Two-stage document length normalization for Information retrieval

Seung-Hoon Na

Introduction

 Two-Stage Document Length Normalization for Information Retrieval. ACM Transactions on Information Systems, 33(2), 2015

URL: http://dl.acm.org/citation.cfm?id=2699669

Why Normalization of Term Frequency?

Term frequency

 a fundamental and important component of a ranking model

The naïve scoring method using term frequency

- Intuition: The larger the term frequency of a query word in a document, the more likely the document is to be about the query topic
- → Problem: an excessive preference for long documents

Normalization of term frequency is necessary!

Two Hypotheses [Robertson and Zaragoza '09]

Verbosity hypothesis

 Some authors are simply more verbose, using more words to say the same thing

Scope hypothesis

 Some authors have more to say: they may write a single document containing or covering more ground

Issue

• We focus on the difference b/w the effect of the verbosity and the scope on the term frequency of a single word

Verbosity vs. Scope

Verbosity

- Related to the burstiness of term frequency
- Helps an already mentioned word in a document get a higher frequency

- Normal verbosity vs. high verbosity
 - Even if a word has a low term frequency in normal verbosity, its term frequency could increase significantly when the document has high verbosity

Verbosity vs. Scope

Scope

- Mostly involves the creation of a new word, rather than boosting the term frequency
- ◆ Broadening the scope of a document would help unseen words in a normal document get non-zero frequencies → However, these non-zero frequencies might not be high.

Summary of the difference b/w verbosity and scope

verbosity leads to a significant increase in term frequency, whereas scope leads to a rather limited increase in term frequency.

Limitation of Existing Standard Normalization

Length-driven approach

- Based only on the document length, without distinguishing between verbosity and scope
- Limitation

<u>insufficient penalization</u> of a verbose document whose length is increased mainly by high verbosity

<u>Excessive penalization</u> of a broad document whose length is mainly derived from the broad scope

Proposal: Two-stage normalization

Verbosity and scope should be normalized separately by employing different penalization functions

1) Verbosity normalization

 For each document, linearly divide the term frequency by the verbosity, thus obtaining a verbosity-normalized document representation.

2) Scope normalization

 An existing retrieval model is applied to this verbosity-normalized document representation.

Analysis on Two-stage Normalization

 We perform comparative axiomatic analysis of the original and the VN retrieval models, under the setting of the axiomatic framework introduced in [Fang et al. 2004; 2011]

- the VN model indeed performs the desired separate normalizations
- 1) a strict penalization of verbosity-increased documents
- 2) a relaxed penalization of scope-broadened documents.

The verbosity and the scope hypotheses

We assume that the document length is decomposed into the verbosity and the scope as

Length of d $|d| = v(d) \ s(d)$ Verbosity of d Scope of d

- Document length
 - Previously, regarded as 1-dimenational object
 - In our work, regarded as 2-dimensional object

***Verbosity of**
$$v(d) = \frac{|d|}{s(d)}$$

- Verbosity normalization
 - the original term frequency is normalized by dividing it by the verbosity of the document Original term freq.

$$c(w,\phi(d)) = k \frac{c(w,d)}{v(d)} = k \frac{c(w,d) \cdot s(d)}{|d|}$$

- $\triangleright \varphi$: verbosity normalization operator
- $> \varphi(d)$: the verbosity-normalized document representation of α
- > c(w, d): the original term frequency of word w
- $> c(w, \varphi(d))$: the verbosity-normalized term frequency of word

Scope normalization

 we need to consider a more relaxed function than that for verbosity normalization

the scope of an original document = the verbosity-normalized length of the document

$$|\phi(d)| = \sum_{w} c(w, \phi(d)) = \sum_{w} \frac{c(w, d) \cdot s(d)}{|d|} = s(d)$$

existing retrieval models perform a type of relaxed normalization by using their pivoted length or smoothed length

Two-Stage Normalization: Summary

- $\mathbf{r}(\mathbf{d}, \mathbf{q})$: the original retrieval function that gives a score to d,
- Applying two-stage normalization to f(d, q) $\Rightarrow f(\varphi(d), q)$
- * $f(\varphi(d), q)$: Obtained by replacing c(w, d) used in all terms in f(d, q) with $c(w, \varphi(d))$ for all documents in the collection

VN (verbosity-normalized) retrieval model

Examples of VN model: Dirichlet-prior (DP)

The VN model f(φ(d), q) is assumed to employ the following document-specific conjugate prior:

 $(\mu v(d) p(w_1/C), \mu v(d) p(w_2/C), \mu v(d) p(w_{|V|}/C))$

$$P(w|d) = \frac{c(w,d) + \mu \, v(d)p(w|C)}{|d| + \mu \, v(d)}$$

We simply use k = 1, because the scaling parameter k of c(w, (d)) is absorbed into the smoothing parameter μ .

$$P(w|\phi(d)) = \frac{c(w,\phi(d)) + \mu p(w|C)}{|\phi(d)| + \mu}$$

Examples of VN model: Dirichlet-prior (DP)

The resulting VN scoring function (VN-DP)

$$\sum_{w \in q \cap d} c(w,q) \ln \left(1 + \frac{c(w,d)}{\mu \cdot p(w|C)} \frac{s(d)}{|d|} \right)$$

$$+ |q| \cdot \ln \left(\frac{\mu}{s(d) + \mu} \right)$$

Examples of VN model: Okapi

Okapi's BM25 retrieval formula, as presented by [Robertson et al. 1995]

$$tf_{BM25}(w,d) = \frac{(k_1+1)c(w,d)}{k_1\left((1-b) + b\frac{|d|}{avgl}\right) + c(w,d)}$$

we assume the scale parameter k to be 1, because it is absorbed into k_1

$$tf_{BM25}(w, \phi(d)) = \frac{(k_1 + 1)c(w, d)}{k_1|d|\left((1 - b)\frac{1}{s(d)} + b\frac{1}{avgs}\right) + c(w, d)}$$

Scope Measure

 \diamond The remaining problem is how to compute the scope of a document s(d).

- We propose three different approaches
 - 1) Length power (LengthPower)

2) The number of unique terms (UniqLength)

3) Entropy power (EntropyPower)

Scope Measure: Length Power

To obtain a length-based scope measure, we use Heap's law, which is given as follows [Heaps 1978]

$$l_{\beta}(d) = |d|^{\beta}$$

 \rightarrow The possible range of β : $0 \le \beta \le 1$

Scope Measure: the Number of Unique Terms

 \diamond the number of unique terms u(d), defined as

$$u(d) = |\{w|w \in d\}|$$

a different topic is described using a domainspecific vocabulary or named entities. The more unique terms used in a document, the larger is the scope of the document

Scope Measure: Entropy Power

 the entropy power defined by the exponential of the entropy, which was initially exploited in [Kurland and Lee 2005] to construct the document structure

$$h(d) = \begin{cases} exp\left(-\sum_{w} p_{ml}(w|d)\ln(p_{ml}(w|d))\right) & if |d| \ge 1 \\ 0 & otherwise \end{cases}$$

Comparative Axiomatic Analysis under Standard Retrieval Constraints

We perform a comparative axiomatic analysis performed under the standard retrieval constraint introduced

- Standard constraints (Fang et al. '04;'11)
 - Form constraints: TFC1, TFC2, TFC3, and TDC
 - Normalization constraints: LNC1, LNC2, and TF-LNC

Seven Basic Relevance Constraints

[Fang et al. 2011]

Constraints	Intuitions
TFC1	To favor a document with more occurrences of a query term
TFC2	To ensure that the amount of increase in score due to adding a query term repeatedly must decrease as more terms are added
TFC3	To favor a document matching more distinct query terms
TDC	To penalize the words popular in the collection and assign higher weights to discriminative terms
LNC1	To penalize a long document (assuming equal TF)
LNC2, TF-LNC	To avoid over-penalizing a long document
TF-LNC	To regulate the interaction of TF and document length

Slide from http://www.eecis.udel.edu/~hfang/pubs/sigir14-axiomatic.pptx

Length Normalization Constraints (LNCs)

Document length normalization heuristic:

Penalize long documents(LNC1);

Avoid over-penalizing long documents (LNC2).

LNC1

Let Q be a query and D be a document.

If t is a non-query term,

then $S(D \cup \{t\}, Q) < S(D, Q)$

Q:

D:

.

D':

• LNC2

Let Q be a query and D be a document.

If $D \cap Q \neq \phi$, and D_k is constructed by concatenating D with itself k times,

then
$$S(D_k,Q) \ge S(D,Q)$$

Q:

D:

$$S(Q, D_k) \ge S(Q, D)$$

Slide from http://www.eecis.udel.edu/~hfang/pubs/sigir14-axiomatic.pptx

TF & Length normalization Constraint (TF-LNC)

TF-LN heuristic:

Regularize the interaction of TF and document length.

TF-LNC

Let Q be a query and D be a document.

If q is a query term,

then $S(D \cup \{q\}, Q) > S(D, Q)$.

Analysis Results of the Original and VN Retrieval Models for Normalization Constraints

	LNC1	LNC2	TF-LNC
Original model	Yes	yes	yes
Verbosity normalized (UniqLength)	C1	C2	yes
Verbosity normalized (EntropyPower)	C1	C2	yes

- an original method satisfies all three constraints unconditionally
- a VN method requires additional conditions that depend on the choice of scope measure

Normalization Heuristics of VN Models

(UniqLength and EntroyPower)

- H1: Relaxed penalization of scope-broadened documents
 - The VN retrieval method performs a relaxed penalization of a scope-broadened (from LNC1 & C1)
- + H2: Strict penalization of verbosity-increased documents
 - The VN retrieval method imposes a strict penalization of a verbosity-increased document (from LNC2 & C2)

Experimentation

Experimental Setting

◆ Test Collections: ROBUST, WT10G, GOV2

Statistics	ROBUST	WT10G	GOV2
NumDocs	528,156	1,692,096	25,205,179
NumWords	572,180	6,346,858	40,002,579
TopicSet	Q301-450, Q601-700	Q451-550	Q701-850
Avg of d (CoeffVar)	233.34 (2.39)	400.25 (6.06)	690.8 (2.86)
Avg of h(d) (CoeffVar)	107.77 (0.81)	109.60 (1.45)	109.85 (0.98)
Avg of v(d) (CoeffVar)	1.77 (0.91)	2.95 (5.51)	6.11 (7.17)

DP vs. VN-DP: MAP

Туре	Method	ROBUST	WT10G	GOV2
	baseline	0.2447	0.1963	0.2907
	LengthPower(0.25)	0.2252	0.1649	0.2403
Short	LengthPower(0.5)	0.2401	0.1953	0.2823
Keyword	LengthPower(0.75)	0.2457	0.1969	0.2930
Queries	LengthPower(0.9)	0.2460*	0.1963	0.2913
	UniqLength	0.2472*	0.2046	0.3055*
	EntropyPower	0.2481*	0.2120*	0.3099*
	baseline	0.2707	0.2469	0.2864
	LengthPower(0.25)	0.2697	0.2249	0.3060*
Long Verbose Queries	LengthPower(0.5)	0.2765*	0.2506	0.3133*
	LengthPower(0.75)	0.2762*	0.2532	0.3005*
	LengthPower(0.9)	0.2725*	0.2501	0.2914*
	UniqLength	0.2759*	0.2553*	0.3083*
	EntropyPower	0.2799*	0.2614*	0.3248*

Okapi vs. VN-Okapi: MAP

Туре		Method	ROBUST	WT10G	GOV2
		baseline	0.2447	0.1963	0.2920
		LengthPower(0.5)	0.2451	0.1957	0.2897
Short	rd	LengthPower(0.75)	0.2454	0.1994*	0.2923
Keywo Querie		LengthPower(0.9)	0.2452	0.1944	0.2923
		UniqLength	0.2483*	0.1997	0.3035*
		EntropyPower	0.2477*	0.2071*	0.3004*
		baseline	0.2419	0.2344	0.3012
		LengthPower(0.5)	0.2647*	0.2307	0.3022
Long Verbose Queries	0	LengthPower(0.75)	0.2640*	0.2341	0.3009
		LengthPower(0.9)	0.2631	0.2366	0.3018
		UniqLength	0.2663*	0.2368*	0.3063*
		EntropyPower	0.2659*	0.2415*	0.3074*

MRF vs. VN-MRF: MAP

Туре	Method	ROBUST	WT10G	GOV2
	baseline	0.2447	0.1963	0.2907
	baseline(VN-DP)	0.2481	0.2120	0.3099
	baseline(MRF)	0.2545	0.2149	0.3095
Short	LengthPower(0.5)	0.2506	0.2055	0.3032
Keyword Queries	LengthPower(0.75)	0.2557*	0.2128	0.3133*
Q 6.01.00	LengthPower(0.9)	0.2545*	0.2142	0.3125*
_	UniqLength	0.2572*	0.2244*	0.3270*
	EntropyPower	0.2581*	0.2296*	0.3334*
	baseline	0.2707	0.2469	0.2864
	baseline(VN-DP)	0.2799	0.2614	0.3248
	baseline(MRF)	0.2813	0.2613	0.3164
Long Verbose Queries	LengthPower(0.5)	0.2866*	0.2581	0.3368*
	LengthPower(0.75)	0.2883*	0.2659	0.3280*
	LengthPower(0.9)	0.2861*	0.2617	0.3214*
	UniqLength	0.2895*	0.2687*	0.3363*
	EntropyPower	0.2927*	0.2757*	0.3481*

Conclusion

- Argument: a normalization function should use different penalizations for verbosity and scope
- Proposal: we propose the use of two-stage normalization.

Main contributions

- ◆ 1) Generalize two-stage normalization such that it can be applied to any retrieval model.
- 2) Perform comparative axiomatic analysis and capture the exact retrieval heuristics resulting from two-stage normalization and its difference from the original method.