자기지도학습 기반 음성 언어 모델을 이용한 자소 단위의 한국어 음성 인식

Grapheme-level Automatic Speech Recognition of Korean using Self-supervised Spoken Language Model

이 정 $^{\circ 1}$, 서민택 2 , 나승훈 3 , 나민수 4 , 최맹식 5 , 이충희 6

전북대학교^{1,2,3}, ㈜엔씨소프트^{4,5,6}

목차

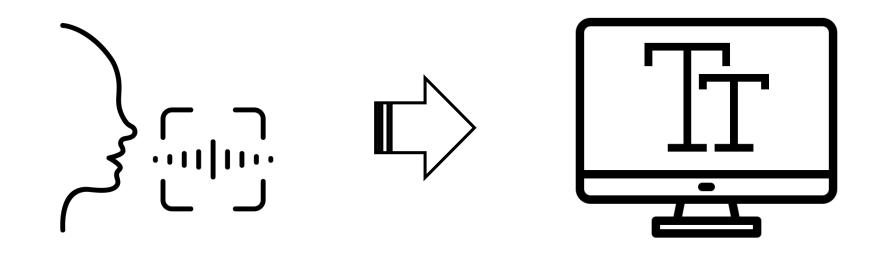
• 서론

• XLS-R 모델 소개

• 한국어 음성 인식

• 결론

서론



자동 음성 인식 (Automatic Speech Recognition, ASR)
= Speech-to-Text(STT)

사람이 말하는 음성 언어를 텍스트 데이터로 전환하는 일련의 처리나 기술 ASR 기술의 발전으로 음성 기반의 인터페이스를 통한 상호 작용이 확대되는 추세

■ 서론



of the global online population is using voice search on mobile.

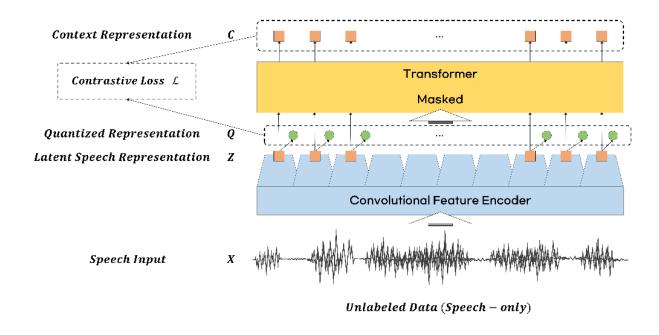
Think with Google

Global Web Index, Voice Search Insight Report, Global Data n=400,0001, 2018.

• 음성 기반 인터페이스를 통한 상호 작용 구글이 발표한 자료에 따르면 모바일 검색에서 음성 검색을 활용하는 비율이 27%에 도달

다양한 산업 전반에 걸쳐 적용되고 있는 음성 기반 인터페이스

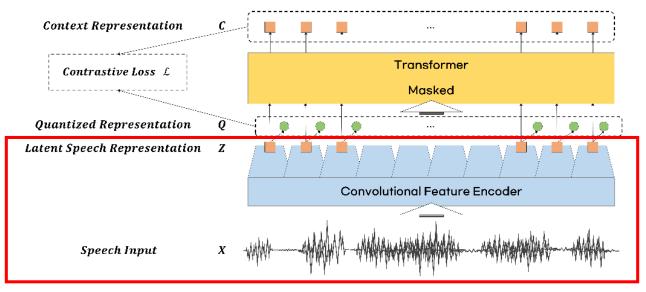
→ 최근 CNN 기반의 음성 특징 추출 기법을 포함한 딥러닝 기술과의 결합으로 성능 증대



XLS-R (wav2vec 2.0)

자기지도학습을 음성 인식에 활용한 대표적인 모델 wav2vec 2.0을 기반으로 구성됨

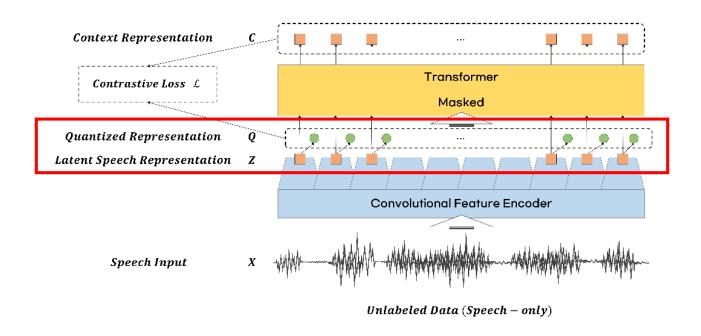
XLS-R 모델은 기존 wav2vec 2.0 대비 학습 데이터를 증대시켜 한국어 음성 데이터 61시간을 포함한 약 436,000 여 시간의 다국어 음성 데이터로 학습을 수행 모델의 매개변수 또한 300M, 1B, 2B로 크게 증가함



Unlabeled Data (Speech - only)

• 모델 구조: $X\mapsto Z$

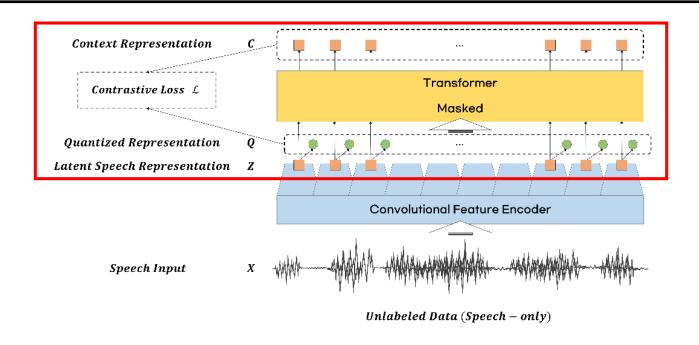
Convolutional Feature Encoder에 Speech Input X을 입력하여 전체 Timestep T에 대한 Latent Speech Representation $Z=[z_1,z_2,...,z_T]$ 획득



• 모델 구조: $Z\mapsto Q$

G개의 Codebook으로부터 Codeword vector $e_1,\ldots,e_G\in\mathbb{R}^{d/G}$ 를 추출하고 이들을 연결하여 얻은 벡터 $e_t\in\mathbb{R}^d$ 에 선형변환 $(\mathbb{R}^d\mapsto\mathbb{R}^f)$ 을 수행 (Product Quantization)

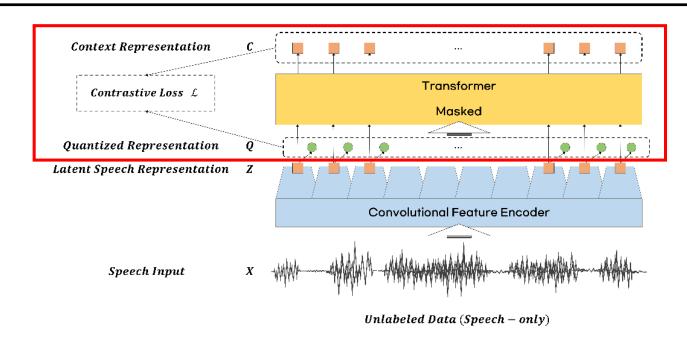
Latent Speech Representation Z 로부터 한정된 집합의 Quantized Representation Q를 얻음



• 모델 구조: $Z\mapsto C$

Transformer Encoder를 거쳐 Latent Speech Representation Z 로부터 Context

Representation $C = [c_1, c_2, ..., c_T]$ 를 얻도록 학습



$$\mathcal{L}_{m} = -log \frac{\exp(sim(c_{t}, q_{t})/\kappa)}{\sum_{\tilde{q} \sim Q_{t}} \exp(sim(c_{t}, q_{t})/\kappa)}$$

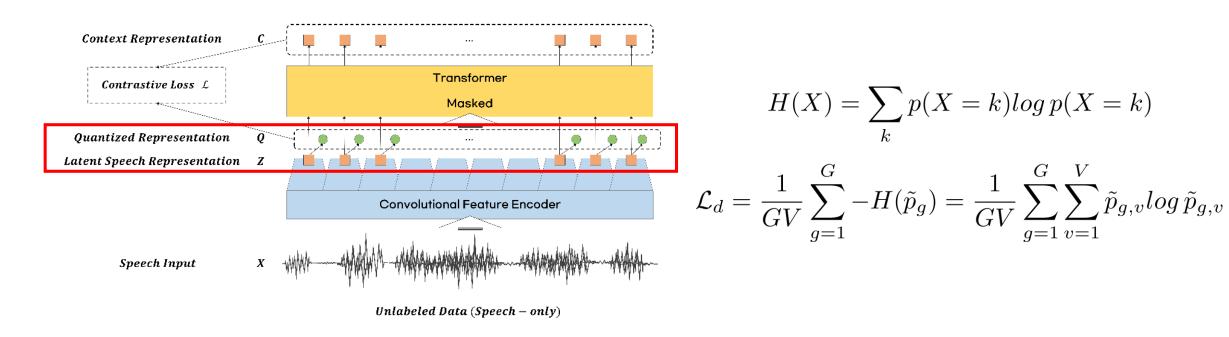
Contrastive Loss

각 Timestep t에서 얻은 Quantized Representation q_t 와 Context Representation c_t 에 따른

Contrastive Loss (\mathcal{L}_m) 를 위 수식과 같이 계산

- sim: 코사인 유사도 함수

모델 소개



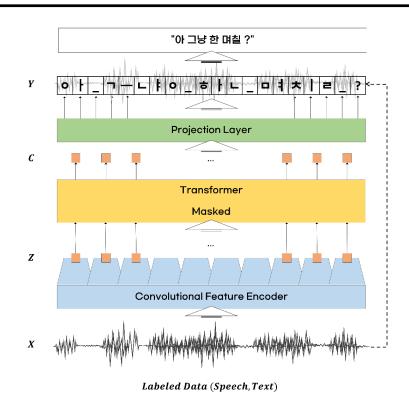
Diversity Loss

Product Quantization을 수행하는 과정에서 Codebook 내의 다양한 Codeword가 균등하게 선택될 수 있도록 정보 엔트로피 H(X)를 도입하여 Diversity Loss 계산

모델의 손실함수 $\mathcal{L} = \mathcal{L}_m + \alpha \mathcal{L}_d$ 계산

- G, V: 전체 Codebook과 Codebook 내의 Codeword 수
- α : 모델의 하이퍼 파라미터

■ 한국어 음성 인식

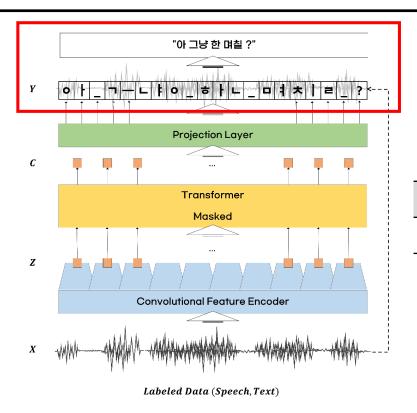


• 데이터 셋

모델의 학습 및 평가를 위해 Al Hub의 KsponSpeech (한국어 음성, 1000h) 데이터 셋 활용음성 데이터와 음성 전사 텍스트 데이터 입력

텍스트 데이터의 경우 자소 단위로 분절하여 각 음성 프레임 단위로 예측하도록 학습

■ 한국어 음성 인식



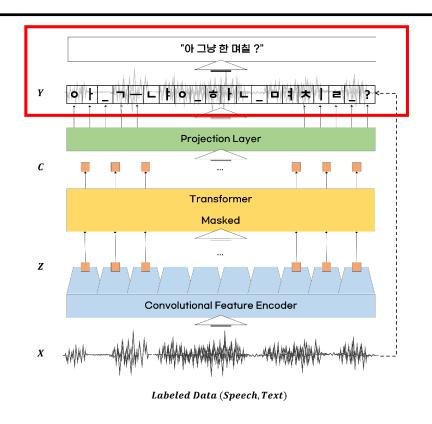
<1 epoch 음성 인식 성능 비교, WER>

Vocab	Character-level	Grapheme-level
WER	0.459	0.413

• 실험 결과

음절 단위와 자소 단위의 한국어 음성 인식 모델 성능 (WER, Word Error Rate) 비교 자소 단위의 모델의 경우 디코딩 수행 후 띄어쓰기를 포함한 원본 문장으로 재구성

■ 한국어 음성 인식



<학습 데이터 비율 조정에 따른 성능, WER>

Data	30%	50%	100%
WER	0.722	0.520	0.413

<학습 시간에 따른 성능, WER>

Epoch	1	3
WER	0.413	0.355

• 실험 결과

자소 단위의 한국어 음성 인식 모델 성능 (WER)

자기지도학습 방식의 이점을 확인하기 위하여 학습 데이터 셋의 크기 별 모델 성능 비교 또한 Epoch 수를 늘렸을 때 성능이 확연히 향상된 모습을 보여 추가적인 학습을 통한 성능 증진 기대

■ 결론

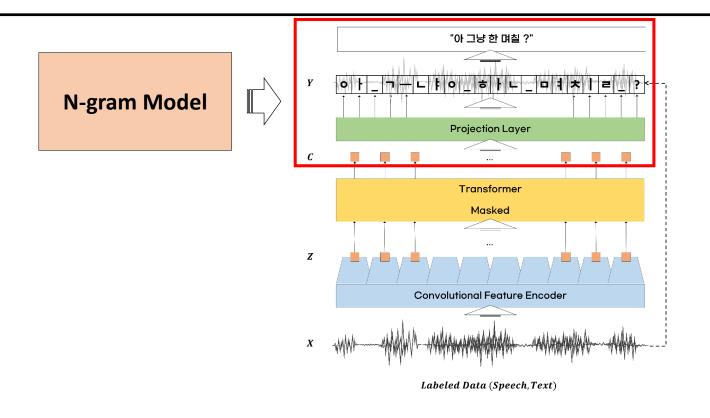
<음성 인식 결과 예시 및 WER 비교>

	Sentence	WER	
Ref.	"지나칠수가 없지"	0.000	
Pred.	"지나칠 수가 없지"	0.666	
Ref.	"어쩔 수 없어 음 그럼 언제 가냐고"	0.420	
Pred.	"어쩔수 없어 그럼 언제 가냐고"	0.428	
Ref.	"농사 짓고 막 그랬잖아"	0.25	
Pred.	"농사 지고 막 그랬잖아"	0.25	

• 결과 분석

소규모 학습 데이터 및 자원을 활용하여 학습한 모델도 일정 수준의 음성 인식이 가능함을 보여 자기지도학습에 기반한 자소 단위의 한국어 음성 인식 모델의 효용성을 입증함.

■ 결론



Future works

현재 모델은 Context Representation C 로부터 가장 높은 확률의 Output을 취하는 CTC greedy decoding을 수행하나 자소 단위의 음성 인식 모델 특성 상 N-gram 모델 등에 기반한 Joint Decoding 도입하여 성능 증진 예정

감사합니다