h}_{i}^{(t+1)} = f\left(\sum_{r \in \mathcal{R}} \sum_{j \in \mathcal{N}_{sem}^{\mathcal{S}}(i)} | \boldsymbol{\mathcal{N}}_{sem}^{r}(i) | \boldsymbol{\mathcal{W}}_{r}^{(t)} \boldsymbol{h}_{j}^{(t)} \right. \\ & \boldsymbol{H}_{sem} = \boldsymbol{H}^{(L)} = \left[\boldsymbol{h}_{1}^{(L)}, \cdots, \boldsymbol{h}_{|\boldsymbol{\mathcal{N}}_{sem}|}^{(L)}\right] \end{split}$$

Semantic-infused Sentence-level Selective Graph Reasoning

• In selective graph reasoning, we prepare K different subgraphs by applying the selection mechanism K times, and combine the selective representations performed over K subgraphs.

Semantic fusion

 $sfu(x, y) = g * x + (1 - g) * y, g = \sigma(W_1 x + W_2 y)$ $H_{fused} = sfu(\mathbf{H}'_{claim}, \mathbf{H}'_{sent})$

Node Selection Mechanism

• Choosing K subsets of nodes to be selected because there is no groundtruth answer for the nodes to be selected. The node selection probabilities $p_{sent} \in \mathbb{R}^m$ described as:

$\boldsymbol{p}_{sent} = \sigma \left(g(\boldsymbol{H}_{sent} \boldsymbol{W}_3) + \boldsymbol{H}_{fused} \boldsymbol{W}_4 \boldsymbol{C}_{[CLS]}^T \right)$

The node selection mechanism creates a subsets of evidence nodes denoted \mathcal{V}' by filtering out with low probabilities given the threshold τ as follows:

$$\mathcal{V}' = \{ j \mid j \in \mathcal{V} \text{ and } \boldsymbol{p}_{sent,j} \geq \tau \}$$

Then, we define $p_{sent}' \in \mathbb{R}^m$ by zeroing the probabilities of the filtered nodes as follows:

$p'_{sent} = p_{sent} * i_{\mathcal{V}'}$

where $\mathbf{i}_{\mathcal{V}'} = [\mathcal{I}(k \in \mathcal{V}')]_{k=1}^m$ is the k-hot vector and $\mathcal{I}(e)$ is the indicator function

Selective Graph Reasoning

Given probabilities p^\prime_{sent} , we perform graph reasoning using only the selected set of nodes, \mathcal{V}^\prime

$$m{h}^{sel}_i = \sum_{j \in \mathcal{N}_{sent}(i)} m{p}'_{sent,j} \cdot m{H}^{fused}_j$$

Then, the reasoning-enhanced representation is obtained as follows:

$$\boldsymbol{h}_{i}^{fsel} = \sum_{j \in \mathcal{N}_{sent}(i)} \boldsymbol{p}_{sent,j} \cdot \boldsymbol{v}_{j} \cdot \boldsymbol{H}_{j}^{fused}$$

where $v_i = \sigma(\langle \boldsymbol{w}_{sel} | [\boldsymbol{h}_i^{sel}; \boldsymbol{e}_i'] \rangle).$

Sequence Reasoning

• Our sequence reasoning is based on MHA over only sentence-level evidence representation $E_{seq} \in \mathbb{R}^{m \times d_{model}}$, described as follows:

$E_{seq} = PE(E_{1,[CLS]}, \cdots, E_{m,[CLS]})$ $H_{seq} = E_{seq} + MHA(E_{seq}, E_{seq}, E_{seq})$

where PE is the absolute positional encoding.

Main Results

Model	Dev		Test	
	LA	F.S	LA	F.S
UNC NLP	69.72	66.49	68.21	64.21
GEAR (BERT-base)	74.84	70.69	71.60	67.10
DREAM (XLNet-large)	79.16	-	76.85	70.60
KGAT (BERT-large)	77.91	75.86	73.61	70.24
KGAT (RoBERTa-large)	78.29	76.11	74.07	70.38
LOREN (BERT-large)	78.44	76.21	74.43	70.71
LOREN (RoBERTa-large)	81.14	<u>78.83</u>	76.42	72.93
MLA (RoBERTa-large)	79.31	75.96	77.05	<u>73.72</u>
Ours (RoBERTa-large)	83.13	79.87	77.50	73.90