이미지-텍스트 멀티모달 Dense Retrieval를 위한 생성모델 기반 데이터 증강

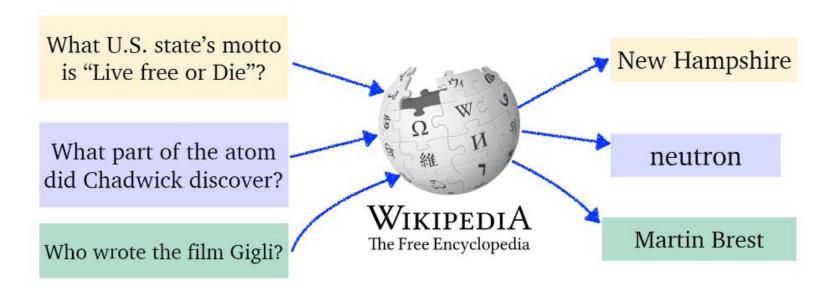
2023.06.20

Presentation by: Sung-Min Lee

Mail: cap1232@jbnu.ac.kr

Open Domain Question Answering

- **Input**: question Q, D = English Wikipedia (~5 million documents)
- Output: answer A



주어진 질의에 대해 연관된 지식을 필요로 하는 Task

Problem Formulation

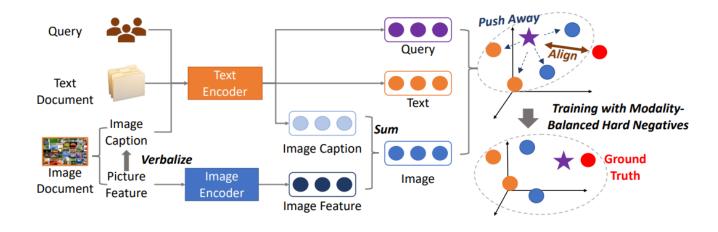
WebQA (Multihop and Multimodal Open Domain QA over Image and Text)

Question: Are both the National Museum of the American Indian in Washington, D.C. and the Xanadu House in Kissimmee, Florida the same color?

Answer: Yes, both the National Museum of the American Indian in Washington, D.C. and the Xanadu House in Kissimmee, Florida are beige.

- 정답을 도출하기 위해 이미지, 텍스트 sources 사이에서 positive sources를 검색하는 것이 필요. (즉, Muti modal retrieval가 필요하다.)
- 두가지 세팅이 있는데, restricted(npprox 40)와 Full (npprox 900K) 세팅이 있음, restricted(npprox 40)와 Full restricted(npprox

Prior works: UniVL-DR



$$\begin{split} L &= -\log \frac{e^{f(q,d^{+})/\tau}}{e^{f(q,d^{+})/\tau} + \sum_{d^{-} \in \mathcal{D}^{-}} e^{f(q,d^{-})/\tau}} \\ &= -\underbrace{f(q,d^{+})/\tau}_{L_{\text{Align}}} + \log(e^{f(q,d^{+})/\tau} + \underbrace{\sum_{i=1}^{k_{1}} e^{f(q,d^{i-}_{\text{Image}})/\tau}}_{L_{\text{Image}}} + \underbrace{\sum_{j=1}^{k_{2}} e^{f(q,d^{j-}_{\text{Text}})/\tau}}_{L_{\text{Text}}}), \end{split}$$

Contributions

- 1) modality-balanced hard negatives
- 2) Image verbalization method

Prior works: PAQ

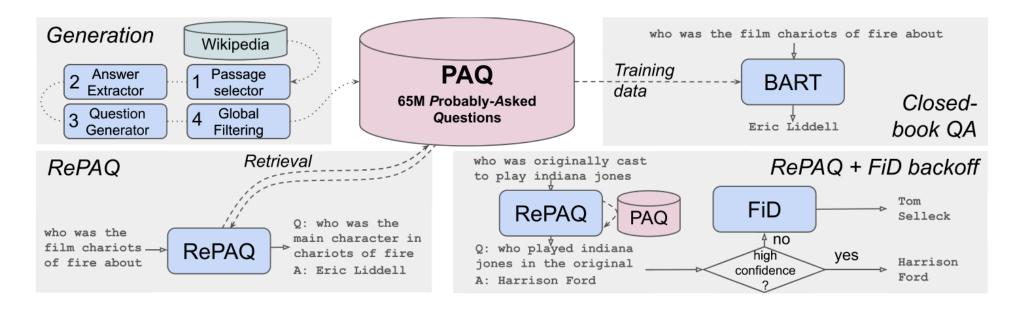
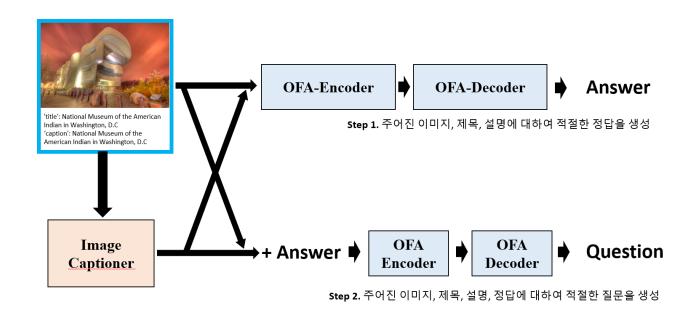


Figure 1: Top Left: Generation pipeline for QA-pairs in PAQ. Top Right: PAQ used as training data for CBQA models. Bottom Left: RePAQ retrieves similar QA-pairs to input questions from PAQ. Bottom right: RePAQ's confidence is predictive of accuracy. If confidence is low, we can defer to slower, more accurate systems, like FiD.

Our approach: Generative Multi-Modal Data Aug



- 현재 시스템에서는 Answer extractor, Question generator 두가지로 구성.
- Image captioner는 Fine-tuning된 OFA 모델 사용
- Image selector, Filtering을 추가로 도입할 필요가 있음.

Experimental results 생성된 데이터 샘플들

A: The mouth is open.

Q: Is the mouth of the Burmese python open or closed?

A: The roof of the orphanage in Krotwoning is sloped.

Q: Is the roof of the orphanage in Krotwoning flat or sloped?

A: Yes, there is a phone number in the window of the Ritz Cinema.

Q: Is there a phone number in the window of the Ritz Cinema?

Experimental results

Model	MRR@10	NDCG@10	MRR@20	NDCG@20	Rec@20	Rec@100
CLIP (Zero-Shot)	10.59	8.69	10.80	9.52	14.32	20.21
VinVL-DPR	38.14	35.43	38.74	37.79	53.89	69.42
CLIP-DPR	48.83	46.32	49.34	49.11	69.84	86.43
UniVL-DR	62.40	59.32	62.69	61.22	80.37	89.42
CLIP-DPR(ours)	48.12	45.59	48.65	48.30	68.72	85.64
CLIP-DPR(after pre-training)	50.65	48.09	51.21	51.05	72.13	87.26
UniVL-DR(ours)	60.59	57.42	60.88	59.27	77.90	87.23
UniVL-DR(after pre-training)	62.75	59.72	63.05	61.87	81.53	90.86

표 1: 전체 실험 결과

Model	MRR@10	NDCG@10	MRR@20	NDCG@20	Rec@20	Rec@100
CLIP-DPR(ours)	48.12	45.59	48.65	48.30	68.72	85.64
CLIP-DPR(MMAug + PAQ)	50.56	48.10	51.05	50.83	71.79	87.81
CLIP-DPR(MMAug + WebQA text)	50.65	48.09	51.21	51.05	72.13	87.26

표 3: 사전학습 데이터셋 종류에 따른 추가 분석 실험 결과

- VQA 데이터 추가로 이용해서 사전학습 진행했었으나, 추가 성능 향상은 이루지 못함.
- LAION 데이터셋 고려했지만 보안문제로 진행X

MRR: 검색 결과의 순위를 역수로 변환하여 평균을 구한 지표. NDCG: 검색 결과의 관련성 점수를 할인 계수를 적용해 누적한 값. Recall: 검색된 관련 문서 중 실제 관련 문서의 비율.

Experimental results

Model	MRR@10	NDCG@10	MRR@20	NDCG@20	Rec@20	Rec@100
CLIP-DPR(fine-64)	48.12	45.59	48.65	48.30	68.72	85.64
CLIP-DPR(fine-512)	48.00	45.57	48.52	48.27	69.02	85.83
CLIP-DPR(pre-64, fine-64)	49.94	47.52	50.48	50.38	71.35	86.84
CLIP-DPR(pre-512, fine-64)	50.65	48.09	51.21	51.05	72.13	87.26

표 2: 배치사이즈에 따른 추가 분석 실험 결과

Model	MRR@10	NDCG@10	MRR@20	NDCG@20	Rec@20	Rec@100
CLIP-DPR	60.36	61.30	60.79	63.45	84.31	94.82
UniVL-DR	64.93	65.95	65.29	67.72	87.69	94.74
CLIP-DPR(ours)	57.78	59.02	58.20	61.26	83.13	93.89
CLIP-DPR(after pre-training)	60.99	61.91	61.43	64.26	85.68	94.58
UniVL-DR(ours)	63.13	64.16	63.44	65.92	85.74	93.51
UniVL-DR(after pre-training)	65.97	66.36	66.33	68.38	87.71	95.02

표 3: 이미지에 대한 검색 성능평가 결과