증강된 질문을 이용한 RoBERTa 기반 Dense Passage Retrieval

박준범, 홍범석, 최원석, 한영섭, 전병기, 나승훈 전북대학교, LGU+

발표 순서

• 서론

• 관련 연구

• 생성 모델을 이용한 질문 생성

• 증강 방법

• 실험 및 결과

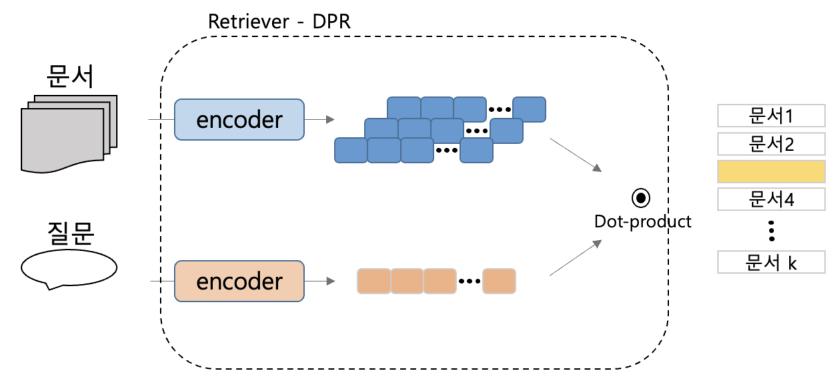
서론

(Dataset augmentation: 문서 기반 대화 모델의 사전학습 보강을 위한 데이터셋 증강)

- 답변 생성을 위한 다중 문서 기반 대화 시스템 속 검색 모듈의 중요성
- 문서에 기반한 응답 시스템 연구에 사용될 한국어 대화 데이터 셋이 부족함
- 생성 모델(T5-base)를 이용하여 문서와 관련된 질문을 생성하고 새로운 입력 쌍을 구성하여 검색 모듈의 강화 방법 모색
- RoBERTa-base를 이용한 Dense Passage Retrieval 검색 모듈에 데이터를 증강하여 강화시킨 PRAQ 제안 (Pretrained RoBERTa with Augmented Query)

관련 연구

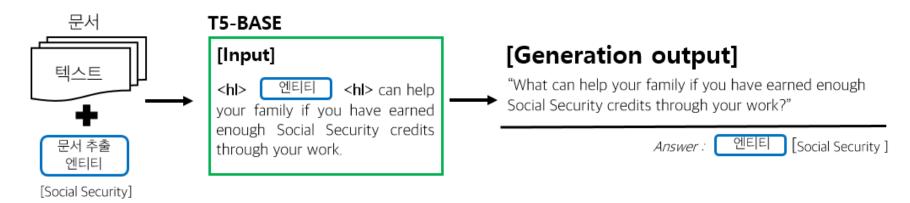
• Retrieval for response generation



- Dense Passage Retrieval
 - 이중 인코더 프레임워크를 이용하여 얻어낸 질문과 문서의 dense representation간 유사도
 - 질문이 문서와 의미적으로 유사성을 갖는다면 질문과 문서를 관련이 있다고 매칭시킬 수 있음
 - Hard negative sampling을 활용한 성능 개선을 시도할 수 있음.

생성 모델을 이용한 질문 생성

Generation Overview



• Generation Example

Entity	Benefit Calculators	
Text	··· check our Benefit Calculators for an estimate of the benefits your family could receive ···	
Generated Question	What can you use to estimate the amount of benefits your family could receive if you died right now?	

Entity	DHS (Department of Homeland Security)
Text	···If DHS did not authorize you to work , we will change your name on our records but we cannot···
Generated Question	Who will change your name on our records but not issue you a corrected card?

문서-질문 세트

• Document Grounded Query-Passage set

Document Passages			
4,110			
Train	Valid	Test	
21,451	4,201	4,094	

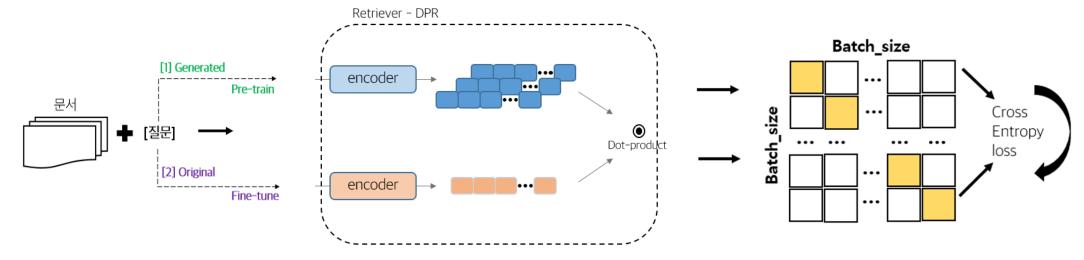
Document Passages		
4,110		
Entity	Generated Question	
4,625	20,135	

MultiDoc2Dial: 488개의 문서로부터 기반하여 평균적으로 약 14번의 발화가 오가는 4,796개의 대화 데이터

- 문서에서 추출해낸 엔티티 하나 당 약 네 개 이상의 질문 생성
- 단순한 1회성의 발화로 대화가 진행되면서 쌓이는 기록이 포함된 대화의 형태를 띄고 있지 않음
- 생성 질문을 이용한 파인 튜닝시 기존 대화를 이용했을 때 만큼의 성과는 기대하기 어려움

증강 방법

Training Process



[1] : 생성된 질문 - 문서 쌍을 DPR 인코더에 사전 학습 -> PRAQ

[2] : 기존 질문 - 문서 쌍을 이용한 파인 튜닝

Similarity of query-passage

$$sim(\mathbf{q}, \mathbf{p}) = \mathbf{E}_Q(\mathbf{q})^T \mathbf{E}_P(\mathbf{p})$$

$$\mathcal{L}(q_i, p_i^+, p_{i,1}^-, \dots, p_{i,n}^-)$$

$$= -\log \frac{e^{\sin(q_i, p_i^+)}}{e^{\sin(q_i, p_i^+)} + \sum_{j=1}^n e^{\sin(q_i, p_{i,j}^-)}}$$

실험

• 실험 셋팅

- In-Batch 학습법(60) : 다른 질문-문서 쌍들과 배치를 형성하여 질문-정답 문서, 질문-오답 문서의 유사도 차이를 효율적으로 계산할 수 있음

- Dataset : MultiDoc2Dial

- Epoch : 30

- Learning Rate: 2e-05

- Metric: MRR(Mean Reciprocal Rank), R@K (Recall at top-k)

- 1) Pretrained RoBERTa with Augmented Query
- 2) + Hard negative (TF-IDF)
- TF-IDF 유사도를 기준으로 각 질문마다 상위 100개의 문서들을 추림.
- 파인 튜닝시, 매 epoch마다 무작위로 선정한 하나의 오답 문서를 hard negative 로 활용하여 학습
- 1개의 negative -> batch size : batch + 1

결괴

• 실험 결과

	MRR	R@1	R@5	R@10	R@50
RoBERTa-base	57.16	43.62	73.61	82.95	94.77
PRAQ(ours)	58.12	44.82	74.76	83.53	95.02
RoBERTa-base + TF-IDF	57.41	44.74	72.64	81.72	93.94
PRAQ + TF-IDF (ours)	58.97	46.31	74.76	83.14	94.11

표 3. Multidoc2dial 셋에서의 RoBERTA-base, PRAQ의 DPR 성능 비교 실험 결과

추가 연구 방향

Generating more sophisticated Question/ Template - based

Entity	Benefit Calculators	
Text	··· check our Benefit Calculators for an estimate of the benefits your family could receive ···	
Generated Question	What can you use to estimate the amount of benefits your family could receive if you died right now?	

Entity	Benefit Calculators
Text	··· check our Benefit Calculators for an estimate of the benefits your family could receive ···
Retrieved Text	···use our Benefit Calculators to determine how much you would get if you became disabled right···
Generated Question	What can you use to determine how much you would get if you became disabled right now?

- 동일한 엔티티를 갖는 다른 텍스트를 검색하여 생성될 질문의 기본 틀로 삼음
- 템플릿 기반 질문 생성, Ex) [Wh, 검색된 텍스트, 수식 문구]
- 기존 맥락과 일치하지 않을 수 있는 검색된 문장이 단순한 엔티티 일치보다 더 복잡한 관계를 학습시킬 수 있음

Template-Based Question Generation from Retrieved Sentences for Improved Unsupervised Question Answering [Fabbri et al' 2020,ACL]

감사합니다